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)e Galerkin method is proposed to reveal the dynamic response of pipe conveying fluid (PCF), with lateral moving supports on both
ends of the pipe. Firstly, the dynamic equation is derived by the Newtonian method after calculating the acceleration of the fluid
element via the dynamics approach. Secondly, the discrete form of the dynamic equation is formulated by the Galerkin method.
)irdly, the numerical analysis of the system is carried out through the fourth-order Runge–Kutta method, and the effectiveness of the
proposed method is validated by comparison with the analytical results obtained by the mode superposition method. In the example
analysis, the responses of the lateral deflection and bending moment are investigated for the pinned-pinned, clamped-pinned, and
clamped-clamped PCF. )e effects of fluid velocity and the moving frequencies of supports are discussed. Especially, the deflection
responses are analyzed under extreme condition; i.e., the moving frequency of a support is identical to the natural frequency of PCF.

1. Introduction

Transportation pipes are widely used in various industry
fields, such as oil exploitation, aviation fuel piping, and nu-
clear plant cooling systems. )e flow-induced vibration,
however, seriously threatens the safe operation of the systems.
Each year, the vibration-induced leakage and failure cause
huge losses in the economy worldwide. Due to this reason,
studies on pipe dynamics have become popular in recent
years, and a new dynamical model gradually formed [1–4].

Usually, the dynamic equation of PCF can be established
via the Newtonian method or generalized Hamilton’s prin-
ciple for an open system [5, 6]. Several dynamic models have
been developed during researching PCF. To date, the re-
searchers have already reached a consensus on the classic
dynamicmodel of pipe, such as the linear free vibrationmodel
for PCF, which can be described by the following equation [2]:

EI
z4w

zx4 + mfV
2z

2w

zx2 + 2mfV
z2w

zxzt
+ mf + mp􏼐 􏼑

z2w

zt2
� 0.

(1)

At present, three aspects, i.e., the numerical solution
techniques, pipe dynamic characters, and the extended

dynamic model for more specific problems, attract much
attention. For instance, Sreejith et al. [7] proposed the
finite-element method for solving the dynamic responses of
the pipeline system in nuclear reactors. Olson and Jamison
[8] used the nonlinear finite-element method to predict the
response of elastic PCF. Lee and Oh [9] developed
a spectral element model of the pipeline. )e method
provides more accuracy than the classical finite-element
model. Wang and Bloom [10] developed a spatial finite-
difference scheme for the stability analysis of submerged
and inclined concentric PCF. Naguleswaran and Williams
[11] adopted Rayleigh–Ritz and Fourier series solutions to
study the lateral vibration of several common constrained
PCF with consideration of axial tension and internal
pressure. )e dynamic properties of PCF are also in-
vestigated considering different conditions. Tang et al. [12]
applied the multiple scales method to study the fractional
dynamics of fluid-conveying pipes made of polymer-like
materials. Mnassri and Baroudi [13] developed a theoretical
method for the three-dimensional modal analysis of
compressible fluid within pipes. )e method can be used
for defect detection. Zhou et al. [14] studied axially
functional cantilevered PCF and analyzed the effects of the
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elastic modulus gradient and density gradient on the
critical flow velocity for flutter instability. Oke and Khulief
[15] discussed the vibration behavior of a composite PCF
having internal surface damage.

)e mechanisms discovered in PCF have been gradually
applied to other fields. By studying the lift effects of fluid
force of a cantilevered elastic pipe for conveying fluid, Texier
and Dorbolo [16] tried to introduce motion in soft robotics.
)eCoriolis effect in a Coriolis mass flowmeter under lateral
vibration was simulated by the finite-element method based
on Timoshenko beam theory [17]. Recently, the extended
dynamic models were applied to study the axially moving
pipe [18–20] and helical tube conveying fluid [21]. Appli-
cations of the theory of PCF are not only limited to tradi-
tional pipes but also limited to micropipes and nanotubes
conveying fluid [22–27] and even to the novel pipe com-
posed of two different materials [28].

In practice, a pipeline usually works in the vibration
environment. For instance, the aviation fuel pipeline lays on
an aircraft engine, airborne pipes, and other fluid machinery
equipment. In such a situation, the pipe supports are in the
moving state. It may lead to constraints loosening, pipe
fatigue failure, and/or leakage under such circumstances. In
this study, the characteristics of dynamic response of PCF
are investigated with consideration of both coupling effect
between fluid and pipe and the external moving supports.
Firstly, the dynamic equation for the pipe constrained by
moving supports is deduced by the Newtonian method after
finding the acceleration of fluid elements in Section 1.
Secondly, by virtue of the Galerkin method, in Section 2, the
discrete dynamic model is built and the fourth-order
Runge–Kutta method is employed for numerical analysis.
Finally, the influences of fluid velocity and the movement
frequency of supports on the dynamic response of pipe are
investigated in Section 3. )e pipes with common bound-
aries, such as pinned-pinned, clamped-pinned, and clam-
ped-clamped pipes, are discussed, respectively. In Section 4,
some conclusions are drawn.

2. Dynamic Equation of PCF with Lateral
Moving Supports

)e diagram of PCF with lateral moving supports is shown
in Figure 1. )e global inertial reference frame is XOY with
unit vectors I and J. )e moving reference frame xoy is
attached to the supports, with unit vectors i and j, lateral
velocity v0, and lateral acceleration a0. )e lateral deflection
w is measured in the local frame xoy.

)e acceleration of the fluid element, shown in Figure 2,
is essential for derivation of the dynamic equation of PCF by
the Newtonian method. Here, we introduce another moving
reference frame x′o′y′ with unit vectors i′ and j′, which is
attached to the pipe element. Parameters φ and ρ denote the
slope angle of the pipe cross section and the curvature radius
of the deformed pipe element, respectively. Without con-
sidering variation along radial direction, the acceleration of
the fluid element can be represented by the acceleration of
the fluid particle at the point O′.

Using the composition theorem in dynamics [29], the
acceleration of the fluid element can be written as follows:

af � ar + ae + 2ω × V, (2)

where ar is the relative acceleration, i.e., the fluid acceleration
relative to the reference frame x′o′y′, and convected ac-
celeration ae is the acceleration of the point O′ fixed on the
reference frame x′o′y′ relative to the inertial reference frame
XOY. ω denotes the angular velocity of the pipe cross
section, that is ω � (dφ/dt)k′, in which k′ is the unit vector
perpendicular to plane XOY outwardly. V is the velocity of
fluid in the pipe, that is, V � V i′.

)e terms in Equation (2) can be expressed as follows [1]:
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(3)

where δ is the longitudinal displacement that is one order
smaller than the lateral deflection w and can be neglected.

Substituting Equation (3) and 1/ρ � −(z2w/zs2)/
((1 + (zw/zs)2)3/2) ≈ −z2w/zs2 into Equation (2), we have
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􏼠 􏼡j. (4)

Equation (4) can be further simplified once the trans-
formation relationship between unit vectors i′, j′ and i, j is
given. As the pipe has small deformation, the transformation
can be expressed as follows:

i′

j′
⎛⎝ ⎞⎠ �

cosφ sinφ

−sinφ cosφ
⎛⎝ ⎞⎠

i

j
⎛⎝ ⎞⎠ ≈

1
zw

zs

−
zw

zs
1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

i

j
⎛⎝ ⎞⎠.

(5)
Substituting Equation (5) into Equation (4) and

neglecting the second/higher order of infinitesimal, the
expression of fluid acceleration yields
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dt
i +
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dt
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+ 2V
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+ V

2z
2w

zs2
+
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+ a0􏼠 􏼡j.

(6)

If the pipe contains steady fluid and is nonextendable
along axial direction, i.e., s ≈ x and dV/dt � 0, Equation (6)
can be simplified further as follows:

af � 2V
z2w

zxzt
+ V

2z
2w

zx2 +
z2w

zt2
+ a0􏼠 􏼡j. (7)

After obtaining the fluid acceleration, the dynamic
equation can be deduced by the Newtonian method.)e free
body diagram of a pipe element is shown in Figure 3, where
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Q and M are the transverse shear force and bending mo-
ment. )e pipe contains fluid with pressure p and flow
areaA.mf andmp are the masses of fluid and pipe per length.
)e inertia force on the fluid and pipe elements is labeled as
FIf and FIp, respectively. Hence, the lateral vibration
equation of PCF can be formulated as follows:

zQ

zx
−pA

z2w

zx2 � FIf + FIp � mfaf + mp a0 +
z2w

zt2
􏼠 􏼡. (8)

Substituting Equation (7) into Equation (8) and using the
relationship between the shear force and bending moment,
i.e., (zQ/zx) � −(z2M/zx2) � −(z2/zx2)(EI(z2w/zx2)),
the lateral vibration equation is finally expressed as follows:

EI
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(9)

When the supports vibrate harmonically, e.g., A0 sinω0t,
the acceleration reads a0 � −A0ω2

0 sinω0t, and the dynamic
equation becomes

EI
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2
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(10)

For convenience, the following dimensionless parame-
ters are introduced to obtain the dimensionless form of
Equation (10):

η �
w

L
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(11)

where L is the length of the pipe.
Finally, the dimensionless form of Equation (10) becomes
z4η
zξ4

+ u
2

+ P􏼐 􏼑
z2η
zξ2

+ 2β1/2u
z2η

zξzτ
+

z2η
zτ2

� cω2 sinωτ.

(12)
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Figure 1: PCF with lateral moving supports.
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Figure 2: Fluid and pipe element.
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3. Galerkin Discretization

)e Galerkin method is applied to deal with the partial
differential equation, and the dimensionless lateral de-
flection is represented as follows:

η(ξ, τ)≃ 􏽘

N

i�1
ϕi(ξ)qi(τ), (13)

where ϕi(ξ) are the comparison functions and satisfy the
boundary condition of the pipe and qi(τ) are the generalized
coordinates of the discretized pipe structure.

Substituting Equation (13) back into Equation (12) and
minimizing the residual value, one will obtain the following
discrete form of dynamic equation:

M€q + C _q + Kq � F, (14)

where M, C, K, and F are the matrices of mass, damping,
stiffness, and external load, respectively. Meanwhile, _q and €q
are the generalized velocity and acceleration.

)e specific expressions of the elements of above ma-
trices are as follows:

Mij � 􏽚
1

0
ϕi(ξ)ϕj(ξ) dξ,

Cij � 2β1/2u 􏽚
1

0
ϕi
′(ξ)ϕj(ξ) dξ,

Kij � 􏽚
1

0
ϕ″″i (ξ) + u

2
+ P􏼐 􏼑ϕ″i (ξ)􏼔 􏼕ϕj(ξ) dξ,

Fj � 􏽚
1

0
cω2 sinωτϕj(ξ) dξ,

(15)

where ()′ � z()/zx.
)e fourth-order Runge–Kutta method is employed to

solve Equation (14) by changing the equation into the fol-
lowing form:

_Y(τ) � AY(τ) + P(τ), (16)

V
w

A0sinω0t A0sinω0t

Figure 4: Pinned-pinned PCF.
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where Y(τ) �
q(τ)

_q(τ)
􏼠 􏼡, A �

0N×N IN×N

−M−1K −M−1C􏼠 􏼡, and P(τ) �

0N×1
M−1F􏼠 􏼡. IN×N is the N-ordered identity matrix.

In numerical analysis, the dimensionless time step is set
as Δτ � 0.002 and the initial conditions are q(τ) �

0 and _q(τ) � 0. According to Paidoussis and Semler [30],
Wang et al. [31], and Ni et al. [20], the convergence can be
guaranteed when the order of the Galerkin truncation error
of Equation (13) satisfies N≥ 4. In this study, we choose N �

8 for the following analysis.

4. Examples

In the examples, the following parameters are chosen
for PCF: elastic modulus of the pipe material E � 68 GPa,
the Poisson ratio μ � 0.33, and the density ρp �

2700 kg·m−3. )e outer and inner diameters of the pipe
are D � 46mm and d � 40mm, respectively. )e pipe
length is L � 2m. )e fluid density is ρf � 870 kg·m−3,
and the mean inner pressure p � 2 MPa. )e supports
are moved harmonically, i.e., A0 sin(ω0t), with the am-
plitude of A0 � 0.005m and angular frequency of
ω0 � 300π rad s−1.
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Figure 7: )e deflections of the pinned-pinned pipe with different fluid velocities: (a) u � 0; (b) u � 1; (c) u � 2.

Table 1: )e dimensionless natural frequencies of the pinned-
pinned PCF.

u
ω

ω1 ω2 ω3 ω4

0 9.05 38.68 88.04 157.13
1 8.44 38.22 87.61 156.71
2 6.37 36.81 86.31 155.46
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4.1. 8e Pinned-Pinned PCF. In beam theory, the com-
parison function for the pinned-pinned pipe, shown in
Figure 4, is ϕi(ξ) � sin iπξ. To show the effectiveness of
the proposed method, we compare the results obtained
by both the analytical mode superposition method for
classical beam problems and the proposed method. For
a solid beam, it can be considered as a PCF with zero
velocity of fluid (u � 0) and without inner pressure (p � 0).
Comparison of the results will be carried out when u �

0 and p � 0. It is easy to find out Equation (12) draws the
state of a pipe with stationary supports and subjected
to uniform load p(ξ, τ) � cω2 sinωτ. In this case, based on
the mode superposition method and beam theory [32], the
lateral deflection of the pipe can be expressed as follows:

η(ξ, τ) � 􏽘
i

ϕi(ξ)qi(τ). (17)

Considering the uniform external load p(ξ, τ) � cω2

sinωτ and initial condition, i.e., η(ξ, 0) � _η(ξ, 0) � 0, the
generalized coordinate can be expressed analytically [32] as
follows:

qi(τ) � 1−(−1)
i

􏼐 􏼑
1
ωi

2cω2

iπ
􏽚
τ

0
sinωζ sinωi(τ − ζ) dζ

�
2cω2

iπ
1−(−1)i

􏼐 􏼑

ω2
i −ω2 sinωτ −

ω
ωi

sinωiτ􏼠 􏼡,

(18)
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Figure 8: )e resonance responses of the pinned-pinned PCF with u � 1 under different supports moving frequencies: (a) ω � 8.44; (b) ω �

38.22; (c) ω � 87.61.
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where ωi is the ith natural frequency of the pinned-pinned
pipe with stationary fluid and zero inner pressure.

Now, the analytical solution for the pipe deflection can
be obtained by substituting Equation (18) into Equation (17).
We find that the results obtained by the mode superposition
method are stable when i ≥ 3. Hence, we set i � 4 for the
comparison. )e results calculated by the two methods
(Figure 5) match each other very well. Hence, the validation
of the present method is verified.

We choose three different truncations of Equation (13),
with N � 4, 6, and 8, in finding the responses of the pinned-
pinned pipe. As demonstrated in Figure 6, the three results
are almost the same and converge to the analytical solutions
as long as N≥ 4.

)e lateral deflections of the pinned-pinned pipe with
three different fluid velocities (u � 0, u � 1, and u � 2) at three

different moments (τ �10, τ � 20, and τ � 30) are involved in
discussion in this paper.)e detailed results are illustrated in
Figure 7.

)e three modes of deflection curves in Figure 7 are
different in each case. Meanwhile, the deflection curves in
Figures 7(b) and 7(c) are asymmetric due to flow of fluid
within the beam. It is easy to find out in Figure 7 that the
deflections gradually increase with fluid velocity. )is im-
plies that the rigidity of the pipe becomes lower when the
fluid speed is higher. )e effect also appears on the natural
frequencies of the pipe with different fluid velocities. In this
paper, the first four orders of natural frequency are calcu-
lated through the wave approach which was introduced by Li
et al. [33, 34]. )e results are listed in Table 1.

In practice, when the external vibration frequency is in
coincidence with the natural frequencies of structures, then
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Figure 9: History curves of deflection at different locations on the pinned-pinned pipe having different fluid velocities: (a) u � 0; (b) u � 1;
(c) u � 2.
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structural resonance will happen, and large deformation
will be generated. To evaluate such an effect on pipe
structures, we investigate the deflections of PCF with
supports moving in the same frequencies as its natural
frequencies.

For simplicity, the deflections of the pinned-pinned pipe
with fluid velocity u � 1 are analyzed, and three cases with
respect to the moving frequency of the supports, i.e., ω �

8.44, 38.22, and 87.61, are considered. Figure 8 shows the
resonance responses in the three cases.

Compared with the results in Figure 7, the amplitudes of
deflections in Figure 8 become much larger, especially when
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Figure 10: History curves of bending moment on the pinned-pinned pipe at different locations and having different fluid velocities:
(a) u � 0; (b) u � 1; (c) u � 2.
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Figure 11: )e model for a clamped-pinned PCF.

Table 2: )e values of βil for clamped-pinned PCF.

β1l β2l β3l β4l
3.9266 7.0686 10.2102 13.3518
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the supports moving frequency reaches the third natural
frequency of PCF. At the times τ � 20 and τ � 30 in Figure 8(c),
the largest amplitude of deflection appears near the right end
of the pipe rather than at the center. )e same phenomenon
can be found in Figure 7(c).

We also obtain the history curves of pipe deflection at
different locations (ξ � 1/2, ξ � 1/4, and ξ � 1/8) under
different fluid velocities (u � 0, u � 1, and u � 2) (Figure 9).

Figure 9 suggests that the amplitude of deflection in-
creases with the fluid velocity. )e maximum deflection
occurs at the center of the pipe. Deflection of a point
becomes smaller when the point is closer to a pipe end.
With the increase of fluid velocity, the response curves are
gradually getting sparse. It implies that the response period
becomes larger; i.e., the natural frequency is getting
smaller.

Bending moment is another important dynamic re-
sponse for the beam. Once it is obtained, the normal stress
on the pipe cross section will be determined. Furthermore,
the fatigue analysis can be conducted. From Equation (13),
the expression of dimensionless bending moment becomes

M �
ML

EI
�

z2η
zξ2

. (19)

Figure 10 illustrates the history curves of bending mo-
ment on the pinned-pinned pipe at three different locations
(ξ � 1/2, ξ � 1/4, and ξ � 1/8) with respect to three different
fluid velocities (u � 0, u � 1, and u � 2).

In Figure 10(a), when u � 0, the bending moment at ξ �

1/2 is larger than those at ξ � 1/4 and ξ � 1/8, but the bending
moments at ξ � 1/4 and ξ � 1/8 are different slightly. As the
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Figure 12: )e deflection responses of the clamped-pinned pipe under different fluid velocities: (a) u � 0; (b) u � 1; (c) u � 2.
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fluid velocity increases, the bending moments at the three
locations increase, simultaneously. However, at ξ � 1/4 and ξ
� 1/8, they tend to have a faster increase than that at location
ξ � 1/2.

4.2. 8e Clamped-Pinned PCF. Another type of fluid-con-
veying pipe is the clamped-pinned pipe in Figure 11. Its
comparison function [35] becomes

ϕi(ξ) � sin βiξ − sinh βiξ + αi cosh βiξ − cos βiξ( 􏼁, (20)

where αi � (sinβil− sinhβil)/(cosβil− coshβil) and βil ≈ (i +

1/4)π when i ≥ 1. )e values of βil are listed in Table 2 [35]. At
three different times (τ � 10, τ � 20, and τ � 30), the deflection

responses of the pipe having three different fluid velocities
(u � 0, u � 1, and u � 2) are illustrated in Figure 12.

)ere is no symmetric mode in any case of Figure 12 due
to the asymmetric supports. Deflection of the pipe does not
vary monotonously with the fluid velocity. At time τ � 10,
with the increase of fluid velocity, the deflection first
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Figure 13:)e resonance responses of the clamped-pinned pipe with u � 1 and different supports moving frequencies: (a) ω � 14.36; (b) ω �

48.89; (c) ω � 103.15.

Table 3: )e first four orders of dimensionless natural frequencies
of the clamped-pinned PCF.

u
ω

ω1 ω2 ω3 ω4

0 14.82 49.29 103.54 177.55
1 14.36 48.89 103.15 177.16
2 12.94 47.69 101.98 176.00
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increases and then turns to decrease. However, at time τ �

20, the deflection always decreases. At time τ � 30, the
deflection firstly decreases and then increases.

)e first four natural frequencies of the clamped-pinned
PCF are calculated by the wave approach [33, 34] (Table 3).
)e resonance analysis with respect to fluid velocity u � 1 is
also carried out when the supports moving frequenciesωi are
equal to 14.36, 48.89, and 103.15, respectively.

)e deflection curves in Figures 13(a) and 13(c) are
much larger than that in Figure 13(b), and the largest de-
flection appears in Figure 13(c). In other words, the reso-
nance is very strong once the supports moving frequency
equals the first or the third natural frequency of the pipe.)e
largest deflection occurs at the right side of the pipe center in
Figure 13(a), whilst at the left side of the pipe center in
Figures 13(b) and 13(c).

)e history curves of the deflection of the clamped-
pinned pipe conveying fluid at different locations (ξ � 1/2, ξ
� 1/4, and ξ � 1/8) and having different fluid velocities (u � 0,
u � 1, and u � 2) are illustrated in Figure 14.

It can also be observed that the deflections increase with
the fluid velocity. Compared with the pinned-pinned pipe,
however, the clamped-pined pipe has lower variation of
deflection due to larger support stiffness at the clamped end
of the clamped-pinned pipe, and the same fluid velocity
produces smaller effect on the pipe deflection.

)e history curves of bending moment on the clamped-
pinned pipe in different cases are given in Figure 15. Fig-
ure 15 indicates that, in each case, the largest bendingmoment
on the clamped-pinned pipe appears at ξ � 1/2, and this is the
same as that of the pinned-pinned pipe. )e bending moment
at ξ � 1/8, however, is larger than that at ξ � 1/4, and this is
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Figure 14: History curves of the deflection of the clamped-pinned pipe at different locations and having different fluid velocities: (a) u � 0;
(b) u � 1; (c) u � 2.
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different from that of the pinned-pinned pipe. And the
magnitude of bendingmoment on the clamped-pinned pipe is
much lower than that of the pinned-pinned pipe.

4.3.8e Clamped-Clamped PCF. )e dynamic model for the
clamped-clamped pipe, shown in Figure 16, is different from

that for either the pinned-pinned pipe or the clamped-
pinned pipe because the inextensible assumption is not
suitable anymore. It is easy to find from Figure 16 that while
vibration happens, the axial extension is inevitably per-
mitted as the beam has transverse vibration. If so, an
additional tensile force, which equals T � 2μpAf, should be
induced on the cross section of the pipe [1]. Hence, the
dynamic equation of the clamped-clamped PCF needs to be
modified as follows:
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Figure 15: History curves of bending moment response for the clamped-pinned pipe at different locations and under different fluid
velocities: (a) u � 0; (b) u � 1; (c) u � 2.
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Figure 16: Schematic of a clamped-clamped PCF.

Table 4: )e values of βil for the clamped-clamped PCF.

β1l β2l β3l β4l
4.7300 7.8532 10.9956 14.1372
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EI
z4w

zx4 + mfV
2

+ pA(1− 2μ)􏽨 􏽩
z2w

zx2 + 2mfV
z2w

zxzt

+ mf + mp􏼐 􏼑
z2w

zt2
� mf + mp􏼐 􏼑A0ω

2
0 sinω0t.

(21)

Correspondingly, the dimensionless form of Equation
(21) can be written as follows:

z4η
zξ4

+ u
2

+ P(1− 2μ)􏽨 􏽩
z2η
zξ2

+ 2β1/2u
z2η

zξzτ
+

z2η
zτ2

� cω2 sinωτ.

(22)

In the discrete form of Equation (14), only the stiffness
matrix needs to be changed into the following form:

Kij � 􏽚
1

0
ϕ″″i (ξ) + u

2
+ P(1− 2μ)􏽨 􏽩ϕ″i (ξ)􏼔 􏼕ϕj(ξ) dξ. (23)

)e comparison function of the clamped-clamped pipe
is expressed as follows [35]:
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Figure 17: )e deflections of the clamped-clamped pipe having different fluid velocities: (a) u � 0; (b) u � 1; (c) u � 2.

Table 5: )e first four dimensionless natural frequencies of the
clamped-clamped PCF.

u
ω

ω1 ω2 ω3 ω4

0 22.23 61.47 120.69 199.63
1 21.87 61.13 120.33 199.27
2 20.79 60.10 119.27 198.20
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ϕi(ξ) � sinh βiξ − sin βiξ + λi cosh βiξ − cos βiξ( 􏼁, (24)

where λi � (sinh βil− sin βil)/(cos βil− cosh βil) and βil ≈
(i + 1/2)π, when i ≥ 2. )e values of βil are listed in Table 4.
With different fluid velocities (u � 0, u � 1, and u � 2),
the deflections of the clamped-clamped pipe at different
moments (τ � 10, τ � 20, and τ � 30) are shown in
Figure 17.

)e deflections of the clamped-clamped pipe are the
smallest among the three types of pipes due to two reasons:
one is the clamped-clamped pipe having the largest stiffness
and the other is the existence of the axial tensile force on the
cross section of the pipe. In Figures 17(a) and 17(b), the
largest amplitudes are different slightly because of

counteracting influences of fluid and the axial tensile force.
In Figures 17(b) and 17(c), the maximum deflection occurs
at the left side of the pipe center.

)e first four orders of natural frequencies of the
clamped-clamped PCF are listed in Table 5. In resonance
analysis, the resonance responses with fluid velocity u � 2
and supports movement frequencies ω � 20.79, 60.10, and
119.27 are considered. )e detailed reflection curves are
illustrated in Figure 18.

)e strongest resonance appears at ω � 119.27
and the weakest at ω � 60.10. )e deflection curves in
Figure 18(a) are almost symmetric, which are differ-
ent from that of either the pinned-pinned pipe or the
clamped-pinned pipe. In Figures 18(b) and 18(c), the
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Figure 18:)e resonance responses of the clamped-clamped pipe with u � 2 under different supports movement frequencies: (a) ω � 20.79;
(b) ω � 60.10; (c) ω � 119.27.
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maximum deflection appears at the right side of the pipe
center.

Figure 19 gives the history curves of deflection of the
clamped-clamped fluid-conveying pipe at different locations
(ξ � 1/2, ξ � 1/4, and ξ � 1/8) when having different fluid
velocities (u � 0, u � 1, and u � 2).

From Figure 19, one can find that the flexural rigidity
of the pipe is weakened by flowing fluid. )e influence of
fluid on the pipe is lower than those on the other two
pipes.

History curves of bending moment on the clamped-
clamped fluid-conveying pipe are shown in Figure 20.

When the pipe is with stationary fluid, i.e., u � 0 (Fig-
ure 20(a)), the maximum bending moment appears at ξ �

1/2 and the minimum at ξ � 1/4. When the fluid velocity

becomes u � 1 (Figure 20(b)), the bendingmoment at ξ � 1/4
tends to be identical to that at ξ � 1/8. When the fluid
velocity reaches u � 2 (Figure 20(c)), the bending moment at
ξ � 1/4 is higher than that at ξ � 1/8 and is almost the same as
that at ξ � 1/2.

5. Concluding Remarks

)e dynamic responses of three types of fluid-conveying
pipes with lateral moving supports are investigated in this
paper. )e dynamic equations are deduced after obtaining
the acceleration of fluid. )e Galerkin method and fourth-
order Runge–Kutta method are adopted in the numerical
analysis. )e responses with respect to deflection and
bending moment are obtained considering different fluid
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Figure 19: History curves of the deflection of the clamped-pinned pipe at different locations when having different fluid velocities: (a) u � 0;
(b) u � 1; (c) u � 2.
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velocities. Some conclusions are drawn according to the
numerical analysis:

(1) Both the deflection and bending moment responses
increase with the fluid velocity.

(2) )e largest bending moment on the pinned-pinned
pipe appears at ξ � 1/2. )e difference between the
bending moments at ξ � 1/4 and ξ � 1/8 is slight,
which is independent of the fluid velocity.

(3) )e magnitudes of bending moment on the
clamped-pinned and clamped-clamped pipes sat-
isfy M(ξ � 1/2) > M(ξ � 1/8) > M(ξ � 1/4) when
the fluid is in the stationary state. However, the
bending moment at ξ � 1/4 increases sharply with

the fluid velocity and tends to be identical to that at
ξ � 1/8.

(4) Strong resonance will happen when the supports
movement frequency equals the odd-ordered natural
frequencies of the PCF.
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Figure 20: History curves of bendingmoment on the clamped-clamped pipe with different fluid velocities at different locations: (a) u � 0; (b)
u � 1; (c) u � 2.
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