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*e deformation and damage mechanism of shell structures under near-field explosion loads has been of great significance in the
theoretical study of impact dynamics andmay serve as a dependable theoretic basis for the antiexplosion design of shell structures.
In this paper, the plastic zone and crevasse size of clamped square plates under near-field explosion loads were discussed based on
the plastic hinge law and energy theory. *e crevasse size of a plate moving at motion modes Ι and ΙΙ under medium load was
obtained according to the ultimate plastic strain criterion. Furthermore, the plastic zone under a high load was determined in
terms of the movement law of a plastic hinge line.When the applied load ended, the crevasse sizes of the plates at motionmodes III
and IV were deduced on the basis of the principle of energy conservation. Finally, numerical simulation was used to analyse the
deformation and damage mechanism of the shell structures under near-field explosion loads. *e theory and method proposed in
this paper are verified using ANSYS software and compared with the experimental results. *is study verifies the validity of the
proposed approach for analysis of the deformation and damage of a clamped square plate under near-field explosion loads.

1. Introduction

Shell structures are widely used in naval vessels, aircraft, and
tanks due to their special properties, such as simple con-
struction, being light weight, and good bearing capacity
[1–4]. However, shell structures are often subjected to ex-
plosion loads or shock waves in practical applications [5–7].
It is necessary to investigate the plastic dynamic response,
residual deformation, and damage of the thin plate subjected
to an explosion load.

Generally, the dynamic response of thin plates under
explosion loads depends on the applied load, material
properties, and boundary conditions [8–10]. Considerable
efforts have been made to investigate the dynamic response
of materials under explosion loads. Houlston and Des-
rochers [11] calculated the dynamic plastic response of
a clamped square plate subjected to blast loading by applying
the ADINA procedure. Spranghers et al. [12] proposed an
inverse method that uses full-field optical measurements
taken during the first milliseconds of a free air explosion to

identify the plastic response of aluminum plates subjected to
sudden blast loads, and the results verify that the proposed
methods can be successfully used to analyse the plastic
behaviour of metals subjected to blast waves. Breslavsky et al.
[13] experimentally and numerically studied the de-
formation and fracture of impact-loaded thin steel square
plates and discussed the numerical-experimental approach
for fracture prediction in plates under repetitive impact
loading. Zheng et al. [14] investigated the large deflection
behaviour of clamped stiffened plates subjected to confined
blast loads through experiments, theoretical analysis, and
numerical simulations; it was proven that the proposed
calculation model is of high precision and practicability by
comparing the numerical results. Li et al. [15, 16] studied the
blast response of plates with preformed holes under blast
loading; furthermore, the author discussed the damage level
at places where cracks might form, the dynamic stress
concentration coefficient, and stress status change and
analysed the influence of preformed holes on the failure
mode. Kazanci and Mecitoglu [17] used the virtual work
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principle to analyse and discuss the nonlinear dynamic
response of a laminated composite plate subjected to blast
load, and finite element results in the literature show good
agreement with their approximate numerical analysis re-
sults. Yao et al. [18] developed a new dimensionless number
that takes into account the influence of blast load, strength of
material, and structural dimensions for the dynamic re-
sponse of box-shaped structures subjected to internal blast
loading based on the governing equations of a fully clamped
plate. However, a theoretical analysis on the deformation
and damage of clamped square plates under near-field ex-
plosion load is still limited and requires further study.

In this paper, the plastic zone and crevasse size of
a clamped square plate with different types of motion modes
are discussed under medium and high loads. After theo-
retical analysis, the deformation and damage of the plate
under the action of near-field explosion load are simulated.

*e numerical simulation results are in good agreement
with the theoretical analysis results, and the parameter
correctness of various material models and state equations
has been verified. *ese studies have laid a foundation for
the numerical simulation of explosion problems and provide
theoretical guidance for practical applications.

2. Model Simplification and Yield Criterion

2.1.ExplosionLoadSimplification. *e explosion load can be
simplified to a triangle load with an ascent stage, as shown in
Figure 1, and can be defined as follows:

p �

pm

tm

t, 0≤ t≤ tm,

pm

tm − ts

t− ts( 􏼁, tm ≤ t≤ ts,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(1)

where pm is the peak pressure of the explosion load, tm is the
time required for the load to reach the peak value, and ts is
the duration of the applied load.

2.2. Yield Criterion. To simplify the calculations, the yield
curve in a square shape plate (Figure 2) is used. It is the
expansion of the Tresca hexagonal yield curve, which can be
defined as follows:
max M1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌, M2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑 � Ms

M1, M2 �
1
2

Mx + My􏼐 􏼑 ±
1
2

Mx −My􏼐 􏼑
2

+ 4M
2
xy􏼔 􏼕

1/2
,

Ms � σ0h
2
.

(2)

In (2), h is the half thickness of the plate.
*e length and thickness of the clamped square plate are

2l and 2h, respectively. *e near-field explosion loads are
applied to the square plate uniformly with a value of p. *e
coordinate system selected is shown in Figure 3, and a new
coordinate is proposed defined as follows:

z �
x + y

�
2

√
l

. (3)

*e ultimate pressure of the plate subjected to a hor-
izontal, static, uniformly distributed load is p0 � 12Ms/l

2.
Under a moderate load of p0 <pm <pb � 2p0, the moving
hinge line will not appear in the plate, and the corre-
sponding velocity field is in the form of a tetrahedral
pyramid. Under a high load of pm >pb � 2p0, the moving
hinge line will occur in the plate with a hexahedron ve-
locity field.

Under moderate load, the square plates move in the form
of a tetrahedral pyramid. *is movement means that when
p0 <pm ≤pmb1, at the time of t � t0, the movement of the
deformable mechanism with a pyramid begins, the velocity
of the plate increases first and then decreases, but it stops
before the end of the explosive load. While pmb1 <pm ≤ 2p0,
at the end of the load, the plate will continue to move be-
cause the speed of the plate is not zero; under the action of
inertia, the velocity gradually drops to zero, and the plate is
static.

Under high load, at first, the velocity field is in the form
of a tetrahedral pyramid, the moving hinge line appears in
the plate when the load suddenly disappears, and the hinge
line moves to the centre of the plate; thus, the top platform
will gradually shrink until it vanishes.
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p

Figure 1: Triangular blast load diagram.
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Figure 2: Approximate yield curve of the plate.
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3. Plastic Deformation and Crevasse Size of the
Square Plate under a Medium Load

Under the load of p0 <pm <pb, an immobile plastic hinge
line appears along the four edges and diagonals of the plate,
whereas the remaining area of the plate is rigid. *e de-
formation of the plate is shown in Figure 4.

*e square plate cracks first in the middle section, and
then, the plastic hinge lines located at the diagonals of the
plate continue to crack, finally leaving a cracked hole on the
plate. When the plate stops moving, the deflection does not
increase, and the cracks do not propagate. Hence, the plastic
strain is not greater than the ultimate plastic strain of a point
on the plastic hinge line. *e point located at the outer edge
of the crevasse can further determine the size of the crevasse.

On the plastic hinge line OQ, the stretching effect along
the y direction can be ignored because the crevasse occurs in
the middle of the plate. As a result, the plastic strain of each
point at the plastic hinge line consists of the tensile strain
caused by transverse displacement and the flexural strain
caused by bending.

Considering a point on OQ with a y distance to origin,
the tensile strain εxt as a result of the transverse displacement
can be calculated. *e calculated deformation diagram is
shown in Figure 5.

As shown in Figure 5, the distance of the selected point
with the y distance to the origin point becomes y1 after the
load is applied. *us,

y1 � l−(l−y)cos θ. (4)

*e transverse tensile strain in the x direction is cal-
culated as follows:

εxt �
l

y
− 1􏼠 􏼡(1− cos θ). (5)

*e calculated diagram of bending strain is shown in
Figure 6.*e flexural strain of a point at the plastic hinge line
is calculated as follows:

εxb � hκx, (6)

where κx is the bending curvature of OQ and can be defined
by the following formula:

κx �
ϕ1
C

, (7)

where ϕ1 is the relative angle of the plate on both sides of the
plastic hinge and C is the width of the bending deformation
zone. *e value of 4h was assigned to C in this paper [19].

Using the Law of Cosines, in ΔOCD,
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Figure 4: Deformation diagram of the plate.
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Figure 5: Calculation of plate deformation.
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ϕ1 � arccos
OC2 + OD2 −CD2

2OC · OD
� arccos 1 +

OO′2

l2
⎛⎝ ⎞⎠

−1

.

(8)

Hence, the bending strain can be expressed as follows:

εxb �
h

C
ϕ1 �

1
4
arccos

1
1 + OO′2/l2􏼐 􏼑

, (9)

where OO′ is the residual deflection of the plate centre.
According to [11], the deflection of the plate centre point

can be expressed as follows:

w1(t) �
2
ρ0

􏽚
t

t0

(t− τ) p(τ)−p0􏼂 􏼃dτ. (10)

*en, the total plastic strain at this point is the super-
position of tensile strain and bending strain:

εx �
l

y
− 1􏼠 􏼡(1− cos θ) +

1
4
arccos

1
1 + w2

1/l
2( 􏼁

. (11)

When the plastic strain of one point in the plastic hinge
line reaches its limiting value, the plate stops cracking and
the crevasse size reaches a maximum:

y �
l(1− cos θ)

1 + εf − cos θ−(1/4)arccos 1 + w2
1/l

2( 􏼁( 􏼁
−1,

θ � arctan
w1

l
.

(12)

3.1. Crevasse Size of the Plate at Motion Mode Ι. Under the
applied load of p0 <pm <pmb1, pmb1 is the load when the
velocity of the plate is zero, pmb1 � 2p0 − (p0t0/ts) [20], the
plate is at motion mode Ι. *us, its motion is restricted to

only one phase, that is, the impact load and inertial force are
responsible for the plate motion. *e plate will stop moving
when these loads become zero.

According to [20], the final residual deflection of the
plate centre can be calculated as follows:

w
∗
1 td( 􏼁 �

p0ts tm − t0( 􏼁
3

3ρ0t0t2m
2ts − tm + 2

���������

ts ts − tm( 􏼁

􏽱

􏼔 􏼕, (13)

where td is the time at the end of the plate movement, ts is
the explosion load duration, tm is the time when the load
reaches the peak pressure, and t0 refers to the time when
plate moves as a pentahedron, which can be defined by
t0 � p0tm/pm.

By substituting (13) into (12), the crevasse size at motion
mode Ι can be obtained as (14).

3.2. Crevasse Size of the Plate at Motion Mode ΙΙ. Under the
explosion load of pmb1 <pm ≤ 2p0, the plate motion at
motion mode ΙΙ has two phases. *e first phase is when the
plate moves under the impact load and inertial force from
time t0 to ts.*e second phase is when the plate moves under
the inertia force from the time ts to td and stopsmoving at td.

*e deflection at the end of the first phase satisfies the
idea of the plate at motion mode Ι and can be obtained
according to (10) as (15).

*en, the crevasse size of the plate can be calculated as
(16).

When t � ts, the impact load value becomes zero. After
that, the plate continues to move under an inertial force and
crevasse continues to expand until the motion ends at (17).

*e final residual deflection of the plate at motion mode
ΙΙ can be calculated as (18).

Finally, the maximum crevasse size can be determined
as (19)

y �
l(1− cos θ)

1 + εf − cos θ−(1/4)arccos l2/ l2 + p0ts tm − t0( 􏼁
3

􏼐 􏼑/ 3ρ0t0t2m( 􏼁􏼐 􏼑 2ts − tm + 2
���������
ts ts − tm( 􏼁

􏽱

􏼔 􏼕􏼚 􏼛
2

􏼠 􏼡􏼠 􏼡

,

θ � arctan
p0ts tm − t0( 􏼁

3 2ts − tm + 2
���������
ts ts − tm( 􏼁

􏽱

􏼔 􏼕

3ρ0t0t2ml
,

(14)

y � w1 ts( 􏼁 �
p0

3t0
2tmt

2
s − 3t0t

2
s − tst

2
m + 3t

2
0tf − t

3
0􏼐 􏼑, (15)

y �
l(1− cos θ)

1 + εf − cos θ1 −(1/4)arccos l2/ l2 + p0/3t0( 􏼁 2tmt2s − 3t0t
2
s − tst

2
m + 3t20tf − t30􏼐 􏼑􏽨 􏽩

2
􏼒 􏼓􏼒 􏼓

,

θ � arctan
p0 2tmt2s − 3t0t

2
s − tst

2
m + 3t20tf − t30􏼐 􏼑

3t0l
,

(16)

td �
tmts + t20

2t0
, (17)
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w2 td( 􏼁 �
p0

12ρ0t20
6t

2
0tmts − 4t0t

2
mts + 3t

2
mt

2
s − 4t0tmt

2
s − t

4
0􏼐 􏼑,

(18)

y �
l 1− cos θ1( 􏼁

1 + εf − cos θ1 −(1/4)arccos 12ρ0t20l( 􏼁
2
/ 12ρ0t20l( 􏼁

2
+ p0 6t20tmts − 4t0t

2
mts + 3t2mt2s − 4t0tmt2s − t40( 􏼁􏼂 􏼃

2
􏼐 􏼑􏼐 􏼑

,

θ � arctan
p0 6t20tmts − 4t0t

2
mts + 3t2mt2s − 4t0tmt2s − t40( 􏼁

12ρ0t20l
.

(19)

4. Plastic Deformation and Crevasse Size of
a Square Plate under a High Load

Let p(tb) � pb and p(tm) � pm, then tm > tb when pm >pb.
When t0 < t≤ tb, the explosion load is the medium load, and
the plastic zone and crevasse size can be obtained using the
relevant functions presented in the previous chapter. When
t> tb, a plastic platform that changes with the applied load
appears in the plate, which results in two different plastic
zones, as shown in Figure 7. Zone _ is the plastic platform
expressed for 0≤ z≤φ, where φ is a straight line paralleled to
PQ to define the limits of zone _. Zone __ is a rigid de-
formation zone divided by the diagonal plastic hinges and
can be expressed for φ≤ z≤ 1.

4.1. Plastic Zone of the Plate under a High Load. *e plastic
zone of the plate is determined when the moving hinge line
reaches its limited state. It is assumed that the position of the
moving hinge line is φc at the time tc.

*e plastic state of zone _ is defined as follows:

Mxy � 0,

Mx � My � Ms,

v(x, y, t) � v(t).

(20)

*e plastic state of zone __ is defined as follows:

Mx � Ms + x
2
f(z, t),

My � Ms + y
2
f(z, t),

Mxy � xyf(z, t),

v(x, y, t) � v(t)
1− z

1−φ
, φ≤ z≤ 1,

(21)

where f(z, t)≤ 0.
Apparently, the boundary condition and speed conti-

nuity condition are both satisfied by the velocity field in the
above functions. In addition, the plastic hinge line is plastic
since zv/zα is discontinuous at z � φ.

Substituting t � tb � 2t0 into (10) and its first derivative,
the initial velocity and initial displacement conditions of the
plate movement under a high load can be obtained:

v1 x, y, tb( 􏼁 �
p0t0

ρ0
(1− z), (22)

w1 x, y, tb( 􏼁 �
p0t

2
0

3ρ0
(1− z). (23)

Considering the initial force, the equations of motion of
the plate can be calculated as follows:

zQx

zx
+

zQy

zy
� −p + ρ0 €w,

Qx �
zMx

zx
+

zMxy

zy
,

Qy �
zMy

zy
+

zMxy

zx
.

(24)

Substituting (20) and the initial conditions in (22) and
(23) into the above equations of motion, the velocity and
displacement of zone _ can be calculated as follows:

ρ0v(t) � p0t0 + 􏽚
t

tb

p(τ) dτ, (25)

ρ0w(t) � p0t0t−
5
3
p0t

2
0 + 􏽚

t

tb

(t− τ)p(τ) dτ. (26)

Similarly, substituting (21) into (24), the differential
equation of f(z, t) can be obtained as (27).

Hence, the general solution of f(z, t) is expressed as
(28):

z
2
f″ + 6zf′ + 6f � −p(t)

+ ρ0(1− z)
_v(t)[1−φ(t)] + v(t) _φ(t)

[1−φ(t)]2
,

A �
z[v(t)/(1−φ(t))]

zt

�
_v(t)[1−φ(t)] + v(t) _φ(t)

[1−φ(t)]2
,

(27)

f(z, t) � −
p

6
+
ρ0A
12

(2− z) + C3z
−2

+ C4z
−3

. (28)
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*e integration constants C3 and C4 can be calculated
according to the initial force continuity of the plastic hinge
line z � θ(t):

C3 � −
ρ0A−p

2
φ2

+
ρ0Aφ3

3
,

C4 �
ρ0A−p

3
φ3 −

ρ0Aφ4

4
.

(29)

Considering the clamped boundary condition
Mα(z)|z�1 � −Ms,

f(z)l
2
z
2􏼌􏼌􏼌􏼌z�1 � −2Ms. (30)

Substituting the analytic expression of f(z) into the
above equations,

(φ− 1)
2

p(2φ + 1) +
ρ0A
2

(3φ + 1)(φ− 1)􏼢 􏼣 � p0. (31)

Here, substituting (25) into the expression of A,

p(1−φ)
2
(φ + 1)− p0t0 + 􏽚

t

tb

p(τ) dτ􏼢 􏼣(3φ + 1)(1−φ) _φ

� 2p0.

(32)

Consequently, combining (1) and (25) into (32), the
expression for φ � φ(t) can be obtained to determine the
size of the plastic zone.

*e expression of φ(t) should be calculated based on
different stages since the explosion load is simplified into the
triangular load with an ascent stage.

First, considering the ascent stage at 0≤ t≤ tm,

􏽚
t

tb

p(τ) dτ � 􏽚
t

tb

pm

tm

τ dτ �
p0

2t0
t
2 − 4t

2
0􏼐 􏼑. (33)

Substituting (33) into (32), we get the following:

2(1−φ)
2
(1 + φ)t− t

2 − 2t
2
0􏼐 􏼑(3φ + 1)(1−φ) _φ � 4t0.

(34)

*e initial condition of the above equation is
φ(t)|t�2t0

� 0, and the solutions of (33) that satisfy
0≤φ(t)≤ 1 can be calculated with the assistance of the
Maple software package.

*e moving law of the plastic hinge line at the ascent
stage of the simplified explosion load is obtained. *e first-
order derivative is equal to the first function in (35), which
represents the moving velocity of the moving hinge. Fur-
thermore, the plastic zone can be determined if we assign
a value of zero to the velocity of the moving hinge line.
However, the velocity of the moving hinge has not reached
zero at t � tm. *us, it is necessary to discuss the following:

φ(t) �
1
3
−
ξ1/3
1
6
−

2
3ξ1/3

1
−

�
3

√ ξ1/3
1
12
−

2
3ξ1/3

1
􏼠 􏼡i,

ξ1 �
−8t2 − 65t20 + 54t0t + 3

�����������������������������
3t0 156t2t0 + 147t30 − 32t3 − 260t0t( 􏼁

􏽱

􏼔 􏼕

t2 − 2t20( 􏼁
,

(35)

􏽚
t

tb

p(τ) dτ � 􏽚
tm

tb

pm

tm

τ dτ + 􏽚
t

tm

pm

tm − ts

τ − ts( 􏼁 dτ

�
p0

2t0

t2mts − 4t20tm + 4t20ts + tmt2 − 2tstmt

tm − ts

,

(36)

t
2
mts − 2t

2
0tm + 2t

2
0ts􏼐 􏼑 + tm t

2 − 2tst􏼐 􏼑􏽨 􏽩(3φ + 1)(1−φ) _φ− 2tm t− ts( 􏼁(1−φ)
2
(1 + φ) � 4t0 ts − tm( 􏼁, (37)
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Figure 7: Two different plastic format areas of the plate.
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φ(t) �
1
3
−
ξ1/3
2
12
−

4
3ξ1/3

2
−

�
3

√ ξ1/3
2
12
−

4
3ξ1/3

2
􏼠 􏼡i,

ξ2 � 􏼠4􏼨27 1−φm −φ
2
m + φ3

m􏼐 􏼑 t
3
m − t

2
mts − 2tmt

2
0 + 2tst

2
0􏼐 􏼑 + 4 27tmt0 + 8tmts − 27t0ts( 􏼁t + 4t0 tm − ts( 􏼁 8t0 − 27tm( 􏼁− 16tmt

2

− 16t
2
mts + 3

�
3

√
􏼚 tm − ts( 􏼁 4t0 t− tm( 􏼁 + t

2
m − 2t

2
0􏼐 􏼑 1−φm −φ

2
m + φ3

m􏼐 􏼑􏽨 􏽩[−32tmt
2

+ 4 27tmt0 + 16tmts − 27t0ts( 􏼁t

+ 27 1−φm −φ
2
m + φ3

m􏼐 􏼑 t
3
m − t

2
mts − 2tmt

2
0 + 2tst

2
0􏼐 􏼑 + 4t0 tm − ts( 􏼁 16t0 − 27tm( 􏼁− 32t

2
mts]􏼛

1/2
􏼩􏼡

· tmt
2 − 2tmt

2
0 + t

2
mts + 2tst

2
0 − 2tmtst􏼐 􏼑

2
􏼒 􏼓

−1
,

(38)

*e condition of t≥ tm since the plastic deformation at this
time has not reached its maximum value.

When t � tm, (36) can be obtained.
Substituting the above equations into (31) leads to (37).

*e solutions of (37) that satisfy 0≤φ(t)≤ 1 can be obtained
as (38).

*emoving law of the plastic hinge line during the entire
applied explosion load progress has been determined. To
investigate the maximum plastic zone, the time required for
the plastic hinge line velocity to become zero should be
determined. *en, substituting the time value into (31), we
get the following:

_φ �
p(1−φ)2(1 + φ)− 2p0

ρ0v(t)(1 + 3φ)(1−φ)
. (39)

Since _φ � 0,

p(1−φ)
2
(1 + φ)− 2p0 � 0. (40)

*e time when the moving hinge line velocity becomes
zero can be calculated by substituting the second expression
of the simplified explosion load and (38) into (40):

tc �
3t0

2
+
1
2

��������������������

4tmts − 12t0ts + t20 +
8tst

2
0

tm

􏽳

. (41)

*e plastic zone can be determined as (42) by
substituting (41) into (38):

4.2. Crevasse Size of the Square Plate under a High Load.
Under a high load of pm >pb, there are two different motion
zones in the plate. *e plate is at a plastic state in zone Ι and
the central plate is damaged when the

φ tc( 􏼁 �
1
3
−
ξ1/3
2
12
−

4
3ξ1/3

2
−

�
3

√ ξ1/3
2
12
−

4
3ξ1/3

2
􏼠 􏼡i,

ξ2 � 􏼠4􏼨27 1−φm −φ
2
m + φ3

m􏼐 􏼑 t
3
m − t

2
mts − 2tmt

2
0 + 2tst

2
0􏼐 􏼑 + 4 27tmt0 + 8tmts − 27t0ts( 􏼁tc + 4t0 tm − ts( 􏼁 8t0 − 27tm( 􏼁

− 16tmt
2
c − 16t

2
mts + 3

�
3

√
􏼚 tm − ts( 􏼁 4t0 tc − tm( 􏼁 + t

2
m − 2t

2
0􏼐 􏼑 1−φm −φ

2
m + φ3

m􏼐 􏼑􏽨 􏽩[−32tmt
2
c + 4 27tmt0 + 16tmts − 27t0ts( 􏼁tc

+ 27 1−φm −φ
2
m + φ3

m􏼐 􏼑 t
3
m − t

2
mts − 2tmt

2
0 + 2tst

2
0􏼐 􏼑 + 4t0 tm − ts( 􏼁 16t0 − 27tm( 􏼁− 32t

2
mts]􏼛

1/2
􏼩􏼡

· tmt
2 − 2tmt

2
0 + t

2
mts + 2tst

2
0 − 2tmtst􏼐 􏼑

2
􏼒 􏼓

−1
,

tc �
3t0

2
+
1
2

��������������������

4tmts − 12t0ts + t20 +
8tst

2
0

tm

􏽳

.

(42)

vertical displacement reaches a certain value. As the vertical
displacement increases, the cracks continue to propagate
along the diagonal line of the plate forming four rigid
moving pieces. *e motion energy of each piece transforms
into bending energy to rotate around the plastic hinge line

and fracture energy for the crack expansion. *e crevasse
size reaches its maximum value when the plastic hinge line
expands to its maximum.

*e four fractured pieces [21] are shown in Figure 8. *e
angle of AOB is π/2, and OA represents the crack length. AB
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refers to the plastic hinge line at the root of the fractured
pieces, which moves towards the boundary when the crack
OA expands along the y-axis. *e moving velocity of AB can
be expressed as _L, and L shows the triangle height of AB. At
this moment, the triangular piece OAB warps, as shown in
Figure 9. *e curve OR represents the deformation of piece
OAB and can be regarded as an arc with a circular centre at P
and radius R. *e moving velocity of the plate in zone Ι can
be calculated with (27). *erefore, the energy of motion of
the piece OAB can be expressed as follows:

Ek � 􏽚
L

0

1
2

v
2

dm � 􏽚
L

0

1
2

v
2

· ρ0 · 2h · 2L · dl � ρ0hL
2
v
2
,

(43)

Eb � MslABϕ2, (44)

where lAB is the length of AB and ϕ2 represents the rotating
angle of AB.

*e variation ratio of the bending energy with time can
be calculated as follows:

_Eb � MslAB
_f2 � 2Ms

_L

R
L tanψ. (45)

Here, R refers to the radius of the piece and can be expressed
as R � 0.8L0.6h0.4 and ψ is the angle of the triangular piece
with ψ � π/4.

*e variation ratio of the fracture energy of the plate can
be calculated as [8]:

_Em � 3.84Msh
−1δ1/3

h R
2/3 _Y(sinψ)

−(4/3)
(cosψ)

−1
, (46)

where δh has the value of 1 and Y refers to the length of the
boundary to the side of the crevasse, which is in a direct line
with L.

*e plate in zone Ι is in a plastic state under a high load.
*e energy of motion of each fracture piece will transform
into both bending energy and fracture energy:

Ek � 􏽚
tf

ts

_Eb + _Em􏼐 􏼑 dt, (47)

where ts refers to the moment when the moving hinge line at
the root of the fracture piece begins to move (ts � 2t0 under
a high load) and tf is the moment when the hinge line stops
moving (tf � tc).

Consequently, the crevasse size can be obtained as
follows:

y �
Y

cosψ
�

�
2

√
Y. (48)

4.3. Crevasse Size of the Plate at Motion Mode ΙΙΙ. Under the
explosion load of 2p0 <pm <pmb2, where pmb2 � 4p0 −
4p0t0/ts, the plate is at motion mode ΙΙΙ. When the applied
explosion load becomes zero at t � ts, the velocity of the
plate in zone Ι can be expressed as follows:

v ts( 􏼁 �
p0

ρ0t0
tstm − 2t0ts + t

2
0􏼐 􏼑. (49)

Geometrically,

L �
l

2
Z �

l

2
φ(t). (50)

When the applied load is over, the motion energy of each
fracture piece can be obtained:

Ek �
hp2

0l
2

4ρ0t20
tstm − 2t0ts + t

2
0􏼐 􏼑

2
φ2

ts( 􏼁. (51)

Substituting (50) into (45) and combing the values of ψ
and R, the equation of the variation ratio of the bending
energy can be simplified as follows:

_Eb �
3.77Ms _φ(t)

l0.6h0.4φ1.6(t)
. (52)

Similarly, the equation of the variation ratio of the
fracture energy can be simplified as follows:

_Em � 5.65Msl
0.2

h
−(2.2/3) _Y. (53)

Q

R

S

P

A

B
O x

y

2Ψ
L

Figure 8: Petal-like cracking of the plate.

O

A

B

P

C

D

S
R

Figure 9: Warped triangular lobes.
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*e crevasse size of the plate at motion mode ΙΙΙ can be
obtained:

y �
�
2

√
Y,

Y �
hp2

0l
2( 􏼁􏼎 4ρ0t20( 􏼁( 􏼁 tstm − 2t0ts + t20( 􏼁

2φ2 ts( 􏼁− 3.77Ms( 􏼁􏼎 l0.6h0.4( 􏼁( 􏼁 􏽒
tc

2t0
_φ(t)/φ1.6(t)( 􏼁 dt

5.65Msl
0.2h−(2.2/3) tc − 2t0( 􏼁

.

(54)

4.4. Crevasse Size of the Plate at Motion Mode IV. Under the
explosion load of pm >pmb2, the plate is at motion mode IV.
*e difference in calculating the crevasse size for modes III
and IV is the different moving velocity when the applied load
becomes zero, which results in different motion energy.

When the explosion load becomes zero at t � ts, the
velocity of the plate in zone I can be calculated as follows [11]:

v ts( 􏼁 �
p0

2ρ0t0
tmts − 2t

2
0􏼐 􏼑. (55)

Combing (43), (49), and (55) and t � ts, the motion
energy of each fracture piece at the end of the explosion load
can be calculated as follows:

Ek �
hp2

0l
2

16ρ0t20
tstm − 2t

2
0􏼐 􏼑

2
φ2

ts( 􏼁. (56)

Substituting (52), (53), and (56) with ts � 2t0 and tf � tc

into (48), the crevasse size of the plate at motion mode IV
can be obtained:

y �
�
2

√
Y,

Y �
hp2

0l
2( 􏼁􏼎 16ρ0t20( 􏼁( 􏼁 tstm − 2t20( 􏼁

2φ2 ts( 􏼁− 3.77Ms( 􏼁/ l0.6h0.4( 􏼁( 􏼁 􏽒
tc

2t0
_φ(t)/φ1.6(t)( 􏼁 dt

5.65Msl
0.2h−(2.2/3) tc − 2t0( 􏼁

.

(57)

5. Comparative Analysis

5.1. Comparison Results between Experiment and Ceoretical
Analysis. To verify the theoretical analysis of the plastic zone
of a clamped square plate, the experimental results from the
literature are considered [22]. *e comparison results are
listed in Table 1.

In the experiment, the slit scanning method of optical
measurement technology was used to photograph the
deformation process of whole test plate. *e size of the
experimental plates is shown in Table 1 and experimental
installation is shown in Figure 10. A symmetrical set of
coordinates is drawn on the symmetry line of the test plate
to make an angle between the plate and the horizontal
plane.

When the plate is deformed, the trajectories of the co-
ordinate points varying with the deformation of the test plate
are captured by a high-speed camera, by which the dis-
placement and velocity fields of the test plate can be
obtained.

As shown in Table 1, when the plastic hinge line moves to
the plate centre, the plastic platform size from the theoretical
results is relatively larger than that of the experimental
results; however, the errors are quite small when the plastic
hinge is located away from the plate centre. Overall, the
theoretical results in this paper and the experimental results
are nearly identical.

5.2. Material Model. LS-DYNA software is a general pur-
pose nonlinear dynamic analysis finite element programme,

which is mainly explicit and supplemented by implicit; it is
especially suitable for coping with nonlinear dynamic impact
problems such as high-speed collisions, explosion, and metal
forming of various 2D and 3D nonlinear structures. Mean-
while, heat transfer, fluid, and fluid-solid coupling problems
also exist.*erefore, 8 groups of numerical simulation analyses
were carried out by ANSYS/LS-DYNA to compare the results.

In the simulation, the explosive was a spherical TNT
charge, and the plate was made of low-carbon steel with four
clamped sides.*e air was assumed to be an ideal gas with the
size of 60 cm× 60 cm× 0.3 cm. Considering the symmetry of
the question, a quarter of the plate and air model was created.

*e explosive, air, and steel plates were all simulated with
unit SOLID164.*emodel HIGH_EXPLOSIVE_BURN and
the JWL equation of state were employed for the explosive:

P � A 1−
ω

R1V
􏼠 􏼡e

−R1V
+ B 1−

ω
R2V

􏼠 􏼡e
−R2V

+
ωE0

V
, (58)

where p is the explosion pressure; A, B, R1, R2, and ω are the
material constants relating to the type of explosive; V is the
relative volume; and E0 is the internal energy per unit
volume.

*e LINEAR_POLYNOMIAL model was employed for
the air:

P � C0 + C1μ + C2μ
2

+ C3μ
3

+ C4 + C5μ + C6μ
2

􏼐 􏼑E0.

(59)

For ideal air, c is the ideal gas isentropic adiabatic ex-
ponent, ρ is the density of the air, and E0 is the internal
energy per unit volume.
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Table 1: Comparisons of theoretical and experimental results.

Time (ms) Plate σs (MPa) Plate thickness (mm)
Distance from plastic platform edge to the plate centre

Experimental (mm) *eoretical (mm) Relative error (%)

0.78
Steel 190 1.5 65 67 3.08

Aluminum 1 85 1.0 54 50 7.41
Aluminum 2 320 2.0 69 65 5.80

1.54
Steel 190 1.5 15 17 13.33

Aluminum 1 85 1.0 6 5 16.67
Aluminum 2 320 2.0 17 20 17.6

2.11
Steel 190 1.5 58 54 6.9

Aluminum 1 85 1.0 65 69 6.1
Aluminum 2 320 2.0 46 42 8.7

2.47
Steel 190 1.5 67 71 6.0

Aluminum 1 85 1.0 73 69 5.5
Aluminum 2 320 2.0 61 67 8.9

Light source

High-speed camera

Explosives

Test plate
Clamps

θ

Figure 10: Experimental installation.

Blast on the plate
Time = 0

(a)

Blast on the plate
Time = 0

(b)

Blast on the plate
Time = 0

(c)

Blast on the plate
Time = 0

(d)

Figure 11: Finite element model.
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Table 2: Sensitivity of mesh size on the fracture of plate.
Element size (cm) 1.5 2.0 2.5 3.0
*eoretical value of fracture (cm) 16.5 16.5 16.5 16.5
Simulative value of fracture (cm) 13.4 13.4 12.4 11.3
Relative error (%) 18.7 18.7 24.8 31.5
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Figure 12: Waveform of a spherical charge explosion. Explosion waveform of the (a) working condition 1 and (b) working condition 2.
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Steel plates are typically made of ordinary low-carbon
steel; because the explosive impact load reaches great
pressure in a very short period of time, the influence of strain
rate and reinforcement of structural materials must be
considered. *e nonlinear plasticity model PLASTIC
KINEMATICmodel material is adopted for consideration of
the strain rate effect. *e material model is based on the
relation of Cowper–Symonds:

σy � 1 +
_ε
C

􏼠 􏼡

1/p
⎡⎣ ⎤⎦ σ0 + βEpε

p

eff􏼐 􏼑, (60)

where σ0 is the initial yield strength, C and P are the material
constants, and β is the enhancement parameter, which varies
from 0 to 1. When β � 0, the model is the plastic follow-up
strengthening model; when β � 1, the model is the isotropic
reinforcement model, and Ep is the plastic reinforcement
modulus; E is the modulus of elasticity and Et is the tangent
modulus.

5.3. Meshing of the Model. After the establishment of the
geometric model, the next step is to mesh the geometric
model. *e problems studied in this paper have the char-
acteristics of high speed and large deformation, so high-
quality grids are required. *erefore, when meshing, the
body is first cut to ensure the satisfaction of themapping grid
conditions. *e mapping grid is then used to divide the cells
into hexahedrons. *e finite element model after meshing is
shown in Figure 11.

*e size of the air grid around the explosives is smaller
during the meshing process because of the drastic changes in
the explosives and air.*e steel plate also uses a fine meshing
size due to the effect of the explosion shock wave. To acquire
the appropriate grid size, the sensitivity of the mesh size was
studied for a plate with a 2.0 cm charge radius and 0.054 kg
dynamite, and the influence of grid size on the size precision
of the fracture is shown in Table 2.

According to the relative error of the four experi-
ments, when the mesh size is 1.5 cm and 2.0 cm, the
simulation value is closer to the theoretical value. In
addition, considering that too fine a mesh will result in
long computing time, the mesh size of 2.0 cm is finally
used and the air grid away from explosives is relatively
large. Explosives and air are modelled by common
joints, while steel and air are modelled by noncommon
joints. *e fluid-solid coupling is then defined to apply
explosive loads to the steel plate. In addition, unreflected

boundary conditions are applied at the air boundary
to avoid the propagation law of the air shock wave affected
by the reflection of the shock wave at the air boundary.
*e way to apply the no reflection boundary condition
method is to choose the outer surface of the air model and
select the nodes on all nodes which is defined as a group;
the no reflection boundary condition on the node group is
defined.

5.4. Comparison between the Numerical Simulation and
Ceoretical Analysis. To analyse the characteristics of the
spherical charge near the field explosion load and the
peak overpressure of blast wave, a numerical simulation of
two different loading radii were carried out. *e radius
of the load on working condition 1 is 3.5 cm and the
loading amount is 0.29 kg. *e radius of the load on
working condition 2 is 7.0 cm and the loading quantity is
2.30 kg.

*e propagation process of shock waves generated by
explosive explosion in the air is shown in Figure 12. A blast
wave caused by a spherical charge exploding in the air is
distributed uniformly in space, and it propagates in all di-
rections in the form of spherical waves. It is similar to the
propagation in the free air field before it hits the steel plate.
*is outcome is in line with the basic theory of explosions,
which verifies the accuracy of the numerical simulation of
explosions in this paper.

According to the theoretical analysis shown in Sec-
tions 3 and 4, the explosion load is divided into high load
and medium load, and each load has four motion modes.
*e fracture size of the square plate under each motion
mode has been studied theoretically to verify the cor-
rectness of the theoretical analysis, and this section
presents eight groups of numerical simulation analyses for
every motion mode. *e comparison results of the the-
oretical analysis and numerical simulations are listed in
Table 3. As shown in Table 3, the theoretical results are
generally larger than the numerical simulation results,
mainly because of the ignored strengthening effects of the
materials and the effects of the surface force in the theoret-
ical analysis. On the contrary, the results from the numerical
study, which took these effects into account, were more
accurate than those from the experiment. However, the
theoretical analysis in this paper would always be more
conservative, so the present approach could provide theo-
retical guidance for practical engineering.

Table 3: Comparisons of theoretical and numerical simulation results.

Samples Charge radius (cm) Peak overpressure (kPa) Motion mode *eoretical value (mm) Simulation value (mm)
1-1 2.0 105.7 Ι 16.5 13.4
1-2 2.5 151.9 Ι 18.9 15.7
2-1 2.0 105.7 ΙΙ 21.8 18.3
2-2 2.5 151.9 ΙΙ 24.1 20.6
3-1 5.0 915.4 ΙΙΙ 37.2 35.5
3-2 6.0 1164.3 ΙΙΙ 44.1 42.7
4-1 5.0 915.4 IV 48.8 45.2
4-2 6.0 1164.3 IV 53.7 50.2
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6. Conclusions

In summary, the plastic zones and crevasse sizes of the plate
under medium and high loads were discussed based on the
ultimate plastic strain criteria.*e following conclusions can
be drawn from the analysis.

Under medium load, the plastic zone consisted of the
four sides and two diagonals of the square plate. Based on
the plate motion when the explosive load becomes zero, the
motion was divided into two modes. With reference to the
plastic response of the clamped square plate and ultimate
plastic strain criteria, the crevasse size formulas of the plate
at two different motion models were derived.

Under high load, the plastic hinge lines and the corre-
sponding movement law were discussed, and the plastic
zone of the plate was determined. *e crevasse sizes of the
plate at motion modes III and IV after the explosion load
becomes zero were calculated according to the principle of
the conservation of energy.

*e present theoretical analysis agrees with the experi-
mental and simulation results; this outcome verifies the
validity of our approach.*is approach is also expected to be
extendable to applications in practical engineering.
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