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A widely used approach for the first crossing reliability evaluation of structures subject to nonstationary Gaussian random input is
represented by the direct extension to the nonstationary case of the solution based on the qualified envelope, originally proposed
for stationary cases.%emost convenient way to approach this evaluation relies on working in the time domain, where a common
assumption used is to adopt themodulation of stationary envelope process instead of the envelope of modulated stationary one, by
utilizing the so-called “preenvelope” process. %e described assumption is demonstrated in this work, also showing that such
assumption can induce some errors in the envelope mean crossing rate.

1. Introduction

One of the most important indexes for engineers and de-
signers is the accurate quantification of structural safety. Its
correct evaluation is connected with loads’ nature and failure
type. Moreover, a wide class of engineering problems deals
with reliability evaluation of structures subject to loads
characterized by an intrinsic probabilistic nature and whose
correct description could be obtained by means of random
process. Besides, there are situations where suitable mod-
elling of these loads requires taking their nonstationary
characteristics into account [1–4]. Examples of such con-
ditions include ground acceleration during an earthquake
and structural vibration induced by gust loading.

In these cases, the probabilistic characterization of
structural loads turns the random dynamic analysis to be the
most useful method in achieving an accurate and qualified
structural reliability evaluation [5–10]. On the other hand,
using this method considerably improves the complexity of
analysis and the computational costs for reliability estima-
tion. For instance, exact solutions exist only in few cases.
%ese limitations have substantially reduced the applications

of the stochastic methods from design engineering in real
structural safety problems. However, many different ap-
proximations have been proposed to overcome these
practical restrictions.

In particular for Gaussian inputs and linear systems, the
first- and second-order moments completely define the sta-
tistics of the response. %is problem does not encounter se-
rious difficulties in both spectral and time domains relative to
a stationary case and with regard to first crossing failure.
However, the application of Rice’s reliability formulation
presents some problems related to the required knowledge of
hazard function, defined as the probability density function
(PDF) of collapse at a given instant, under the restriction that
crisis has not happened yet. Due to complexity in its evalu-
ations, a simplified approach is based on the independent
crossing hypothesis, using then an unconditioned PDF as
hazard function. %is hypothesis, which assumes threshold
crossing distributed as a Poisson process, can be acceptable
only for wideband process and high barrier values, where
barrier crossing can be really assumed to be independent.
Besides these restrictions, Poisson approach is too poor and
conservative for a correct reliability evaluation [11, 12].
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Amore recent approach for the first passage problem has
been developed in [13] for linear and nonlinear systems
driven by Poissonian and normal white noise input. In
addition, in [14], a numerical path integral solution ap-
proach is developed for determining the response and first
passage probability density functions (PDFs) of nonlinear
oscillators subject to evolutionary broad-band stochastic
excitations. A strategy for estimating first excursion prob-
abilities for linear dynamical systems involving uncertain
structural parameters subject to Gaussian excitation has
been developed recently in [15].

Among different methods, an approach, widely used
nowadays, is that proposed by Vanmarcke [16] and is based
on the envelope process statistics, which have lower de-
pendencies on threshold crossing events. %is approach has
been described for probabilistic assessments of structural
failure using the barrier crossing rates obtained by using the
envelope probabilistic information of a number of param-
eters derived from the PDF generally known as spectral
moments. %eir first interpretation has described geo-
metrical moments of the one-sided PSD with respect to the
central origin [17]. %is frequency definition has been ex-
tended to time domain first by Di Paola [18] who has found
suitable relationships between the correlation function, its
Hilbert transform, and the spectral moments.%is approach,
also known as “nongeometrical formulation” [19], is able to
extend the stationary approach to nonstationary cases, so
eliminating the significant difficulties derived by using
a geometrical interpretation [20]. It is based on the use of the
so-called “preenvelope” process defined as the complex
process whose real part is the given process and the
imaginary part is the Hilbert transform of the real part, A ��������

X2 + X
⌢2

􏽱

[21]. It is worth mentioning that different defi-
nitions have been advanced for envelope processes such as
a process joining the peaks of the response [22]. Using
a “nongeometrical” approach by covariances of the preen-
velope process, defined in time domain, it is possible to
obtain the same quantities needed for reliability evaluation
derived by a “geometrical” one [19, 23]. %e two approaches
coincide in a stationary case; however, this result is lost in
a nonstationary condition. %e reason can be explained as
follows: for physical and mathematical questions (different
from zero before beginning of input), the exact non-
stationary preenvelope process is replaced by a simplified
one, the modulation of stationary preenvelope process,
which has a more realistic characterization. In addition, this
simplification, commonly used by different authors for re-
liability in nonstationary conditions [24–26], induces some
mistake in the evaluation of the joint probability density
function (JPDF) of the preenvelope and its first time de-
rivative process. In the present work, the agreement between
the approximate analytical formulation and the numerical
simulation is shown for different transient conditions and
structural damping. Moreover, this study reveals that this
simplified approach can be used to transpose important
characteristic of covariances matrices needed for reliability
evaluation. By utilizing this result and by adopting a differ-
ential approach, it is demonstrated that useful simplifications

can be applied to the computation of the mean crossing rate.
Finally, a benchmark between simulation and different an-
alytical formulae for mean crossing rate is developed. Also,
a simple modified formula is finally proposed to increase the
agreement with numerical results.

2. Structural Reliability Evaluation by Classical
Poisson and Vanmarcke Approaches

Mechanical safety or reliability R(t) at a fixed time t
throughout the life of a structure subject to static or dynamic
loads can be defined as the collapse survival probability,
where the collapse is a partial or a total static damage in
a fixed time interval [t0, t]. Time t0 is typically the initial
observation time assumed as the end of the manufacturing
process. In this situation, the collapse probability at time t0 is
usually assumed equal to 0. It is clear that the definition of
structural collapse (or in general, failure) plays an important
role in reliability assessment, considering the numerous
possible meanings (not only of mechanical kind) of this
condition. Two of the most common mechanical un-
dertakings are related to fatigue phenomenon and first
threshold crossing failure.

In this section, a simple one-degree-of-freedom, viscous-
elastic system subject to random dynamic actions is analysed,
for which failure is related to displacement barrier crossing.
Precisely, the system crisis happens when structural dis-
placement X(t) exceeds an admissible value β for the first
time. In many structural situations, typically if the response is
symmetric, the most used definition of reliability R(t) is given
by the probability that the system will not have a failure
associated with a bilateral threshold crossing of level β by
process displacement |X(t)| (double barrier problem) in the
time interval [t0, t]. Its formal definition can be written as

R(t) � P |X(t)|< β; t ∈ t0, t􏼂 􏼃􏼂 􏼃. (1)

An alternative method is using its complementary col-
lapse probability (failure) Pf(t)� 1−R(t), which can be de-
fined as the probability that the double barrier β will be
exceeded by the process |X(t)| during the observation in-
terval [11]. Reliability evaluation requires the knowledge of
the hazard function h(t), also named as “decay rate func-
tion”, which is related to R(t) according to the following
equation:

R(t + dt) � [1− h(t) dt]R(t). (2)

%e hazard function h(t) is defined as the quantity whose
product with the infinitesimal time interval dt supplies the
structural collapse probability for threshold crossing during
[t, t+ dt], under the condition that at time t, the response
process has not yet shown any other threshold crossing,
which is formally represented as

h(t)d(t) � P[C ∣ S], (3)

where C is the event “threshold crossing” in [t, t+ dt] and S is
the absence of barrier excursions before time t.

Using (2), it is possible to write
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R′(t) � limdt⟶0
R(t + dt)−R(t)

dt

� limdt⟶0
([1− h(t)dt]− 1)R(t)

dt
� −h(t)R(t).

(4)

%e formal solution of (4) is 􏽒(dR/R) � −􏽒 h(t)dt, which
gives at last the well-known integral reliability formulation:

R(t) � R0 exp −􏽚
t

t0

h(t)dt􏼨 􏼩. (5)

%e exact hazard function formulation is still an open
question due to the fact that it has been solved only in few
cases. In the original Rice’s formulation [27], the hazard
function has the following form:

h(t) � 􏽚
+∞

−∞
| _x| pX _X(β, _x; t ∣ S)d _x, (6)

where pX _X(β, _x; t ∣ S) is the conditioned JPDF of X and its
first time derivative _X(t) processes. %e difficulties related to
its evaluation have induced the development of approximate
solutions. One of the most common approximations uses the
unconditioned JPDF instead of the conditioned one. Using
this approximation, the hazard function h(t) is replaced by
υ(t), known as unconditioned threshold crossing rate. In
addition, the relative reliability is evaluated in the so-called
Poisson hypothesis, because the independent threshold
crossings assumption means, according to a Poisson process,
that they are rare and without memory events. %is ap-
proximation has been demonstrated to be suitable for
wideband processes and high barrier levels, when the
threshold crossing is effectively a rare event, so that the
distribution of crossings has an asymptotic Poisson distri-
bution in this situation. On the contrary, this approach could
be particularly poor for narrowband processes and for rela-
tively low barrier levels, since it is too conservative. In fact, the
barrier crossings in these situations tend to happen in clumps,
completely neglecting the independence hypothesis.

A frequently used solution to overcome the limitation
discussed above is obtained by using the approach of
Vanmarcke [16, 17], which is based on a two-state Markov
crossing assumption. %is formulation uses the statistical
information of “envelope process A(t),” which is introduced
to consider the effects of the clumps, and thus reducing the
errors that originate from the independent crossing as-
sumption. %e envelope process has the general physical
meaning of a nonnegative random process that joins the
peaks of |X(t)|. Using the Vanmarcke formulation, a two-
state Markov process is introduced to describe the two
possible conditions (over and below) of the envelope process
A(t) with respect to the assigned barrier β and to define the
so-called E-crossing event (i.e., an up-crossing of the en-
velope). %e author has developed an analytical formulation
for hazard function by using the Poisson assumption for the
arrivals of E-crossing and by taking into account only the
cases where a D-crossing (up-crossing of |X(t)| ) follows it
(qualified envelope process). %e resulting formulation has

a stronger agreement with numerical results as compared to
the original simpler one that is based on the Poisson as-
sumption directly applied to the system response process
[11, 13].

For a stationary process, the formulation that furnishes
the hazard function for a bilateral threshold level β is

υVM(β) � υX(β)
1− exp υ+

A(β)/υX(β)( 􏼁􏼈 􏼉

1− υX(β)/υX(0)( 􏼁
, (7)

where υX(β) � 2υ+
X(β) is the mean crossing rate for a single

barrier evaluated with the Poisson hypothesis:

υX(β) � 􏽚
+∞

−∞
| _x| pX _X(β, _x)d _x. (8)

And the single barrier mean crossing rate of the envelope
process υ+

A(β) is defined using the same approach as

υ+
A(β) � 􏽚

+∞

0
_apA _A(β, _a)d _a. (10)

Its evaluation requires the JPDF pA _A(a, _a) of A(t) and
_A(t), which means the stochastic characterization of these
two processes. Using this solution for a nonstationary
process, the hazard function for threshold level β is [11]

υVm(β, t) � 2υ+
X(β, t)

1− exp υ+
A(β, t)/2υ+

X(β, t)( 􏼁􏼈 􏼉

1− υ+
X(β, t)/υ+

X(0, t)( 􏼁
, (11)

where υ+
X(β, t) is the mean crossing rate for a single barrier β

evaluated under the Poisson hypothesis.

3. Envelope Process Definition

In a stationary condition, the envelope process can be de-
fined as the modulus of a complex process whose real part is
the original one and the imaginary part has to be oppor-
tunely defined in order to satisfy the following equation:

As(t) � Us(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 �

������������

X2
s(t) + iY2

s(t)

􏽱

. (12)

%e choice of Ys(t) has to guarantee the physical
meaning of the envelope process, which implies a smoothly
curve able to connect response peaks. Different approaches
have been employed to choose a suitable formulation of
Ys(t) [22]. Usually, the preferred ones are those based on the
use of the response processs first time derivative Ys(t) �

( _Xs(t)/ωc) [21], or on its Hilbert transform (Hilbert
transform of function f(t) is H[f(t)] � f

⌢
(t) � (1/π)

􏽒
+∞
−∞(f(τ)/(t− τ))dτ) Ys(t) � 􏽢Xs(t) [21]. %e latter is the

approach adopted in the current work.
White noise or filtered Gaussian uniform modulated

processes is a widely used model for representing non-
stationary loads [28]. As shown in (13), it is obtained as the
product of a stationary Gaussian white noise process S(t)

and a deterministic time modulation amplitude controlling
function φ(t), which must satisfy these conditions: φ(t)≥ 0
for t> 0; φ(t) � 0 for t< 0; and max φ(t)􏼈 􏼉 � 1:

N(t) � φ(t)S(t). (13)

%e stationary process is usually represented by a zero-
mean white noise process w(t)(RWW(τ) � 2πS0δ(τ));
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the covariance of the corresponding modulated process
F(t) � φ(t)w(t) (μN(t) � φ(t)μS(t), RNN(t1, t2) � φ(t1)φ
(t2)RSS(t1, t2), σ2N(t) � φ2(t)σ2S(t)) is given by

RFF t1, t2( 􏼁 � 2πS0φ t1( 􏼁φ t2( 􏼁δ t2 − t1( 􏼁, (14)

where δ(t) is the Dirac delta function.
A multiplicative factor equal to 1/

�
2

√
has to be taken into

account due to the consideration that, for a generic analytical
stochastic process v(t) � (1/

�
2

√
)[u(t) + iu

⌢
(t)] (where u(t)

is real), the covariance is given by

Rv(τ) � Ru(τ) + i
⌢
Ru(τ)􏼔 􏼕. (15)

In this case, Us(t) becomes a complex process whose
imaginary part is the Hilbert transform of the real one; that
is, it can be expressed as the system response to the Hilbert
transform of a real input modelled as a white noise process
ws(t):

Us(t) �
1
�
2

√ Xs(t) + i 􏽢Xs(t)􏼒 􏼓, (16)

where Xs(t) � 􏽒
t

0 h(t− τ)ws(τ)dτ and 􏽢Xs(t) � 􏽒
t

0 h(t− τ)

ws(τ)dτ; h(t) is the impulse response function, which for
a SDOF system can be written as h(t) � (1/�ω)e−ξωt sin(�ωt),

where �ω � ω
�����

1− ξ2
􏽱

.
In a more compact form, Us(t) can be defined as the

analytical process response of a linear system to the ana-
lytical input process:

Fs(t) �
1
�
2

√ ws(t) + i􏽢ws(t)􏼒 􏼓. (17)

%e covariance matrix of the stationary vector
process Us(t) can be expressed as RUsUs

(τ) �

RXsXs
(τ) + iR

XsX
⌢
s
(τ), due to the following properties,

generally true only in the stationary case [28]:

RXsXs
(τ) � R

X
⌢
sX
⌢
s
(τ), (18a)

R
XsX
⌢
s
(τ) � −R

X
⌢
sXs

(τ) � R
⌢

XsXs
(τ). (18b)

In a nonstationary condition, the structural response
envelope can be defined in a way similar to the stationary
case, by introducing a nonstationary complex process
U(t). However, a different approach is necessary to
define the complex part, due to physical and analytical
reasons.

Using a nonstationary modulated process input
F(t) � φ(t)w(t), the direct Hilbert transforms applied to the
linear system response

􏽢X(t) � 􏽚
t

0
h(t− τ)H[φ(τ)w(τ)]dτ, (19)

is different from zero in the time interval [−∞, 0], and the
corresponding envelope too, conflicting with the physical
meaning of an event that actually begins at time t0 � 0. For
this reason, the modulated Hilbert transform input process
F
⌢

(t) � φ(t)w
⌢

(t), first proposed by Di Paola and Muscolino

[18, 29, 30], is used to define the so-called analytical
preenvelope input process:

F(t) �
1
�
2

√ φ(t)(w(t) + iw
⌢

(t)). (20)

which corresponds to the analytical preenvelope response:

U(t) �
1
�
2

√ (X(t) + iX
⌢

(t)), (21)

where the real and imaginary parts are

X(t) � 􏽚
t

0
h(t− τ)φ(τ)w(τ)dτ, (22a)

􏽥X(t) � 􏽚
t

0
h(t− τ)φ(τ)􏽢w(τ)dτ. (22b)

In this way, it can be written in [18]:

RUU t1, t2( 􏼁 � RXX t1, t2( 􏼁 + iR
XX
⌢ t1, t2( 􏼁. (23)

By extending the following properties to a nonstationary
case:

RXX t1, t2( 􏼁 � R
X
⌢

X
⌢ t1, t2( 􏼁, (24a)

R
XX
⌢ t1, t2( 􏼁 � −R

X
⌢

X
t1, t2( 􏼁. (24b)

which are in general not true using the direct Hilbert trans-
formation when applied to the modulated input process.

4. Standard Space State Covariance Response

As a main direct consequence of the above assumptions,
working with the two-state space vectors is expressed in [6]:

Z(t) �
X(t)

_X(t)
􏼠 􏼡, (25a)

􏽥Z(t) �
􏽥X(t)
􏽥_X(t)

􏼠 􏼡. (25b)

%e correlation matrix is given by

〈Z(t)Z(t)〉 � RZZ(t) �
σ2X(t) cX _X(t)

c _XX(t) σ2_X
(t)

⎛⎝ ⎞⎠. (26)

and is symmetric as it is well known, being
〈X(t) _X(t)〉 � c _XX(t) � cX _X(t).

Similarly the matrix

〈Z(t)Z
⌢

(t)〉 � R
ZZ

⌢(t) �
0 c

X _X
⌢(t)

c
_XX
⌢(t) 0

⎛⎝ ⎞⎠. (27)

is asymmetric, being 〈 _X(t)X
⌢

(t)〉 � c
_XX
⌢(t) � −c

X _X
⌢(t).

%en, it is possible to write the differential equations in
the space state as

_Z(t) � AZ(t) + B(t), (28a)

_Z
⌢

(t) � AZ
⌢

(t) + B
⌢

(t), (28b)
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where the state matrixA in the case of a linear SDF system is

A �
0 1

−ω2
0 −2ξ0ω0

􏼠 􏼡. (29)

And the input vectors B(t) and B
⌢

(t) are, respectively

B(t) � φ(t)
0

w(t)
􏼠 􏼡, (30a)

B
⌢

(t) � φ(t)
0

w
⌢

(t)
􏼠 􏼡. (30b)

As shown earlier in (10), the nonstationary envelope
process mean rate threshold crossing υA(β, t) needs the
JPDF of A(t) and _A(t), which are related to both processes
U(t) and _U(t), being _A(t) � | _U(t)| � (1/

�
2

√
)( _X(t)+

i _X
⌢

(t)). It is then possible to introduce the analytical en-
velope state vector process as

Ψ(t) �
U(t)

_U(t)
􏼠 􏼡 �

X(t)

_X(t)
􏼠 􏼡 + i

X
⌢

(t)

_X
⌢

(t)

⎛⎜⎜⎝ ⎞⎟⎟⎠. (31)

%e covariance matrix is given by

RΨΨ(t) � 􏼊Ψ(t)Ψ(t)
T
􏼋 � 􏼪

Z(t)

Z
⌢

(t)

⎛⎝ ⎞⎠ Z(t)
T
Z
⌢

(t)
T

􏼒 􏼓􏼫

�
􏼜ZZ

T
􏼝 􏼜Z�Z

⌢T

􏼝

〈Z
⌢

Z
T〉 〈Z

⌢
Z
⌢T

〉

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠.

(32)

It can be rewritten in a more compact form by de-
composing the 4 × 4 matrix into four 2 × 2 submatrices
[6]:

RΨΨ(t) �
RZZ(t) R

ZZ
⌢(t)

R
Z
⌢

Z
(t) R

Z
⌢

Z
⌢(t)

⎛⎝ ⎞⎠. (33)

Using the mean value Hilbert properties previously
shown, it is possible to demonstrate that the 4 submatrices
are two by two equal (RZZ(t) � R

Z
⌢

Z
⌢(t)) and opposite

(R
ZZ

⌢(t) � −R
Z
⌢

Z
(t)).

%erefore, RΨΨ(t) can be defined just knowing the two
2× 2 submatrices RZZ(t) and R

ZZ
⌢(t).

%e first one can be obtained using the well-known
Lyapunov differential matrix covariance equation:

_RZZ � ARZZ + RZZA
T

+〈BZ
T〉 +〈BZ

T〉T, (34)

where the last two matrices, in the case of modulated white
noise input, can be expressed as

〈BZ
T〉 +〈BZ

T〉T � P(t) � 2πS0φ
2
(t)

0 0

0 1
􏼠 􏼡. (35)

Due to the symmetry of RZZ, it can be replaced by
a vectorial form by the three first-order differential equations

_λ1 � 2λ2, (36a)

_λ2 � −ω2
1λ1 − 2ξωλ2 + λ3, (36b)

_λ3 � −2ωλ2 − 4ξωλ3 + 2πS0φ
2
(t), (36c)

where λ1 � σ2X(t), λ2 � cX _X(t), and λ3 � σ2_X
(t).

5. Hilbert Transform Space State
Covariance Response

By applying a similar approach, it is possible to obtain the

matrix R
Z􏽥Z

(t) � 〈Z􏽥Z
T

〉.
By making its first-order temporal derivation, it

can be written as
d

dt
R

ZZ
⌢(t)􏽮 􏽯 � _R

ZZ
⌢(t) �〈 _Y(t)􏽥Y(t)

T
+ Y(t) _Y

⌢

(t)
T〉.

(37)

Moreover, by adopting the two-state vector differential
equation [6], the left quantities can be expressed as

_ZZ
⌢T

� AZZ
⌢T

+ BZ
⌢T

, (38a)

Z _Z
⌢ T

� ZZ
⌢T

AT
+ ZB

⌢T

. (38b)

So finally obtaining the following 1st order differential
equation matrix:

_R
ZZ

⌢(t) � AR
ZZ

⌢(t) + R
ZZ

⌢(t)AT
+〈B􏽥Y

T〉 +〈YB
⌢T

〉. (39)

Since the two last matrices are asymmetrical, it results as

B􏽥Y
T

+ YB
⌢T

� 􏽥P(t) �
0 b(t)

−b(t) 0
􏼠 􏼡, (40)

where b(t) is the convolution integral:

b(t) � 2Soφ(t) 􏽚
t

0

h(u)

u
φ(t− u)du. (41)

Since R
ZZ

⌢(t) is asymmetrical, the following single first-
order differential equation is obtained:

_c
X _X

⌢(t) � −2ξωc
X _X

⌢(t) + b(t). (42)

whose solution depends on the instantaneous value of b(t).
Its evaluation can be quite expensive from a computational
point of view, due to the involvement of a convolution
integral; in fact, it has to be reevaluated at each instant t of
the considered time interval. %is problem can be solved if
the modulation function φ(t) is a separable one. %is means
that ϕ(t− u) can be expressed as a summation of finite
functions just depending on t or u:

φ(t− u) � 􏽘
m

k�1
Bk(t)Ck(u). (43)

In this case, b(t) assumes the following form:
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b(t) � 2Soφ(t) 􏽘
m

r�1
Nr(t) � 2Soφ(t) 􏽘

m

r�1
Br(t)Ir(t), (44)

where Nr(t) � Br(t)Ir(t) while Ir(t) � 􏽒
t

0(h(ρ)/ρ)Cr(τ)dρ4

is a standard integral.
Equation (42) can be so rewritten as:

_c
X _X

⌢(t) � −2ξωc
X _X

⌢(t) + 2Soφ(t) 􏽘

m

r�1
Br(t)Ir(t) (45)

%e covariance matrix RΨΨ(t) is then completely eval-
uated, by taking into account only the four evolutionary
parameters λ1 � σ2X(t), λ2 � cX _X(t), λ3 � σ2_X

(t), and λ4 �

c
X _X

⌢(t), and by using the following four first-order differ-
ential equations:

_λ1 � 2λ2, (46a)

_λ2 � −ω2
1λ1 − 2ξωλ2 + λ3, (46b)

_λ3 � −2ωλ2 − 4ξωλ3 + 2πS0φ
2
(t), (46c)

_λ4 � −2ξωλ4 + 2Soφ(t) 􏽘

p

r�1
Ar(t)Ir(t), (46d)

where only the first three are coupled.

6. Envelope JPDF Evaluation

%e covariance matrix RΨΨ(t) is equal to the matrix
RUU(t), corresponding to the vector U(t) � (X(t), _X(t),

X
⌢

(t), _X
⌢

(t))T,

RUU �〈UU
T〉 �

σ2X(t) cX _X(t) 0 c
X _X

⌢(t)

cX _X(t) σ2_X
(t) −c

X _X
⌢(t) 0

0 −c
X _X

⌢(t) σ2X(t) cX _X(t)

c
X _X

⌢(t) 0 cX _X(t) σ2_X
(t)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(47)

whose JPDF is:

p
U(x, _x, x

⌢
, _x

⌢

; t) �
1

4π2 RΨΨ(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
1/2

· exp −
1
2

U
T
(t)R−1ΨΨ(t)U(t)􏼚 􏼛.

(48)

As demonstrated before, a central point of Vanmarcke
formulation for hazard function evaluation is the knowledge
of the preenvelope process mean threshold crossing rate
υ+

A(β, t). Its determination requires the knowledge of the
JPDF pa _a(a, _a; t), as follows:

υ+
A(β, t) � 􏽚

+∞

0
| _a| pA _A(β, _a; t) d _a. (49)

By applying the definition of the preenvelope process
through the original process X(t) and its nonstationary
Hilbert transformX

⌢
(t), it is useful to introduce the 4th order

evolutionary zero mean random vector U(t), whose joint
PDF can be written as

pU(x, _x, x
⌢

, _x
⌢

) �
1

4π2
�����
RUU

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

􏽱 exp −
1
2
U

T
R
−1
UUU􏼒 􏼓. (50)

By introducing the following vector:

V(t) � (A(t) _A(t) θ(t) _θ(t))
T
, (51)

where θ � tan−1(X
⌢

(t)/X(t)), it is possible to obtain the
JPDF pV(v, t) [23] by using the well-known rule pU(a, _a, θ,
_θ; t) � |J|pU(x, _x, X

⌢
, _x

⌢

; t), |J| � |zU/zV| � a2 being the
norm of the transformation. %e joint density of V(t) is thus
given by

pV(a, _a, θ, _θ; t) �
aσxσ _x( 􏼁

2

4π2Δ2A
exp −

aσxσ _x( 􏼁
2

2Δ2A
􏼨

· a
2σ2_x + a

2 _θ
2
σ2x + _a

2σ2x􏼒

− 2a _acx _x − 2 _a
2 _θc

x _x
⌢􏼓􏼩, (52)

where ΔA(t) �
����������������
1− ρ2

X _X
(t)− ρ2

X _X
⌢(t)

􏽱
. %e phase θ does not

appear in (52), and then having a range over [0, 2π], it is
independent from the other three vector components,
characterized by a uniform marginal distribution over the
same interval. By applying the saturation with regard to both
θ and _θ, the required second-order JPDF can be written as

pA _A(a, _a; t) � 􏽚
2π

0
􏽚

+∞

−∞
pV(a, _a, θ, _θ; t)dθ d _θ

� aBa(t)exp􏼨−
1
2

􏼔a
2
Ca(t)− 2a _aDa(t)

+ _a
2
Ea(t)􏼕􏼩,

(53)

where Ba, Ca, Da, and Fa are reported in Appendix A as
obtained in [25]. It is hence straightforward to obtain the
marginal distribution of a and _a making saturation with
respect to the other variable at each time, as expressed by

pA(a; t) �
a

σ2x(t)
exp −

a2

2σ2x(t)
􏼨 􏼩, (54a)

p _A( _a; t) �
_a

���
2π

√
q(t) + ρ2x _x(t)( 􏼁σ _x(t)

exp −
_a

2q(t)σ2_x
􏼨 􏼩.

(54b)

By using the preenvelope density function pA _A(a, _a; t), it
is possible to establish the analytical form of the mean
threshold crossing rate by solving the following integral:

v
+
A(β, t) �

η(t)
�
2

√ ΔA(t)
σ _X(t)

σX(t)
exp −

1
2
η2(t)􏼚 􏼛χ dA(t)􏼂 􏼃, (55)

where the adimensional threshold η(t) is defined as the evo-
lutionary function η(t) � (β/(σX(t))). %e function χ(y) is
given by χ(y) � exp(−(y2/2)) +

���
2π

√
yΦ(y), where Φ(y) is

the normal cumulative function Φ(y) � (1/
���
2π

√
) 􏽒

y

−∞ exp
(−(u2/2)) du, and dA(t) � (1/

�
2

√
)η(t) ((ρ

X _X
⌢(t)/ΔA(t))).
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By extending the original approach proposed by Van-
marcke [16, 17] and by using the nonstationary mean
threshold crossing rate for the Gaussian process X(t) in
the Poisson hypothesis, it results:

v
+
X(β, t) �

1
��
π

√ ΔX(t)
σ _X(t)

σX(t)
exp −

1
2
η2(t)􏼚 􏼛χ dX(t)􏼂 􏼃, (56)

where ΔX(t) �
���������
1− ρ2

X _X
(t)

􏽱
and dX(t) � (1/

�
2

√
)η(t)

(ρX _X(t)/ΔX(t)). With reference to the formulation from
Michelov et al. [23]

v
+
VLM(ξ, t) �

1
π

������
1− ρ2

X _X

􏽱 σ _X(t)

σX(t)

·
1− exp v+

A(ξ, t)( 􏼁/ 2v+
X(ξ, t)( 􏼁( 􏼁

exp η2(t)/2( 􏼁􏼂 􏼃− 1
.

(57)

It can be rewritten as:

v
+
VLM(ξ, t) �

1
π
ΔX(t)

σ _X(t)

σX(t)
χ dX(t)􏼂 􏼃

·
1− exp −

���
π/2

√
ΔA(t)/ΔX(t)( 􏼁 χ dA(t)􏼂 􏼃/χ dX(t)􏼂 􏼃( 􏼁( 􏼁

exp η2(t)/2( 􏼁􏼂 􏼃− χ dX(t)􏼂 􏼃
,

(58)

which is the same relation proposed in [23] except for
χ[dX(t)] whose complete expression is

χ(ϑ, t) � e−ϑ
2(t)

+
��
π

√
ϑ(t)Φ

ϑ(t)
�
2

√􏼠 􏼡, (59)

where

ϑ(t) � η(t)
ρX _X(t)

���������
1− ρ2

X _X
(t)

􏽱 , (60)

Expression in (60) is function of time through both
the dimensionless threshold value η(t) and the ratio
(ρX _X(t)/

���������
1− ρ2

X _X
(t)

􏽱
). Moreover, since ϑ(t) can assume

just positive values (in stationary case, it is exactly the di-
mensionless threshold η), its values are close to the unit, that
is, ϑ(t) is smaller than 1, growing up for greater values
(Figure 1). In particular, in practical cases, it is quite close to
one, as shown in the numerical applications.

%is formulation can be improved by introducing the
parameter k, originally proposed by Vanmarcke [16, 17] for
the stationary case, to enhance the agreement between the
numerical simulation and the analytical formulation. %is
parameter is an empirical exponent of the “equivalent
bandwidth factor” qXs

defined for the stationary case. Its
value has been evaluated to be equal to 1.2 and has been
subsequently used in different studies.

In the nonstationary case, the parameter k has to be
taken into account as the exponent of

q(t) � ΔA(t)/ΔX(t)( 􏼁 �

������������

1−
c2

X _X
⌢(t)

1− c2
X _X

(t)

􏽶
􏽴

. (61)

which coincides with the stationary value when ρ2
X _X

(t) � 0.

%e mean threshold crossing rate v+
VLM(ξ, t) can be fi-

nally rewritten as

v
+
VLM(ξ, t) �

1
π
ΔX(t)

σ _X(t)

σX(t)
χ dX(t)􏼂 􏼃

·
1− exp −

���
π/2

√
qk(t) χ dA(t)􏼂 􏼃/χ dX(t)􏼂 􏼃( 􏼁( 􏼁

exp η2(t)/2( 􏼁􏼂 􏼃− e−ϑ2(t) +
��
π

√
ϑ(t)Φ((ϑ(t)/

�
2

√
))

.

(62)

7. Numerical Results

Different modulation functions have been proposed in the
scientific literature to model the behavior of nonstationary
loads in a suitable way [5]. %ese functions typically depend
on two or three control parameters. Aiming at achieving an
accurate reliability evaluation, the present work uses a single
parameter parabolic modulation function, whose equation is

φp(t) � −
t

tm
􏼠 􏼡

2

+ 2
t

tm
􏼠 􏼡. (63)

for a time interval equal to [0, 2tm]. %e control of the
amplitude modulation variation velocity is done by setting
the time tm, which is the time at which the modulation
reaches its maximum value, to be equal to one, as shown in
Figure 2.

Regarding the specific modulation function in (61), the
nonstationary structural responses for an SDOF system have
been attained by integrating the stationary white noise
simulations, which are generated and then modulated.

Structural characteristics differ for damping ratio
(ξ0 � 0.01− 0.05− 0.10), while the modulation control pa-
rameter is expressed as the dimensionless ratio between the
time of maximum modulation and the natural structural
system period T0:

τm �
tm

T0
. (64)

with τ � t/T0. %e values of τm used in this study are 2.5, 5,
10, and 15.

In addition to evaluating the structural response in the
“classical” space state Z(t) (25) by the integration of the
generated φ(t)w(t), the determination of this response is
carried out in the “exact” and “approximate” space state 􏽢Z(t)

and 􏽥Z(t) (26), by integrating H[φ(t)w(t)] and
φ(t)H[w(t)], respectively. %e Hilbert transforms of the
generated stationary white noise and the modulated one are
accomplished by MATLAB standard algorithms. Figures 3
and 4 show displacement results and their envelopes eval-
uated by “exact” and “approximate” ways in the cases of
damping ratio equal to 0.01 and 0.10. It is quite evident that
there is an acceptable agreement between the two different
envelopes, except for a few instants at the beginning of the
excitation. %is is an effect exactly of the difference of the
proposed methodology that has a zero value at the starting
time. %is consideration, which has originally been sug-
gested by Borino et al. [31], is not exactly correct when
referring to the first time derivative of the envelope, as
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illustrated in Figures 5 and 6. In these two �gures, it can be
observed that some discrepancies exist between the ap-
proximate and exact nonstationary solutions, and they in-
crease as the damping ratio diminishes. In this case, it is
evident that at the end of the process, there are discrepancies,

especially for case 2 (Tm� 10T0) and for low damping. In this
speci�c case, there is a separation between the two results at
the end when the approximate solution has a strongly os-
cillatory shape. �is result is inferred more clearly in
Figures 7–10 (each for di­erent values of damping ratio:
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ϑ(t)

0

0.5

1

1.5

2

2.5

χ(
t)

e–ϑ
2(t)

(π)0.5 ϑ ϕ(ϑ/2)

χ(t)

Figure 1: Factor χ.
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Figure 2: Parabolic modulation function for di­erent values of tm.
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0.01, 0.05, and 0.10), where the JPDF of A(t) and _A(t) is
shown for di­erent values of τ/τm � 0.5− 1.0− 1.5.

Furthermore, the good accordance between the ap-
proximate and exact numerical evaluations of pA(a; t) is
obvious in all cases. However, this agreement does not

hold for the PDF of _A(t), where the two cases tend to
diverge especially for high values of the envelope velocity.
�is can be attributed reasonably to numerical reasons.
�is condition (di­erences between p _A( _a; t) evaluated by
the two di­erent approaches) can lead to a nonperfect
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Figure 3: Structural displacementX(t) and its envelopeA(t) evaluated by “exact” and “approximate” ways, for damping ratio equal to 0.01.
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Figure 4: Structural displacement X(t) and its envelope A(t) evaluated by “exact” and “approximate” ways, for damping ratio equal to 0.1.
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agreement between the approximate and exact approaches
for the mean crossing rate of the envelope process,
which depends on the JPDF of A(t) and _A(t).

Additionally, and as stated above, the adoption of the
approximate solution in (22b) instead of those in (19) leads
to a direct and serious reduction of the analytical and
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Figure 5: Approximate and exact nonstationary solutions for Tmax� 2.5T0.
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numerical efforts in covariance “preenvelope” evaluations
and thus in reliability.

For a better evaluation of differences for threshold
crossing problem deriving by the various approaches, in
Figures 11 and 12, the numerical results for conditioned
crossing rates are shown for different values of the barrier.
%e barriers are in a range between 1 and 4 in Figure 11
(short phenomena) and 1 and 3 in Figure 12 (long phe-
nomena). In both cases, there is a reasonable agreement with
the proposed method, which is anyway quite close to the
Michelov et al. [19] formulation, if an exponent k equal to
one is adopted. Using a value equal to 1.2 gives some results
just a little bit smaller, but the difference is usually negligible.
It should also be noticed that the Michelov and the proposed
formulations are in a good agreement with numerical results
in the first part of the phenomenon, during the growing
phase, but generally underestimate the real threshold
crossing rate in the decay part.

Finally, in order to evaluate the empirical correction
exponent k in (62), numerical and analytical results are
compared for different values of k in Figure 13 (it is com-
monly assumed as 1.2 in stationary case, as originally
proposed by Vanmarcke).

8. Conclusions

%is study dealt with the first crossing reliability evalu-
ation of structures subject to nonstationary Gaussian
random input. %e solution based on the qualified en-
velope, originally derived for stationary cases, has been
extended to the nonstationary case. At this aim, the
modulation of stationary envelope has been adopted by
utilizing the so-called “preenvelope” process. A modified
reliability formulation has also been proposed, based on
the extension of the formulation of the empirical band-
width factor exponent developed under the stationary
hypothesis.

To evaluate the accuracy of the reliability evaluation
achieved by using the previous assumption, the mean
crossing rate and the envelope JPDF obtained by numerical
simulations for a SDOF system subject to Gaussian white
noise have been compared to the ones obtained in analytical
way. Different damping ratios and velocities in modulation
amplitude variation have been taken into account. Results
show that only a partial agreement is obtained, based not
directly on the final reliability, but also on a suitable measure
of accuracy of hazard function. %ese analyses are carried
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out on a wide number of cases taking into account different
damping factors and nonstationary levels.

Appendix

A

Ba(t) �
1

���
2π

√
σ2xσ _xΔA

,

Ca(t) � 1 +
ρ2

X _X
(t)

Δ2A(t)
􏼠 􏼡

1
σ2x(t)

,

Da(t) �
ρX _X(t)

σx(t)σ _x(t)Δ2A(t)
,

Fa(t) �
1

σ2_x(t)Δ2A(t)
.

(A.1)

B. Parabolic Modulation Function

Aiming at performing a parametric analysis on nonstationary
input characterization, in the case of load conditions such as

earthquakes [32, 33] a modulation function controlled by
a single parameter is used as follows:

φ(t) � −
t

tm
􏼠 􏼡

2

+ 2
t

tm
􏼠 􏼡, (B.1)

where tm is the maximum intensity time for which
ϕ(tm) � 1. %is function is symmetric, and then its total
duration is 2tm. In this case, it results:

ϕ(t− τ) � −t2 + 2t− τ2 − 2τ + 2tτ, (B.2)

where t � t/tm; τ � τ/tm.
%erefore, it is possible to rewrite b(t) in the following

form:

b(t) � 2So −
t

tm
􏼠 􏼡

2

+ 2
t

tm
􏼠 􏼡⎛⎝ ⎞⎠ 􏽚

t

0

h(τ)

τ

· −t2 + 2t− τ2 − 2τ(1 + τ)􏼔 􏼕dτ

� I1(t) + I2(t) + I3(t),

(B.3)

where
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Figure 13: Numerical and analytical results in function of k.
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1
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�����
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􏽱
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−ξωτ ξ sin(ωt) +
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(B.4)
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