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Because deep belief networks (DBNs) in deep learning have a powerful ability to extract useful information from the raw data
without prior knowledge, DBNs are used to extract the useful feature from the roller bearings vibration signals. Unlike clas-
sification methods, the clustering method can classify the different fault types without data label. (erefore, a method based on
deep belief networks (DBNs) in deep learning (DL) and fuzzy C-means (FCM) clustering algorithm for roller bearings fault
diagnosis without a data label is presented in this paper. Firstly, the roller bearings vibration signals are extracted by using DBN,
and then principal component analysis (PCA) is used to reduce the dimension of the vibration signal features. Secondly, the first
two principal components (PCs) are selected as the input of fuzzy C-means (FCM) for roller bearings fault identification. Finally,
the experimental results show that the fault diagnosis of the method presented is better than that of other combination models,
such as variation mode decomposition- (VMD-) singular value decomposition- (SVD-) FCM, and ensemble empirical mode
decomposition- (EEMD-) fuzzy entropy- (FE-) PCA-FCM.

1. Introduction

With the development of science and technology, aerospace
equipment, industrial equipment, and other fields of me-
chanical and electrical equipment have become increasingly
complex, intelligent, and integrated, so that the operating
conditions and the working environment are becoming
more complex and changeable. (erefore, accurate and
effective fault diagnosis in complex equipment systems
becomes an effective way to improve the reliability and safety
of the systems and to reduce the maintenance cost [1]. Roller
bearings as one of the most common components in me-
chanical systems and their operating conditions will directly
affect the performance of the entire mechanical equipment
[2–5]. Using vibration signals for roller bearings, fault di-
agnosis has become one of the commonly used ways in
recent years. Analyzing the roller bearing vibration signals
and extracting their characteristics effectively are very im-
portant and of practical significance because the vibration
signals can reflect the state of the roller bearings and the

quality of the feature extraction, which determines the ac-
curacy of the fault diagnosis.

For signal feature extraction, many different traditional
methods for vibration signal feature extraction have been
presented, such as statistical analysis, wavelet transform
(WT), and various mode decomposition models. In refer-
ence [6], different statistical indexes, such as mean value,
kurtosis, and clearance factor, are employed to calculate the
vibration signals, and they are regarded as the eigenvectors
for assessing the degradation of slurry pumps by using vi-
bration signals. Wang et al. proposed a method based on
WT for gear fault diagnosis [7]. (e vibration signals are
decomposed into continuous statistical features on different
scales by using WT. Because the dimension of the features is
high, principal component analysis (PCA) is used to reduce
the dimension of the eigenvectors. However, WT needs to
select the wavelet function and the number of decomposi-
tion layers. As the vibration signals have nonlinear and
nonstationary features, this is not a self-adaptive method. To
overcome this drawback, empirical mode decomposition
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(EMD) [8] can decompose the vibration signals into series
of intrinsic mode functions (IMFs) and a residual self-
adaptivity. However, EMD has a mode-mixing problem.
Ensemble empirical mode decomposition (EEMD) [9] can
solve the mode-mixing problem self-adaptively by in-
troducing Gaussian white noise and decomposing a com-
plicated signal into IMFs. Many scholars use the EEMD and
entropy combination models to extract the vibration signal
features. Zhang and Zhou employed the EEMD to de-
compose the roller bearings’ vibration signals into some
IMFs, and then fuzzy entropy (EE) is used to calculate the
IMF entropy values; the extracted features are selected as the
input of the support vector machine (SVM) for roller
bearing fault diagnosis [10]. In reference [11], a method
based on EEMD, sample entropy (SE), and SVM for fault
diagnosis is developed, and the main purpose of this paper is
similar to that of reference [11]; the only difference is that the
fact SE replaces fuzzy entropy (FE).

EEMD cannot separate the vibration signals correctly for
the closely located frequencies, but variation mode de-
composition (VMD) [12] decomposes the signal into vari-
ation and nonrecursive modes. Because its essence is a
number of adaptive wiener filter groups, VMD can separate
two pure harmonic signals with similar frequencies. In [13],
the roller bearings vibration signals are decomposed into
some band-limited intrinsic mode functions (BLIMFs), and
then singular value decomposition (SVD) is used to compute
the eigenvalue of each BLIMF.

However, for some complex systems, the traditional
feature extraction methods, regardless of self-adaptivity or
not, are not enough to extract the sensitive features of all
fault types due to the interaction of the external envi-
ronment and the internal structure. Sometimes, several
fault feature extraction methods need to achieve a certain
effect for fault.

DBN, PCA, and FCM models are reviewed. Section 3
describes the experimental data sources, evaluation of the
clustering effect, and the fault diagnosis methodology. (e
validation of the experiments is given in Section 4. Finally,
the conclusion is given in Section 5.

2. The Theoretical Framework of DBN, PCA,
and FCM Models

2.1. (eoretical Framework of DBN. DBN was proposed
by Hilton and Salakhutdinov [14]. It is widely applied in object
and speech identification and image classification. DBN
contains input layer X, hidden layer (multilayer unsupervised
restricted Boltzmann machine (RBM)), and an output layer.
(e network structure of DBN is shown in Figure 1.

(e RBM is a classic energy-based model, which includes
a visible and a hidden layer.(e structure of RBM is shown in
Figure 2, where vector v and h denote the visible and hidden
layers, respectively. W denotes the connection weight values
between the visible and hidden layers. For these layers, the
connection is complete between the intercellular nodes, and
there is no separate connection in each layer.

(e invisible and hidden layers’ neuron values are binary
variables, and the neurons’ numbers in the visible and
hidden layers are I and J, respectively. vi and hj represent the
status between the ith visible neuron and the jth hidden
layer neuron. For a group of a specific combination (v, h),
RBM as a system with energy is listed as follows:

E(v, h)θ � −
I

i�1
aivi − 

J

j�1
bjhj − 

I

i�1


J

j�1
wijvihj, (1)

where θ � (wij, ai, bj) is the parameter matrix, wij denotes
the connection weight values between the visible layer vi and
hidden layer hj, and ai and bj denote the bias values of the
visible layer vi and hidden layer hj. (e joint probability
distribution based on the energy function is obtained by

p(v, h)θ �
−eE(v,h)θ

Z(θ)
, (2)

where Z(θ) � vhe−E(v,h)θ is called the partition function
and the distribution function (the likelihood function) p(v)θ
is the edge distribution of joint probability p(v, h)θ. For a
given visible layer, each neuron in a hidden layer is in-
dependent. (erefore, the active probability is

p hj � 1, v θ � δ bj + 

I

i�1
viwji

⎛⎝ ⎞⎠, (3)

where δ(x) � 1/(1 + e−x) is the sigmoid active function. For
a given hidden layer, the active probability of the ith neuron
node in the invisible layer is

p vj � 1, h θ � δ aj + 
I

i�1
hjwji

⎛⎝ ⎞⎠. (4)

RBM is the trained iterative way, and the purpose of the
training is to learn the value of the parameter θ � (wij, ai, bj)

to the fitting when the training data is used, where the
parameter θ can be obtained by finding the maximal log-
likelihood function by using the training set (where N is the
number of samples):

θ∗ � argθ maxL(θ) � argθ max
N

t�1
lnp v

(t)
 θ. (5)

Update the parameters wij, ai, and bj according to the
following equations using the contrastive divergence (CD)
algorithm:

Δwij � ε 〈vihj〉data−〈vihj〉recon ,

Δai � ε 〈vi〉data−〈vi〉recon( ,

Δbj � ε 〈hj〉data−〈hi〉recon ,

(6)

where ε is the learning rate in the pretraining phase and
〈·〉data and 〈·〉recon denote the mathematical expectation.

2.2. (eoretical Framework of PCA. (e essence of PCA
is to retain the coordinates of the main components as
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the new data space direction to achieve the goal of di-
mension reduction. Assuming Xk

N ∈ R, (k � 1, 2, . . . , K),
the K dimensional matrix with N samples, xk

i (i �

1, 2, . . . , N) is the ith sample, where R is the covariance
matrix. R is defined by

R � P
λ1 0 . . . . . .

. . . . . . 0 . . . . . . λk

 P
T

� 
k

i�1
PiλiP

T
i , (7)

where λ1 ≥ λ2 ≥ · · · λ1 ≥ λk, Pi is the unit orthogonal eigen-
vector of the λi, and λi is the eigenvalue. (erefore, the
matrix Xk

N ∈ R is decomposed as follows:

X � p1, p2, . . . , pk  p1, p2, . . . , pk 
T
x

T
i

� p1, p2, . . . , pi  p1, p2, . . . , pi 
T
x

T
i

+ pi+1, pi+2, . . . , pk  pi+1, pi+2, . . . , pk 
T
x

T
i

� Cx
T
i +(I−C)x

T
i

� xT
i + e

T
i ,

(8)

where [p1, p2, . . . , pi] denotes the first to ith PCs,
[pi+1, pi+2, . . . , pk] is the residual space (RS), and hence, ei is
the projection of xi in RS. C is the projection matrix.

(e process of obtaining the projection matrix C by
means of the covariance matrix R is called the modeling
process. (e number of PCs directly affects the merits of

the model and the final fault detection and diagnostics.
(is paper uses the main component contribution rate
method to select the number of PCS as follows:

η≥


k
i�1λi


K
i�1λi

∗100%, (9)

where η is the percentage of the total variance explained by
the first k≤K PCs.

2.3.(eoretical Framework of FCM. FCM is one of the most
common clustering algorithms, based on the objective
function to minimize the Euclidean distance between each
sample and all clustering centers. Correct cluster centers
and classification matrices should be used to meet the
termination criteria condition constantly, and hence, the
data samples with similar characteristics are clustered into
a class.

For a given vector X � [x1, x2, . . . , xn], the corre-
sponding fuzzy classification matrix is A � [uij]c×n and c is
the number of clusters. (e clustering centers are
C � [c1, c2, c3, . . . , cc], as mentioned above, and FCM is
described as follows:

min J A, c1, . . . , cc(  � 
c

i�1


n

j�1
u

m
ij d

2
ij

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭

s.t. 
c

i�1
uij � 1, j � 1, 2, . . . , n

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

, (10)

where n, c, andm represent the number of samples, clusters,
and weighted index, respectively. um

ij is used to determine the
degree of membership of each sample for each cluster. (e
greater the value um

ij is, the greater the likelihood of the ith
cluster also is. d2

ij is the Euclidean distance between the jth
point and ith clustering center point.

FCM converted the extreme value problems with con-
straints to unconstrained issues by introducing the operator
λ � [λ1, λ1, . . . , λn]:

w(4) ...w(3)w(2) w(n)

X RBM(1)

w(n–1)

RBM(n)RBM(2)

Hidden layer Output layerInput layer

w(1)

RBM(3)

Figure 1: (e structure of DBN.
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Figure 2: (e structure of RBM.
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J A, C
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(11)

Equation (11) is the objective function, and the necessary
conditions for it to reach the minimum value under the
following conditions are as follows:

cij �


n
j�1u

m
ij xj 


n
j�1uij 

, (12)

uij �
1


c
k�1 dij/dkj 

2/(m−1)
. (13)

(e purpose of the FCM is to find the classification
matrix and the clustering centers, which will minimize the
value of the objective function to smallest. (e procedure of
FCM is as follows:

Step 1. Initialize the cluster center point number c, weighted
index m, classification matrix A � [uij]c×n, and iteration
number l � 0.

Step 2. Calculate the cluster centers C according to Equation
(12).

Step 3. Update the classification matrix A according to
Equation (13).

Step 4. If ‖Al+1 −Al‖< ε, stop the loop, or else set l � l+ 1,
and return to step 2.

3. Data Source and Clustering Effect Evaluation

3.1. Data Source. (e experimental data came from Case
Western Reserve University Bearing Data [15]. (ree faults
(inner Race Fault (IRF), Outer Race Fault (ORF), and Ball
Fault (BF)) with fault diameters of 0.18mm (1 hp), 0.36mm
(2 hp), and 0.54mm (3 hp) were employed in this paper. (e
sampling frequency was 12000Hz.

Table 1 shows the working conditions which are under
consideration in this study. In Table 1, “NR” represents the
bearings with no faults. (e fault diameters are 0.18mm
(1 hp), 0.36mm (2 hp), and 0.54mm (3 hp). A, B, and C
represent the three datasets. Each subset contains ten types
of roller bearings faults under different conditions. Each
type of the fault dataset has 30 samples with 2048 points,
and hence, different datasets A, B, and C have a total of 300
samples.

3.2. Clustering Effect Evaluation. (e two indicators parti-
tion coefficient (PC) and classification entropy (CE) are
applied to evaluate the quality of the clustering results [16].
Partition coefficient is defined as

PC � α �
1
N



c

i�1


N

q�1
μiq 

2
, (14)

where μiq denotes the membership value of the qth point in
the ith cluster.(e disadvantage of a PC is the lack of a direct
connection to certain attributes of the data itself.

(1) Classification entropy measures the fuzziness of the
cluster partition only:

CE � β � −
1
N



c

i�1


N

q�1
μiq log μiq . (15)

When the PC value is close to 1, it means that the effect of
clustering is good; when the CE value is close to 0, it in-
dicates that the effect of the clustering is better [16].

3.3. (e Procedures of the Method Presented. (e roller
bearings vibration signal features were extracted by DBN,
and then PCA was used to reduce the dimension of the
eigenvectors. (e first two PCs were regarded as the input of
FCM for fault diagnosis. (e procedures of the method
presented are listed below:

(1) Because the frequency spectra of rotatingmachinery can
reflect how their important components are distributed
with discrete frequencies, they can potentially provide
useful information about the health and working
conditions of the machine [17]. (erefore, fast Fourier
transformation (FFT) is used to resolve the original
vibration signal into a coefficient symmetrical matrix.
As a result, the half coefficient symmetrical matrix is
selected as the input vector for training DBN. Before
DBN training, the input data is normalized to [0, 1].

(2) Several hidden layers are used to extract the features
of the vibration signals.

(3) Reduce the dimensions of the features of the vibration
signals in step 2 by using PCA. (e first two PCs are
regarded as the input of FCM for fault diagnosis

(4) PC, CE, and classification accuracy were employed to
evaluate the clustering performance of the different
combination models, such as EEMD-FE-PCA-FCM,
VMD-SVD-FCM, and DBN-PCA-FCM.

(e detailed flow chart is shown in Figure 3.

Table 1: (e roller bearings experimental data under different
conditions.

Datasets Fault
diameters (hp) Fault type (e number

of samples

A/B/C 1/2/3

NR 30/30/30
BF1 30/30/30
IRF1 30/30/30
ORF1 30/30/30
BF2 30/30/30
IRF2 30/30/30
ORF2 30/30/30
BF3 30/30/30
IRF3 30/30/30
ORF3 30/30/30
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4. Feature Extraction and Fault Diagnosis

In this section, various vibration signals in Table 1 are first
preprocessed by FFT, and then DBN is used to extract the
useful feature information through several hidden layers.
(e time-domain figure of the various original vibration
signals is shown in Figure 4.

(e ten kinds of vibration signals are difficult to distin-
guish. (ere are no obvious vibration patterns in the NR and
IRF signals. Unlike NR and IRF signals, the BF andORF signals
have obvious vibration patterns because the bearing and outer
race components experience a certain impact when the roller
bearings are working. Compared with NR and BF signals, IRF
andORF vibration signals have fixed vibration periods in some
unique frequency bands, and the self-similarity is high. Es-
pecially when the inner ring is fixed, the outer ring rotates with
the roller bearings; hence, the vibration regularity in ORF
signals is more obvious. IRF and ORF vibration signals have
strong periodic regularity, but it is difficult to distinguish these
vibration signals under different conditions. To mine the signal
features, the DBN, VMD, and EEMD models are used to
decompose the vibration signals and PCA is used to reduce the
dimension of the extracted features.

4.1. VMD Decomposition. To decompose vibration signals
effectively, the number of mode m in VMD should first be

predetermined. When the value of m is too small, the de-
composition of the mode cannot fully reflect the original signal
with the time-frequency information, and therefore, the VMD
decomposition cannot be achieved. A larger m produces a
similar frequency for each BLIMF component, which may
result in overdecomposition. (erefore, in order to select the
appropriatem, we observe the center frequency of the signal to
determine them according to references [13].(e results of the
center frequency under differentmodesm are shown in Table 2.

Here, it is shown that when dataset A is used, the center
frequency in the IRF2 signals ranges from 0.0507 kHz to
0.3469 kHz especially when m � 5, for example, 0.2279 kHz
in BLIMF3, 0.2980 kHz in BLIMF4, and 0.3469 kHz in
BLIMF5.(e center frequencies of these three modes are very
close to one another. (is indicates that the vibration signals
are not decomposed effectively. (e same also happens when
m � 3 (like 0.0535 kHz in BLIMF1, 0.2145 kHz in BLIMF2,
and 0.2979 kHz in BLIMF3). However, the decomposition
results (m � 4) contain four frequency components which are
separated well. Hence, the parameterm in VMD is selected as
4. (e penalty factor z is often set at 2000 [13]. (e VMD
composition results and its envelope spectrum for each
BLIMF are shown in Figure 5.

As shown in Figure 5(a), the IRF2 vibration signals are
decomposed into four BLIMFs components. (e range of
amplitude of each BLIMF is gradually increased; each
BLIMF frequency is also increased. To further verify the

Obtain the frequency spectra of the original vibration signal 
using FFT

Start

Organize these coefficients symmetric matrix into the training set 
and normalized into [0, 1]

Data preprocess 

Build DBN with N hidden layers to extract the 
roller bearings vibration signal features 

The EEMD/VMD is used to decompose the 
roller bearings vibration signal

Feature extraction

The PCA is used to reduce the dimension of the former 
eigenvectors, and then the first two PCs are selected as the input of 

FCM to fulfill the roller bearings fault diagnosis

Data dimension reduction

The FCM model is used to finish the roller bearings fault 
identification. In addition, the PC, CE, and the classification 
accuracy are used to compare the different combined models

End

Fault diagnosis

Figure 3: (e flow chart of the method presented.

Shock and Vibration 5



e�ect of VMD decomposition, Figure 5(b) shows that the
envelope spectrum of each BLIMF, and it can be seen from
Figure 5(b) that the decomposition results contain IRF2
double fault frequency (164Hz) and fault frequency (58Hz)
(58Hz is the IRF2 signal fault frequency).

4.2. Feature Extraction Using DBN. Firstly, �e FFT is used
to transform the time-domain vibration signal to the fre-
quency domain; here, we take an IRF2 signal for example.
�e result of the spectrum envelope analysis in the frequency
domain is shown in Figure 6.

As shown in Figure 6(b), the IRF2 signal working fre-
quencies mainly focus on 0–1000Hz. Because the working
frequency for the IRF2 signal is 58Hz, the frequency is
mainly focused on 58Hz and the double frequency (164Hz).
�is indicates that the frequency-domain signal contains
useful feature information. �erefore, we use the FFT to
preprocess the di�erent vibration signals in the �rst step.
�en, we use the DBN in this section to extract the feature.
�e number of input layer nodes is set at 1024 because each

sample contains 2048 points and only half of the coe�cient
matrix is used after FFT decomposition before the DBN
training procedure. �e numbers of neural nodes for the
second to fourth layers are set at 512, 256, and 128, re-
spectively. �e learning rate is 0.15, the momentum value is
0.65, and the number of epochs is 1200. After the vibration
signals’ features have been extracted by each layer in DBN,
reduce the dimensions of the feature vectors by using PCA.
�e results of the �rst two PCs for each hidden layer are
shown in Figure 7.

Obviously, data, of the same fault type, are discrete in the
�rst three layers, while there may be overlapping between
data of di�erent fault types in all the datasets. As the number
of hidden layers increases, these scattered data points are
more concentrated at one point and these data of di�erent
fault types are more separated from one another. As can be
seen in Figure 7, from all datasets, the data points of the same
shapes are more concentrated at one point and there is a
clear separation between di�erent fault data types in the �nal
hidden layer as compared with that of the �rst hidden layer.
For example, all NR signal data, which have a triangular
shape, are concentrated (overlapping with each other), in
dataset B in the �nal hidden layer, and they are, however,
discrete in the �rst hidden layer.

�e results of PC1 and PC2 through the �nal hidden layer
when PCA is used are shown in Table 3, where “total” denotes
the sum of all eigenvalues λ in Equation (9) and η is the
cumulative contribution rate calculated by the �rst two PCs.
�e two largest eigenvalues (λ1-λ2) in Equation (9), when
PCA is used, are the �rst two PCs; the greater the λ is, the
more useful the information contained in the corresponding
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Figure 4: �e time-domain waveforms for each working condition.

Table 2: Center frequency corresponding to di�erent m in VMD.

m
Center frequency (kHz)

BLIMF1 BLIMF2 BLIMF3 BLIMF4 BLIMF5 BLIMF6
2 0.0616 0.2294 — — — —
3 0.0535 0.2145 0.2979 — — —
4 0.0508 0.1088 0.2288 0.3004 — —
5 0.0511 0.1101 0.2279 0.2980 0.3469 —
6 0.0507 0.1102 0.2106 0.2356 0.2980 0.3443
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PC is.�e available number of PCs is often selected as 2 when
the cumulative contribution rate η is more than 80% [16]. In
Table 3, it is up to more than 85% with di�erent datasets, for
example, 87.81% in dataset A. Moreover, with the increment
of the number of PCs, the eigenvalues are decreased, and the
�rst two PCs are often selected as the input of FCM for roller
bearing fault diagnosis (as space is limited, only the �rst six
PCs are shown in Table 3).

4.3. FaultDiagnosis andaComparisonAnalysis. Before roller
bearing fault diagnosis, the EEMD is also used to decompose
the vibration signal into some IMFs. Some parameters in
EEMD should be preset, such as Gaussian white noise
amplitudemm, and the number of inserted white noise nn in
EEMD, embedded dimension m, and similarity tolerance r
in FE should generally be set before calculation for pa-
rameter nn in EEMD. If the additional noise is standard
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FIGURE 5: Signal decomposition diagram (VMD): (a) the BLIMF components; (b) the envelope spectrum of each BLIMF.
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Figure 6: �e time domain waveforms and the envelope spectrum of the IRF2 signal: (a) time domain; (b) envelope spectrum.
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deviation and this is only a small part of the standard de-
viation of the input signal, then the remaining noise will
result in less than 1% error. �e authors suggest that the
value of added white noise mm is usually �xed at about 20%
of the standard deviation of the input signal [18–24]. �e
parameter mm is set at 100.

In FE, the greater embedded dimension m allows more
detailed reconstruction of the dynamic process. But too great
an m value is unsuitable due to the need for too great

N � 10m − 30m, which is di�cult to meet the general re-
quirements and will bring about loss of information. m is
often �xed at 2 [16]. Here, similarity tolerance r is often �xed
at 0.1 – 0.25∗ SD. SD denotes the standard deviation of the
original vibration signals [16].

For the FCM model, the parameter c � 4 is set, where c is
the number of clusters. Meanwhile, the value of the termi-
nation tolerance ε � 1e− 6. FCM is used to identify the dif-
ferent roller bearing faults, and the results of two-dimensional
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Figure 7: �e PC1 and PC2 obtained by each hidden layer in DBN: (a, d, g) dataset A; (b, e, h) dataset B; (c, f, i) dataset C.
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Figure 8: Continued.

Table 3: �e results of PC1-PC2 and the value of η.

Model Dataset PC1 (λ1) PC2 (λ2) PC3 (λ3) PC4 (λ4) PC5 (λ6) PC6 (λ6) Total η (%)

DBN-PCA
A 18.5424 1.6845 0.8434 0.7880 0.3610 0.2697 23.0347 87.81
B 18.5430 2.1037 1.0733 0.7564 0.6150 0.2566 23.7500 86.93
C 18.5427 2.0779 0.9061 0.7110 0.4287 0.3223 23.4881 87.79
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clustering with di�erent datasets are shown in Figure 8. �e
symbol cc denotes each clustering center. PC1 and PC2 are
horizontal and vertical coordinates [25-30]

(1) In Table 4, the greatest PC value is 0.9959 with
dataset C when DBNs are used, and the smallest PC
value is 0.6580 with dataset A in EEMD.�e smallest
CE value is 0.0117 in DBN, but the greatest CE value
is 0.7735 in EEMD.

(2) As shown in Table 4, the results of PC in DBN are
overall greater than those of VMD and EEMD, and
the results of CE in DBN are smaller than those of
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Figure 8: 2-dimensional clustering with DBN-PCA-FCM: (a, c, f ) dataset A; (b, d, e, g) dataset B; (h) dataset C.

Table 4: �e results of α (PC) and β (CE).

Model Dataset α (PC) β (CE)

EEMD-FE-PCA-FCM
A 0.6580 0.7735
B 0.6894 0.6962
C 0.7123 0.6440

VMD-SVD-FCM
A 0.7308 0.5990
B 0.7119 0.6050
C 0.7582 0.5308

DBN-PCA-FCM
A 0.9777 0.0623
B 0.9892 0.0287
C 0.9959 0.0117
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VMD and EEMD. (ese results indicate that the
clustering performance of the method presented is
superior to that of VMD-SVD-FCM and EEMD-FE-
PCA-FCM.

(e BF3 and ORF3 samples in Figures 8(a)–8(e) using
the EEMD-PCA-FCM and VMD-SVD-FCM models are
scattered randomly, but in Figures 8(f)–8(h), these scattered
data points are more concentrated at one point, and the data
of different fault types are more separated. (is demon-
strates that the DBN has a good feature extraction ability.

To verify the clustering effect, the three indicators PC,
CE, and classification accuracy are used to estimate and
compare the method presented, namely, the EEMD-FE-
PCA-FCM, and VMD-SVD-FCM models. (e results of α
(PC) and β (CE) are shown in Table 4. (e values of PC and
CE are calculated by um

ij , and in Equation (14), the greater the
PC value close to 1, the better the effect of FCM. However,
the smaller the CE value is close 0, the better the effect of
FCM.

To demonstrate that DBN can extract the signals ef-
fectively, classification accuracy is used to compare the
DBN-PCA-FCM, VMD-SVD-FCM, and EEMD-FE-PCA-
FCM models. (e corresponding clustering accuracy is
shown in Table 5:

(1) (e greatest classification accuracy is up to 100%
with DBN, and the lowest classification accuracy is
76.037%.

(2) (e overall classification accuracy of DBN is greater
than that of the VMD and EEMD models, about
10%–20%.

(3) For different vibration signals, particularly in dataset
C, the accuracy is up to 100% in DBN. But it is
slightly lower in VMD, for example, 23.3% and 60%.

(e method presented can extract the vibration signals
and diagnose faults effectively, and its clustering is superior
to that of the EEMD-FE-PCA-FCM and VMD-SVD-FCM
models.

5. Conclusions

A method based on DBN and FCM for roller bearing fault
diagnosis is presented in this paper. Unlike many traditional
feature extraction methods, the different roller bearing

vibration signals are extracted by using DBN. To visualize
the data, PCA is used to reduce the dimension of the ei-
genvectors. (en, the first two PCs are selected as the input
of FCM for fault diagnosis, and the experimental results
show that the feature extraction is better than that of the
other models, such as the VMD-SVD/EEMD-FE-PCA
combination model. (e classification accuracy shows
that the FCM clusteringmodel can identify the roller bearing
faults well under various conditions without data labels.
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