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Nonlinearity measure is proposed to investigate the influence of slowly varying mass on severity of dynamics nonlinearity of
bearing-rotor systems with pedestal looseness. A nonlinear mathematical model including the effect of slowly varying disk mass is
developed for a bearing-rotor systemwith pedestal looseness.The varying of equivalent diskmass is described by a cosine function,
and the amplitude coefficient is used as a control parameter. Then, nonlinearity measure is employed to quantify the severity of
dynamics nonlinearity of bearing-rotor systems. With the increasing of looseness clearances, the curves that denote the trend of
nonlinearity degree are plotted for each amplitude coefficient of mass varying. It can be concluded that larger amplitude coefficients
of the disk mass varying will have more influence on the severity of dynamics nonlinearity and generation of chaotic behaviors in
rotor systems with pedestal looseness.

1. Introduction

Rotor systems with slowly varying mass are fundamental
components of variousmachines in the textile, paper, process,
and cable industries.With the increasing of the velocity of the
machine, its efficiency is usually decreased by vibrations and
chaotic motion appeared in the rotor systems.When pedestal
looseness occurs in the rotor systems, it has great impacts on
the stability and work performance because of the existing
complicated vibration characteristics and chaotic behaviors
[1, 2]. Usually, the effect of slowly mass variation is neglected
for vibration response of rotor systems, and only few results
are published for this topic [3–5]. However, experimental
and practical investigations show that the varying mass of
the rotor has to be taken into consideration to explain some
nonlinear phenomena of dynamics appearing in such systems
with faults [6]. In diagnosing pedestal looseness of rotor
systems with slowly varying mass, it is very important to
investigate the influence of slowly varying mass on nonlinear
dynamical behaviors of these rotor systems.

Extensive research has been achieved on the analysis and
diagnosis of pedestal looseness in rotor systems in the past

decades [7–15]. Goldman andMuszynska [16, 17] developed a
bilinearmodel for an unbalanced rotor/bearing/stator system
with looseness faults, and chaotic characteristics of responses
were observed. Chu and Tang [1] analyzed the periodic,
quasi-periodic, and chaos characteristics of a rotor-bearing
system with pedestal looseness in which rotating speed and
imbalance are considered as the control parameters. Ji and Zu
[18] analyzed the vibration characteristics of an autonomous
bearing-rotor system with supporting looseness using the
multiscale method. These mathematical models based meth-
ods mainly focus on the impacts of pedestal looseness on
the nonlinear vibration characteristics of rotor systems; the
influence of varying diskmass is not considered and analyzed.
As a powerful technique, finite element (FE) method is also
employed to analyze the dynamics of bearing-rotor systems
with pedestal looseness [19–21]. Although different mass,
moment inertia, and looseness clearance are included easily
to study the influences on the dynamic characteristics, the
variances of severity of dynamical nonlinearity are not inves-
tigated yet. Recently, nonlinearity measure based assessment
method for pedestal looseness of rotor systems is proposed
by Jiang et al. [22].The values of nonlinearity measure denote

Hindawi
Shock and Vibration
Volume 2018, Article ID 3795848, 11 pages
https://doi.org/10.1155/2018/3795848

http://orcid.org/0000-0003-3177-7309
https://doi.org/10.1155/2018/3795848


2 Shock and Vibration

cb
kb

o3

o2o1

m1
c1

c2
m(t)

m3

k

Figure 1: Bearing-rotor system with single pedestal looseness.

the severity of nonlinearity in the dynamics of rotor systems
with different looseness clearances, which can also reflect
the different dynamical behaviors such as periodic, quasi-
periodic, and chaotic motions. It provides a numerical tool
to discuss the influence of slowly varying mass on severity of
dynamics nonlinearity of bearing-rotor systems.

In this paper, nonlinearity measure is employed to inves-
tigate the influence of slowly varying mass on severity of
dynamics nonlinearity of bearing-rotor systemswith pedestal
looseness. A nonlinear mathematical model that includes the
effect of slowly disk mass varying is developed for a bearing-
rotor system with pedestal looseness. Then, nonlinearity
measure method is employed to quantify the severity of
nonlinearity degree for dynamics of bearing-rotor systems
with different looseness clearances.The amplitude coefficient
of diskmass varying is used as a control parameter to perform
a detailed investigation of nonlinear dynamical behaviors of
the bearing-rotor system. With a given amplitude coefficient,
looseness clearances are used to simulate the dynamics
of rotor systems and conduct the nonlinearity measure.
According to the trend of nonlinearity degree, it can be found
that a big amplitude coefficient of the disk mass varying
will have more impacts on the severity of dynamics; chaotic
behaviors will be observed more easily in rotor system with
the increasing of looseness clearances.

This paper is organized as follows. The governing equa-
tions considering slowly varying mass for a bearing-rotor
system with pedestal looseness are developed in Section 2.
Assessment of severity of nonlinearity via nonlinearity mea-
sures is presented in Section 3. The influences of disk mass
varying on dynamical behaviors are discussed in Section 4.1,
while those on values of nonlinearitymeasure are investigated
in Section 4.2. Concluding remarks are discussed in Section 5.

2. Governing Equations for Bearing-Rotor
Systems with Pedestal Looseness

The considered rotor system with pedestal looseness and
time-dependent diskmass varying is shown in Figure 1.There
are two identical oil film bearings at both sides of the rotor
system, and the shaft sections are considered to be elastic and

massless. The equivalent lumped mass in the position of the
bearings is𝑚1 and the lumpedmass of the pedestal involving
the looseness is 𝑚3. The lumped mass in the position of the
disk is assumed to be time-variant which is defined as a cosine
function:

𝑚(𝜏) = 𝑚0 (1 + 𝜆 cos (𝜔𝜏)) 𝜏 = 𝜀𝑡 𝜀 ≤ 1, (1)

where 𝑚0 is the average mass of the disk, 𝜆 is the amplitude
coefficient of mass varying, 𝜔 is the angular velocity of the
rotor system, 𝜏 is the mass varying time, and 𝜀 is the time
coefficient of mass varying.

In Figure 1, 𝑐1, 𝑐2 are the equivalent damping coefficients
in the positions of bearing and disk, respectively, while 𝑘 is
the stiffness coefficient of the shaft. It is assumed that the
left support has the single pedestal looseness; the maximum
static gap of the looseness is 𝛿. The foundation to the
pedestal is equivalent to a spring-damping system with the
stiffness coefficient 𝑘𝑏 and damping coefficient 𝑐𝑏, which can
be expressed using the following piecewise linear structure
[1]:

𝑘𝑏 = {{{{{{{{{
𝑘𝑏1 𝑦4 < 00 0 ≤ 𝑦4 ≤ 𝛿𝑘𝑏3 𝑦4 > 𝛿;

𝑐𝑏 = {{{{{{{{{
𝑐𝑏1 𝑦4 < 0𝑐𝑏2 0 ≤ 𝑦4 ≤ 𝛿𝑐𝑏3 𝑦4 > 𝛿.

(2)

It is assumed that the horizontal and vertical displace-
ments in the right-bearing position are 𝑥1, 𝑦1, in the disk
position 𝑥2, 𝑦2, and in the left-bearing position 𝑥3, 𝑦3. The
horizontal movement of the left pedestal is small and consid-
ered to be negligible. Its displacement in the vertical direction
is 𝑦4. The governing equations 𝑁(𝜔) for the bearing-rotor
system with left pedestal looseness can then be written as
follows:
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𝑁(𝜔) :

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

𝑚1𝑥̈1 + 𝑐1𝑥̇1 + 𝑘 (𝑥1 − 𝑥2) = 𝐹𝑥 (𝑥1, 𝑦1, 𝑥̇1, ̇𝑦1)𝑚1 ̈𝑦1 + 𝑐1 ̇𝑦1 + 𝑘 (𝑦1 − 𝑦2) = 𝐹𝑦 (𝑥1, 𝑦1, 𝑥̇1, ̇𝑦1) − 𝑚1𝑔𝑑𝑑𝑡 (𝑚 (𝜏) 𝑥̇2) + 𝑐2𝑥̇2 + 𝑘 (𝑥2 − 𝑥1) + 𝑘 (𝑥2 − 𝑥3) = 𝑚 (𝜏) 𝑒𝑏𝜔2 cos (𝜔𝑡)𝑑𝑑𝑡 (𝑚 (𝜏) ̇𝑦2) + 𝑐2 ̇𝑦2 + 𝑘 (𝑦2 − 𝑦1) + 𝑘 (𝑦2 − 𝑦3 − 𝑦4) = 𝑚 (𝜏) (𝑒𝑏𝜔2 sin (𝜔𝑡) − 𝑔)𝑚1𝑥̈3 + 𝑐1𝑥̇3 + 𝑘 (𝑥3 − 𝑥2) = 𝐹𝑥 (𝑥3, 𝑦3 − 𝑦4, 𝑥̇3, ̇𝑦3 − ̇𝑦4)𝑚1 ̈𝑦3 + 𝑐1 ̇𝑦3 + 𝑘 (𝑦3 + 𝑦4 − 𝑦2) = 𝐹𝑦 (𝑥3, 𝑦3 − 𝑦4, 𝑥̇3, ̇𝑦3 − ̇𝑦4) − 𝑚1𝑔𝑚3 ̈𝑦4 + 𝑐𝑏 ̇𝑦4 + (𝑘𝑦4 + 𝑘𝑏𝑦4) = −𝐹𝑦 (𝑥3, 𝑦3 − 𝑦4, 𝑥̇3, ̇𝑦3 − ̇𝑦4) − 𝑚3𝑔,

(3)

where 𝑒𝑏 is the unbalance and 𝜔 is the rotating speed.
In (3), 𝐹𝑥(𝑥1, 𝑦1, 𝑥̇1, ̇𝑦1) and 𝐹𝑦(𝑥1, 𝑦1, 𝑥̇1, ̇𝑦1) denote the

horizontal and vertical force components of the oil film in the
right bearing, while 𝐹𝑥(𝑥3, 𝑦3−𝑦4, 𝑥̇3, ̇𝑦3− ̇𝑦4) and 𝐹𝑦(𝑥3, 𝑦3−𝑦4, 𝑥̇3, ̇𝑦3 − ̇𝑦4) are those of the left bearing. The nonlinear
forces components from the journal bearing are obtained
under the short bearing theory [23]:𝐹𝑥 = 𝑠𝑓𝑥,𝐹𝑦 = 𝑠𝑓𝑦, (4)

where 𝐹𝑥, 𝐹𝑦 denote the horizontal and vertical force
components of the oil film. The adjustment factor 𝑠 =𝜇𝜔𝑅𝐿[𝑅/𝑐]2[𝐿/2𝑅]2,𝜔 is the rotating speed,𝑅 is the radius of
bearing, 𝐿 is the length of bearing, 𝑐 is the bearing clearance,
and 𝜇 is the oil viscosity. The force components 𝑓𝑥, 𝑓𝑦 can be
obtained using the following equations:

[𝑓𝑥𝑓𝑦] =
√(𝑥 − 2 ̇𝑦)2 + (𝑦 + 2𝑥̇)21 − 𝑥2 − 𝑦2
× [3𝑥𝑉 − sin𝛽𝐸 − 2 cos𝛽𝑆3𝑦𝑉 + cos𝛽𝐸 − 2 sin𝛽𝑆] ,

(5)

where 𝑉, 𝐸, 𝑆, 𝛽 can be represented as

𝑉 (𝑥, 𝑦, 𝛽) = 2 + (𝑦 cos𝛽 − 𝑥 sin𝛽) 𝐸1 − 𝑥2 − 𝑦2 ,
𝑆 (𝑥, 𝑦, 𝛽) = 𝑥 cos𝛽 + 𝑦 sin𝛽1 − (𝑥 cos𝛽 + 𝑦 sin𝛽)2 ,
𝐸 (𝑥, 𝑦, 𝛽) = 2√1 − 𝑥2 − 𝑦2 (𝜋2
+ arctan((𝑦 cos𝛽 − 𝑥 sin𝛽)√1 − 𝑥2 − 𝑦2 )),

𝛽 (𝑥, 𝑦) = arctan
𝑦 + 2𝑥̇𝑥 − 2 ̇𝑦 − 𝜋2 sign(𝑦 + 2𝑥̇𝑥 − 2 ̇𝑦) − 𝜋2⋅ sign (𝑦 + 2𝑥̇) .

(6)

Because 𝑑/𝑑𝑡 = (𝑑/𝑑𝜏)(𝑑𝜏/𝑑𝑡) = 𝜀(𝑑/𝑑𝜏), (3) can be
rewritten as follows:

𝑁(𝜔) :

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

𝑚1𝑥̈1 + 𝑐1𝑥̇1 + 𝑘 (𝑥1 − 𝑥2) = 𝐹𝑥 (𝑥1, 𝑦1, 𝑥̇1, ̇𝑦1)𝑚1 ̈𝑦1 + 𝑐1 ̇𝑦1 + 𝑘 (𝑦1 − 𝑦2) = 𝐹𝑦 (𝑥1, 𝑦1, 𝑥̇1, ̇𝑦1) − 𝑚1𝑔𝑥̈2 + 𝑐2 (𝜏) 𝑥̇2 + 𝑘 (𝜏) (𝑥2 − 𝑥1) + 𝑘 (𝜏) (𝑥2 − 𝑥3) = 𝑒𝑏𝜔2 cos (𝜔𝑡)̈𝑦2 + 𝑐2 (𝜏) ̇𝑦2 + 𝑘 (𝜏) (𝑦2 − 𝑦1) + 𝑘 (𝜏) (𝑦2 − 𝑦3 − 𝑦4) = 𝑒𝑏𝜔2 sin (𝜔𝑡) − 𝑔𝑚1𝑥̈3 + 𝑐1𝑥̇3 + 𝑘 (𝑥3 − 𝑥2) = 𝐹𝑥 (𝑥3, 𝑦3 − 𝑦4, 𝑥̇3, ̇𝑦3 − ̇𝑦4)𝑚1 ̈𝑦3 + 𝑐1 ̇𝑦3 + 𝑘 (𝑦3 + 𝑦4 − 𝑦2) = 𝐹𝑦 (𝑥3, 𝑦3 − 𝑦4, 𝑥̇3, ̇𝑦3 − ̇𝑦4) − 𝑚1𝑔𝑚3 ̈𝑦4 + 𝑐𝑏 ̇𝑦4 + (𝑘𝑦4 + 𝑘𝑏𝑦4) = −𝐹𝑦 (𝑥3, 𝑦3 − 𝑦4, 𝑥̇3, ̇𝑦3 − ̇𝑦4) − 𝑚3𝑔,

(7)
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Figure 2: Setup for nonlinearity measure for dynamics of rotor systems.

where 𝑐2(𝜏) = (𝑐2+𝜀𝑚󸀠(𝜏))/𝑚(𝜏), 𝑘(𝜏) = 𝑘/𝑚(𝜏), and𝑚󸀠(𝜏) =𝑑𝑚(𝜏)/𝑑𝑡 = −𝜆𝜔𝑚0 sin(𝜔𝜏).
3. Assessment of Severity of Nonlinearity via
Nonlinearity Measures

In this paper, nonlinearity measures [24] are employed
to assess the severity of dynamics nonlinearity of rotor-
bearing systems with pedestal looseness. The nonlinearity
measure represents an approach to systematically quantify
the degree of nonlinearity for dynamical systems, which is
already applied to assessment for pedestal looseness of rotor-
bearing systems by Jiang et al. [22]. The fundamental idea

underlying nonlinearity measure is to compare the dynamic
behaviors of the nonlinear systems (3) with a linear system
via Taylor expansions in an appropriate setup [24]. The setup
for nonlinearity measures can be depicted in Figure 2.

The critical point is to find a linear approximated system
on the vicinity of the equilibrium position (𝑥0, 𝑦0) by Taylor
expansion. In (3), oil film force components are the source of
nonlinearity and have nonlinear characteristics.Then, Taylor
expansions are employed to obtain the linear approximations
of the oil film force components.These linear approximations
will have a good accuracy because of the small perturbations
on oil films from the vibrations amplitudes or velocity.
Therefore, a linear system 𝐿(𝜔) developed to approximate the
dynamics of (3) is given as follows:

𝐿 (𝜔) :

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

𝑚1𝑥̈1 + 𝑐1𝑥̇1 + 𝑘 (𝑥1 − 𝑥2) = 𝐹𝑥 (𝑥1, 𝑦1, 𝑥̇1, ̇𝑦1)𝑚1 ̈𝑦1 + 𝑐1 ̇𝑦1 + 𝑘 (𝑦1 − 𝑦2) = 𝐹𝑦 (𝑥1, 𝑦1, 𝑥̇1, ̇𝑦1) − 𝑚1𝑔𝑥̈2 + 𝑐2 (𝜏) 𝑥̇2 + 𝑘 (𝜏) (𝑥2 − 𝑥1) + 𝑘 (𝜏) (𝑥2 − 𝑥3) = 𝑒𝑏𝜔2 cos (𝜔𝑡)̈𝑦2 + 𝑐2 (𝜏) ̇𝑦2 + 𝑘 (𝜏) (𝑦2 − 𝑦1) + 𝑘 (𝜏) (𝑦2 − 𝑦3 − 𝑦4) = 𝑒𝑏𝜔2 sin (𝜔𝑡) − 𝑔𝑚1𝑥̈3 + 𝑐1𝑥̇3 + 𝑘 (𝑥3 − 𝑥2) = 𝐹𝑥 (𝑥3, 𝑦3 − 𝑦4, 𝑥̇3, ̇𝑦3 − ̇𝑦4)𝑚1 ̈𝑦3 + 𝑐1 ̇𝑦3 + 𝑘 (𝑦3 + 𝑦4 − 𝑦2) = 𝐹𝑦 (𝑥3, 𝑦3 − 𝑦4, 𝑥̇3, ̇𝑦3 − ̇𝑦4) − 𝑚1𝑔𝑚3 ̈𝑦4 + 𝑐𝑏 ̇𝑦4 + (𝑘𝑦4 + 𝑘𝑏𝑦4) = −𝐹𝑦 (𝑥3, 𝑦3 − 𝑦4, 𝑥̇3, ̇𝑦3 − ̇𝑦4) − 𝑚3𝑔,

(8)

where 𝐹𝑥, 𝐹𝑦 denote the liner approximations of force com-
ponents 𝐹𝑥, 𝐹𝑦. They are obtained via Taylor expansion for
force components on the vicinity of the equilibrium position.
Linearizing the nonlinear terms on the static equilibrium
position allows a linear system (8) to be derived. The details
of this procedure can be found clearly in [22].

The nonlinearity measures quantify the differences
between the dynamical responses of the nonlinear system𝑁(𝜔) and linear system 𝐿(𝜔). This can provide information
regarding how well the dynamical behaviors of the nonlin-
ear system 𝑁(𝜔) resemble that of the linear model 𝐿(𝜔).
According to the definition proposed by Schweickhardt and
Allgöwer [24], the following definition is used because a
linear system is obtained in advance:

𝜙𝜔𝑁 = sup
𝜔

‖𝑁 (𝜔) − 𝐿 (𝜔)‖‖𝑁 (𝜔)‖ , (9)

where𝑁(𝜔) is the nonlinear system, 𝐿(𝜔) is the linear model,
and 𝜙𝜔𝑁 denotes the value of the nonlinearity quantification
using the input𝜔. A constant rotational speed𝜔 is considered
to be the input of (9) in this paper, and a simple definition
of nonlinearity measure is given for engineering applications
with lower computational requirement:

𝜙𝜔𝑁 = ‖𝑁 (𝜔) − 𝐿 (𝜔)‖‖𝑁 (𝜔)‖ . (10)

The value of 𝜙𝜔𝑁 corresponds to the percentwise deviation
of the dynamics of linear model L(𝜔) from the dynamics of
nonlinear system𝑁(𝜔). In (9) and (10), ‖(⋅)‖ is the normwith
the following definition:

‖𝑥 (⋅)‖ = √∫∞
0
|𝑥 (𝑡)|2 𝑑𝑡, (11)
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Figure 3: The horizontal direction response of the disk (𝜆 = 0.1, 𝛿 = 0.00002m).

where 𝑥(𝑡) denotes the nonlinear response signals that
describe the dynamics of the systems. In principle, any norm
can be used for the following considerations. In order to stress
that fact (and for readability purposes), wewill denote a norm
using ‖(⋅)‖, without explicitly specifying which norm is used.

The result of the nonlinearity evaluation 𝜙𝜔𝑁 will satisfy𝜙𝜔𝑁 ≥ 0. It is quite challenging to discuss the high-
dimensional system (3) and (8) in an analytical way. There-
fore, the calculations of nonlinearity measure resorted to
numerical methods, where the fourth order Runge-Kutta
method is used to integrate the dynamic systems. The same
procedure of nondimensionalization in [22] is used to trans-
form the systems into new ones, while a smaller marching
step is chosen to ensure a stable solution and to avoid the
numerical divergence at the point where the damping and
stiffness parameters are discontinuous.

4. The Influence of Disk Mass Varying on
Values of Nonlinearity Measure

The influence of disk mass varying on values of nonlinear-
ity measures are discussed in this section. The amplitude
coefficient 𝜆 of mass varying is used as a control parameter
to perform a detailed investigation of nonlinear dynamics
of the bearing-rotor system. The influences on dynamical
behaviors for the amplitude coefficient varying are discussed
and compared at the first stage, while the impacts on the trend
of nonlinearity evaluation of rotor systems with pedestal
looseness will be given at the second stage. The values of
parameters used in simulations and nonlinearity measures
are given in Table 1.

4.1. The Influence of Disk Mass Varying on Dynamical Behav-
iors. The amplitude coefficient 𝜆 of mass varying is an
important parameter to have the impact on the dynamical
behaviors of rotor systems with pedestal looseness. In the
process of discussions for the influence of mass varying, the
amplitude coefficients 𝜆 = 0.1, 𝜆 = 0.3, 𝜆 = 0.5 are used
to simulate the nonlinear system (8). Looseness clearance 𝛿
is given different values from 0 to 0.0035m to simulate the

Table 1: Values of simulation parameters.

Parameter Value𝑚0 4 kg𝜀 0.05𝑚1 32.1 kg𝑚3 10 kg𝑐1 1050N⋅s/m𝑐2 2100N⋅s/m𝑘 2.5 × 107N/m𝜔 2100 rpm𝑒 0.5 × 10−4m𝑘𝑏1 7.5 × 109 N/m𝑘𝑏3 7.5 × 107N/m𝜇 0.018 pa∘s𝑐𝑏1 350N⋅s/m𝑐𝑏2 100N⋅s/m𝑐𝑏3 500N⋅s/m𝑅 0.025m𝐿 0.012m𝑐 0.00011m

dynamics of the rotor system; the periodic, quasi-periodic,
and chaotic behaviors are often observed in the bearing-rotor
system. Because of the varying disk mass, the bearing-rotor
systemwith looseness clearance 0.00002mbegins to generate
the quasi-periodic behaviors, while that with looseness clear-
ance 0.0001m begins to have the chaotic behaviors. Then,
the looseness clearances 0.00002m, 0.0001m are chosen to
express the dynamical behaviors of the rotor systems. The
vibration amplitudes in the positions of disk and pedestal
looseness are collected and the amplitude spectrums in
frequency domain are also given in Figures 3–14.

When the looseness clearances 𝛿 = 0.00002m, Figures
3–5 display the vibration amplitudes and its spectrums at
the position of the disk with varying amplitude coefficients,
respectively. Similarly, they are given in Figures 6–8 for
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Figure 5: The horizontal direction response of the disk (𝜆 = 0.5, 𝛿 = 0.00002m).
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Figure 11: The horizontal direction response of the position of pedestal looseness (𝜆 = 0.5, 𝛿 = 0.00002m).
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Figure 13: The horizontal direction response of the position of pedestal looseness (𝜆 = 0.3, 𝛿 = 0.0001m).
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Figure 14: The horizontal direction response of the position of pedestal looseness (𝜆 = 0.5, 𝛿 = 0.0001m).

the rotor system with 𝛿 = 0.0001m. For the position
of the pedestal looseness, the vibration amplitudes and its
spectrums with different amplitude coefficients are given
in Figures 9–14 with looseness clearances 𝛿 = 0.00002m
and 𝛿 = 0.0001m, respectively. The results of vibration
analysis of the systemwith slowly diskmass varying show that
their behaviors represent a perturbation of the system with
constant disk mass. It can be seen that amplitude coefficients
changing has significant impacts on the vibration properties
of rotor systems.

As can be seen from (1), 𝑚0 denotes the average mass of
the disk, and 𝜆 denotes the change coefficient of disk mass
near the average value𝑚0 in the varying time.A large𝜆means
a relative large range of the change of disk mass, and vice
versa. With a constant unbalance of the disk, larger change of
disk mass will give more significant impacts on the dynamics
of rotor systems with pedestal looseness, which are shown in
Figures 3–14. It can also be found that when a larger looseness
clearance is chosen in numerical experiments, vibration
signals have more nonlinear characteristics in its amplitudes

and spectrums (more frequency components are generated).
In detail, Figures 3–8 show that the main frequencies of
the vibration signals in the position of disk have larger
amplitudes with the increasing of 𝜆 and the fixed looseness
clearance. On the other hand, the vibration signals in the
position of pedestal have more apparent shock effect (Figures
9–14). Similarly, it can be concluded that more complex
frequency components are generated in the vibration signals
in the position of pedestal with an increasing 𝜆 and the
fixed looseness clearance. In conclusion, large coefficient of
slowly disk mass varying will lead to more influences on
the severity of dynamics nonlinearity of rotor systems with
pedestal looseness.

4.2. The Effect of Disk Mass Varying on Nonlinearity Measure

(1) 𝜆= 0,𝑚0 = 4 kg, 10 kg, 30 kg, 50 kg.With a given amplitude
coefficient 0, the looseness clearances from 0 to 0.0035m are
used to simulate the dynamical behaviors of rotor systems
with a given disk mass. A series of values of nonlinearity
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Figure 15: Curves of nonlinearity measure and looseness clearances
with different disk mass.

measure are obtained and linked to be a curve for every given
disk mass. Here, four different disk mass values are chosen to
obtain four curves of nonlinearity measure, which are shown
in Figure 15.

As can be seen from Figure 15, four curves are all
described by exponential function with different fitting coef-
ficients. It can be observed that the values of nonlinearity
measure for the rotor system with pedestal looseness will
have a decreasing trend, when the looseness clearances are
smaller than 0.001m. In the interval [0, 0.003m], the values
of nonlinearity measure are growing steadily. If the loose
clearance is larger than 0.003m, the nonlinearity degree will
sharply grow. Particularly, the rotor system with larger disk
mass will havemore apparent decreasing than that with small
disk mass, when the looseness clearance is increasing in
the interval [0, 0.001m]. It can be explained that, with the
increasing of the disk mass, the unbalance of the larger disk
may have serious influences on the bearing clearance and
force components of the oil film in the bearing.

(2) 𝑚0 = 4 kg, 𝜆 = 0.1, 0.3, 0.5. With a given average mass of
the disk, looseness clearances from 0 to 0.0035m are used
to simulate the dynamical behaviors of rotor systems, and
a series of values of nonlinearity measure are obtained and
linked to be a curve for a chosen amplitude coefficient. Three
values are used to be amplitude coefficients and obtain three
curves of nonlinearity measure, which is shown in Figure 16.

As can be seen from Figure 16, these three curves are all
described by exponential function with different amplitude
coefficients of disk mass varying. Quasi-periodic behaviors
are often observed in the rotor systems with small looseness
clearances. Because𝑚0 is small, the varying of disk mass has
less impacts on dynamical behaviors of the rotor system with
small looseness clearances. It can be found that the three
curves are close in the interval [0, 0.0005m] of looseness
clearances. When the looseness clearances are increasing,
the severity of nonlinearity for dynamics is influenced by
the nonlinear elastic force and the varying of disk mass.
The chaotic behaviors will emerge primarily in the dynamics
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Figure 16: Curves of nonlinearity measure and looseness clearances
with different amplitude coefficient.

of rotor system for large values of amplitude coefficient of
disk mass varying, which will evidently modify the range
of chaotic behaviors. With a large amplitude coefficient of
disk mass varying, lateral vibrations of the disk also have
irregularity behaviors; this also lead to a sharply increasing
the assessment values of severity of nonlinearity of dynamics.

5. Conclusions

This paper proposed the investigation of the influence of
disk mass varying on severity of dynamics nonlinearity via
nonlinearitymeasure for bearing-rotor systems with pedestal
looseness. A nonlinear mathematical model including the
effect of slowly disk mass varying was developed for a
bearing-rotor system with pedestal looseness. The varying of
equivalent disk mass is described by a cosine function, and
the amplitude coefficient is used as a control parameter.Then,
nonlinearity measure was employed to quantify the severity
of dynamics nonlinearity of bearing-rotor systems. With the
increasing of looseness clearances, the curves that denote the
trend of nonlinearity degrees were plotted for each amplitude
coefficient of diskmass varying. Larger amplitude coefficients
of disk mass varying will have more impacts on the severity
of dynamics nonlinearity and generation of chaotic behaviors
in rotor systems with pedestal looseness.
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