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An improved classification approach is proposed to solve the hot research problem of some complexmulticlassification samples based
on extreme learning machine (ELM). ELM was proposed based on the single-hidden layer feed-forward neural network (SLFNN).
ELM is characterized by the easier parameter selection rules, the faster converge speed, the less human intervention, and so on. In order
to further improve the classification precision of ELM, an improved generation method of the network structure of ELM is developed
by dynamically adjusting the number of hidden nodes. /e number change of the hidden nodes can serve as the computational
updated step length of the ELM algorithm. In this paper, the improved algorithm can be called the variable step incremental extreme
learning machine (VSI-ELM). In order to verify the effect of the hidden layer nodes on the performance of ELM, an open-source
machine learning database (University of California, Irvine (UCI)) is provided by the performance test data sets. /e regression and
classification experiments are used to study the performance of the VSI-ELMmodel, respectively. /e experimental results show that
the VSI-ELM algorithm is valid. /e classification of different degrees of broken wires is now still a problem in the nondestructive
testing of hoisting wire rope./emagnetic flux leakage (MFL) method of wire rope is an efficient nondestructive method which plays
an important role in safety evaluation. Identifying the proposed VSI-ELMmodel is effective and reliable for actually applying data, and
it is used to identify the classification problem of different types of samples fromMFL signals./e final experimental results show that
the VSI-ELM algorithm is of faster classification speed and higher classification accuracy of different broken wires.

1. Introduction

Extreme learning machine (ELM) was proposed based on
the single-hidden layer feed-forward neural network
(SLFNN) [1]. Unlike the conventional network learning
algorithm which must know the training samples before
generating the parameters of the hidden node, ELM could
generate randomly the parameters of the hidden node before
understanding the training samples. ELM is characterized by
the easier parameter selection rules, the faster converge
speed, the less human intervention, and so on. However, due
to the random generation mechanism of hidden nodes in
ELM, there are still some urgent problems to be improved in
ELM. /e network structure is very crucial to the learning
results and generalization ability of ELM. /e network
structure of ELM is determined by the number of hidden
nodes. In recent years, the growth mechanism of hidden

nodes has been extensively studied by many researchers. In
order to obtain a better generalization of ELM, the per-
formance of ELM should be optimized. Recently, there are
many improved methods about ELM. /e incremental ex-
treme learning machine (I-ELM) was proposed by Huang
et al. [1], which randomly adds hidden nodes one by one
until it reaches the convergence requirement. But I-ELM
does not recalculate the output weights of all existing nodes
when a new node is added. To solve the disadvantages of
I-ELM, the convex incremental extreme learning machine
(CI-ELM) [2] and its improved method (ICI-ELM) [3] have
been proposed. To decrease the calculation time of ELM,
two different growth structures (increased structure and
decreased structure) of hidden nodes were designed. /e
increased structure of hidden nodes includes the enhanced
random search based on I-ELM (EI-ELM) [4], EM-ELM [5],
and so on. /e decreased structure of hidden nodes includes
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P-ELM [6], OP-ELM [7], EM-ELM [8], and so on./e error-
minimized extreme learning machine for single-hidden
layer feed-forward neural networks was proposed for the
problem of simultaneous learning. /e optimum values of
these parameters and the numbers of hidden neurons of
ELM were obtained by using a genetic algorithm (GA),
wavelet or particle swarm optimization (PSO). In addition,
some new adaptive growth methods of hidden nodes were
proposed, including AG-ELM [9] and D-ELM [10]. Apart
from optimization constraints of ELM, ELM has a wide
range of applications in data classification [11], nonlinear
dynamic systems identification [12], pattern recognition
[13–15], expert diagnosis [16], medical diagnosis [17],
modelling permeability prediction [18], expert target rec-
ognition [19], human face recognition [20], and prediction
interval estimation of electricity markets [21]. However,
there are still some problems that need to be studied. All
these have resulted in contradiction between the efficiency
and the accuracy. /is paper is based on deeply studying the
improved ELM methods, and a new growth network
structure of the ELM algorithm is proposed to gain better
generalization. Due to the updating process being dynam-
ically adjusted by the structure of hidden nodes by a variable
step length, the method is referred to as the variable step
incremental extreme learning machine (VSI-ELM). So VSI-
ELM is characterized by the compact network structure, the
fast running speed, and the better generalization ability.

Wire rope is widely used in coal mines, as the key
component of a mine hoister, which is characterized by high
intensity, lightweight, favorable flexibility, high reliability,
better bending performances, and so on [22]. So wire rope is
playing an increasingly important role in coal mining. Under
the alternative load, the fatigue, wear, and corrosion of wire
rope tend to happen and even result in the serious damage to
broken rope [23]. Since some events may lead to wire rope
with some risks to hosting persons, broken wire is not only
the beginning of serious damage of broken rope but also
difficult to be found previously, which cumulatively de-
creases the strength or even leads to fracture of wire rope
[24, 25]. /erefore, it is important to study the non-
destructive testing technique of wire rope.

/e rest of this paper is organized as follows: Section 2 gives
ELM algorithm theory and its improved VSI-ELM model.
Section 3 gives data analysis and research of ELM, I-ELM, and
VSI-ELM and the performance analysis of ELM by using the
UCI data set. Section 4 introduces an automatic MFL detection
system. In this section, VSI-ELM is applied to diagnosis of
different brokenwires. Section 5 concludes the paper indicating
major achievements and future scope of this work.

2. ELM Theory

2.1. Traditional SLFNN %eory. Extreme learning ma-
chine (ELM) was proposed based on the single-hidden layer
feed-forward neural network (SLFNN). ELM is character-
ized by the easier parameter selection rules, the faster
converge speed, the less human intervention, and so on.
/e ELM algorithm has been widely used in many areas of

image processing, machines vision, pattern recognition,
decision and control, and so on. A typical SLFNN is mainly
composed of the input layer, hidden layer, and output layer.
ELM is a unified SLFNN with randomly generated input
weights, bias, and hidden nodes. For any given N in-
dependent samples (xi, ti), xi � [xi1, xi1, . . . , xin]T ∈ Rn and
ti � [ti1, ti1, . . . , tim]T ∈ Rm.

Assume the input layer of SLFNN with n nodes, the
hidden layer of SLFNNwith L nodes, and the output layer of
SLFNN with m nodes. A typical SLFNN model can be
represented by


L

i�1
βig wi · xj + bi  � oj, j � 1, 2, . . . , N, (1)

where wi is the connection weight between input layer nodes
and hidden layer nodes and bi is the bias./e two parameters
wi and bi are independent not only of the training sample set
but also of each other. βi is the connecting weight between
the ith hidden node and the output nodes. g(x) is the ac-
tivation function of hidden nodes. oi is the output vector.

Unlike based on traditional gradient descent learning
algorithms which only work for differentiable activation
functions, ELM algorithm also can work for all bounded
nonconstant piecewise continuous activation functions. /e
hidden node of ELM includes additive or RBF-type nodes,
fully complex nodes, and wavelet nodes. /e common acti-
vation functions of the hidden layer are shown in Table 1. For
the traditional hidden layer activation function, the activation
function parameters a and b are 1. And the different values
will impact the performances of the ELM algorithm.

For a given standard set of training samples (xi, ti),
if the outputs of the network are equal to the targets,
we can get 

L
i�1‖oj − tj‖ � 0:



L

i�1
βig wi · xj + bi  � tj, j � 1, 2, . . . , N. (2)

Equation (2) can be written compactly as
Hβ � T, (3)

where
H � H w1, w2, . . . , wL, b1, b2, . . . , bL, x1, x2, . . . , xn( ,

�

g w1 · x1 + b1(  · · · g wL · x1 + bL( 

⋮ · · · ⋮

g w1 · xN + bi(  · · · g wL · xN + bL( 
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where H is called the output matrix of the hidden layer in
ELM, the ith column of H is the output vector of the ith
hidden node with respect to the inputs, and βT is the
transpose of a vector β.

In practical applications, the number of training sample
sets is greatly larger than the number of hidden nodes
(N≫L). In order to reduce calculation of ELM, the number
of hidden nodes is generally selected less than the number of
training samples N.

For a given minimum value ε> 0, ELM is of the universal
approximation capability, as represented by the following
equation:


L

i�1
oj − tj

�����

�����< ε. (5)

Under the constraint of the minimum norm least square,
the weight between the hidden nodes and the output nodes
can be calculated as

min
β

‖Hβ−T‖, (6)

where H+ is the Moore–Penrose generalized inverse of the
output matrix of the hidden layer H.

/e ELM has a three-step learning model and can be
summarized below. Given a training sample set (xi, ti) and
the activation function of the hidden node G(a, b, x),

Step 1: assign randomly the input weight wi, the bias bi,
and hidden layer nodes L

Step 2: calculate the output matrix of the hidden layerH

Step 3: calculate the output weight β � H+T.

2.2. VSI-ELM Algorithm. Based on deeply studying the
improved ELMmethods, a new growth network structure of
the ELM algorithm is proposed to gain better generalization.
Due to the updating process being dynamically adjusted by
the structure of hidden nodes by a variable step length, the
method is referred to as the variable step incremental ex-
treme learning machine (VSI-ELM). VSI-ELM is charac-
terized by the compact network structure, the fast running
speed, and the better generalization ability.

But due to lack of the selecting standard of hidden nodes,
the initial value of hidden nodes L0 is particularly important.
If the number L0 is far greater than the optimal value of
hidden nodes, it can result in the increase of the training time
and the decrease of the generalization ability. If the number of
hidden nodes is too small, it can result in not only the lack of

the fault tolerance ability but also the increase of the training
error. According to the requirements between the number of
hidden nodes and the resolution problem of ELM, together
with the selecting experience of other neural networks, the
initial value of hidden nodes L0 in ELM is as follows:

L0 � Ø
�����
n + m

√ º

+ q, (7)

q �
q(k) � Ø−2k−1

º

,

q(k) � Ø+ 2k−1

º

,
 (8)

where L0 is the initial number of hidden nodes, n is the
number of the input layer nodes, m is the number of the
output layer nodes, q is the variable step length function,
q ∈ Z, and k is the number of the iterations. When q � 0, L0
is the initial number of hidden nodes.

Next, the update of hidden nodes L0 is adjusted by (8).
When the number of hidden nodes is close to the objective,
ELM can adjust the smaller step to increase or decrease the
number of hidden nodes. When the number of hidden nodes
is far to reach the objective, ELM can adjust the larger step to
increase or decrease the number of hidden nodes. VS-ELM
reduces the computational complexity by only updating the
output weights incrementally each time./e output weight β
is calculated by the least-square criterion. And the com-
puting process of VS-ELM is as follows.

Given a set of training samples (xi, ti), xi � [xi1,

xi1, . . . , xin]T ∈ Rn, ti � [ti1, ti1, . . . , tim]T ∈ Rm, the ex-
pected learning accuracy ε> 0, and the maximum iter-
ation r, the VS-ELM algorithm can be shown in three
phases.

Phase 1: the initialization phase:

(1) Initialize the parameters of SLFNN with the mech-
anism of randomly generated wi, bi, and activation
functions g(xj). /ere exists a positive integer k. /e
initial number of hidden nodes is L0 � Ø

�����
n + m

√ º

,
and its error is E1k, when k � 0.

(2) Calculate the output matrix of the hidden layer H1:

H �

g w1 · x1 + b1(  · · · g wL0
· x1 + bL0

 

⋮ · · · ⋮

g w1 · xN + b1(  · · · g wL0
· xN + bL0

 

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

N×L0

. (9)

(3) Calculate the corresponding output error E1k �

E(H1) � ‖H1H
+
1T−T‖.

Phase 2: the recursive learning phase, while k< r and
E(Hk)> ε:

(1) k � k + 1

/ere are two seeking directions of the growing
mechanism of hidden nodes of ELM, including the in-
creasing growth and the decreasing growth of the network
structure as represented by formula (10) and formula (11).

/e total number of hidden nodes can be added to
the value Lk. It means adding the number of hidden nodes

Table 1: /e common hidden layer activation functions of ELM.

Types of activation
functions Formula of activation functions

Gaussian function G(a, b, x) � exp(−b‖x− a2‖)

Hard-limit function G(a, b, x) �
1, if a · x− b≥ 0,

0, otherwise,

Sigmoid function G(a, b, x) � 1/(1 + exp(−(a · x + b)))

Multiquadric function G(a, b, x) � (‖x− a2‖ + b2)1/2
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(−2k−1) and (+2k−1) to the existing SLFNN, respectively.
Calculate the corresponding output errors E2k and E3k.

(a) For the negative growth of the network structure, the
number of hidden nodes is

Ø
�����
n + m

√ º

+ −2k−1
 , k � 1. (10)

(b) For the positive growth of the network structure, the
number of hidden nodes is

Ø
�����
n + m

√ º

+ +2k−1
 , k � 1. (11)

Firstly, compare E11, E21, and E31; the smallest of E11,
E21, and E31 will be used as the number of hidden nodes.
Suppose k � 0 and the SLFNN with the number of hidden
nodes L0, if the corresponding output error E11 ≤ ε,
E11 ≤E21, and E11 ≤E31, the growing procedure gets fin-
ished. If E21 is the minimum value of E11, E21, and E31, VS-
ELM chooses the negative growth of hidden nodes. If E31 is
the minimum value of E11, E21, and E31, VS-ELM chooses
the positive growth of hidden nodes. For example, if E31 is
the minimum value of E11, E21, and E31, the next update of
the number of hidden nodes is Ø

�����
n + m

√ º

+ (22−1) and the
corresponding output error is E32.

Secondly, compare E32 and E31; if E32 <E31 and ‖E‖> ε,
the next update of the number of hidden nodes is
Ø

�����
n + m

√ º

+ (23−1) and the corresponding output error is
E33. In addition, if E36 >E35 and ‖E‖> ε, the number of
hidden nodes will stop positive growing, Ø

�����
n + m

√ º
+ (25−1)

it is taken as the new initial of the number of hidden nodes.
Next, the number of hidden nodes
Ø

�����
n + m

√ º

+ (25−1) + (21−1) is updated. Using this method,
we can find the best number of hidden nodes until ‖E‖< ε.

Phase 3: if the corresponding output error ‖E‖< ε or
k> r, the growing procedure gets finished.

End while.

3. Data Analysis and Research

3.1. %e Performance Analysis of ELM. /rough the above
analysis of ELM theory and its improved methods, it is not
difficult to find that the performance of ELM has a direct
relationship with its algorithm structure. /e input weight
matrix of ELM is generated by a random pattern after the
matrix of input neurons and the number of hidden layer
neurons. /e number of input neurons is determined by the
size of the sample matrix (training or testing), while the
number of hidden layer neurons is artificially set. /erefore,
the size of the sample matrix also affects the performance of
ELM. However, it is very important to adjust the hidden layer
neuron nodes to improve the performance of the ELM
without changing the sample size. Based on this, the accuracy
of the ELM in regression or classification will be improved if
the input weight matrix generated by a random pattern is the
best match with the training sample. /erefore, it is of great
significance to study the number of hidden layer neurons in
ELM and optimize the parameters of the input weight matrix.

To investigate the effect of hidden layer neuron nodes on
the performance of ELM, a performance test of the ELM

algorithm was conducted using some sample sets provided
by the University of California, Irvine (UCI). /e regression
and classification sets selected from the UCI data set are
shown in Tables 2 and 3, respectively. Among them, the
determination coefficient R and the root-mean-square error
(RMSE) are selected as evaluation indexes. /e smaller the
root-mean-square error, the better the performance of the
algorithm model. /e determination coefficient R is within
the range [0, 1], and the closer the coefficient to 1, the better
the performance of the algorithm model. Conversely, the
closer the coefficient to 0, the worse the performance of the
algorithm model. /e two indicators are calculated as
follows:

RMSE �

�����������

MSE yi −yi( 



,

R �
n

n
i�1yiyi −

n
i�1yi

n
i�1yi( 

2

n
n
i�1 yi( 

2 − 
n
i�1yi( 

2
  n

n
i�1 yi( 

2 − 
n
i�1yi( 

2
 

,

(12)

where yi is the predicted value of the ith sample, yi is the true
value of the ith sample, and n is the number of samples.

In order to verify the impact of hidden layer nodes of
ELM on the field of regression prediction, the selected four
classes of regression data sets (spectra set, concrete set,
fertility set, and sinc set) were tested from UCI provided in
Table 2. Based on the performance indicators of the root-
mean-square error (RMSE) and determination coefficient R,
the performance index changes with the hidden layer node,
as shown in Figure 1.

After analysis, it can be seen that the sample features can
effectively describe the characteristics of the samples, which
is the prerequisite for the regression prediction of the
samples, which is the main reason for the unsatisfactory
performance, as shown in Figure 1(b). In both the training
samples and the testing samples, the closer the RMSE to 0,
the closer the determination coefficient to 1. Similarly, the
closer the determination coefficient to 1, the closer the
RMSE to 0.

For the simple characterization of samples such as the
sinc set, with the increase of hidden layer nodes of ELM, the
closer the RMSE to 0 and the closer the decision coefficient R

to 1, the higher the regression prediction accuracy of the
testing samples than the training samples. At the same time,
with the increase of hidden layer nodes of ELM, there is no
fluctuation of their RMSE and decision coefficient anomaly.
However, with the increase of hidden layer nodes of ELM,
the abnormal fluctuation of RMSE and determination co-
efficientR appears on the regression prediction of the spectra
set, concrete set, and fertility set, and these abnormal
fluctuations occur in the hidden layer node numbered 30, 50,
and 50, respectively. /erefore, it is not appropriate to
improve the fitting accuracy of ELM regression only by
adding hidden layer nodes without considering the ELM
overlearning problem. In addition, for the spectra set,
concrete set, and sinc set, there is no change when the hidden
layer nodes reach 90, 100, and 10, respectively; since then,
continuing to increase the hidden layer nodes will only
increase the computing time of ELM, as shown in Figure 1.
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In order to verify the effect of hidden layer nodes of ELM
on the classification method, 11 classification data sets
(abalone, statlog (heart), diabetes, parkinsons, wdbc, iris,
wine, breast tissue, glass, seeds, and waveform (version 2))
are used to test the classification predictions of ELM. /e
classification accuracy of the classification results varies with
the hidden layer nodes, as shown in Figure 2.

/rough the analysis and comparison of the above data
set, the conclusions are as follows:

(1) With the increase of hidden layer neuron nodes, the
classification accuracy of the training samples has
a sharp increase stage and then relatively slowly
approaches the target value. If the neurons in the
hidden layer continue to increase, the classification
accuracy of the training samples can reach 100%.

(2) With the increase of hidden layer neurons, the
classification accuracy of the testing samples also
has a sharp increase phase, but it does not approach
the target value relatively slowly afterwards as the
training samples. Instead, the following possibili-
ties exist: (1) When the classification accuracy
increases sharply and reaches the maximum value,
the classification accuracy decreases gradually,
as shown in Figures 2(a), 2(e), and 2(k). (2) When
the classification accuracy sharply increased to
reach the maximum, the classification accuracy
first decreased and then stabilized, as shown in
Figures 2(b), 2(c), 2(d), and 2(i). (3) When the

classification accuracy increased sharply and
reached the maximum value, the classification
accuracy first decreases and then rises and ap-
proaches a new stationary value, as shown in
Figures 2(f ), 2(h), and 2(j).

(3) /ere is a big difference in classification accuracy of
ELMwhen the nodes of hidden layer neurons are not
much different, and their classification accuracy even
exceeds 20%. As shown in Figure 2(g), the classifi-
cation accuracy of wine presents a banded distri-
bution. /e main reason for this situation is that
ELM input weights are caused by the stochastic
mode. However, the root cause is that every time the
hidden layer node of ELM is updated, the input
weight matrix is updated again, which leads ELM to
lose self-optimizing ability and greatly increase the
searching time of the ELM optimal structure. /is is
also the reason why the I-ELM algorithm uses
hidden layer neuron nodes layer by layer.

3.2. %e Different Growth Structure of Hidden Layer Nodes of
ELM. /ere are two different ways of growth of hidden layer
nodes in this article. I-ELM algorithm 1 needs to recalculate
all the input weights according to the updated number of
hidden layer neurons, and I-ELM algorithm 2 only needs to
calculate the connection weights of the new added hidden
layer neurons and original input and output neurons. I-ELM
algorithm 2 makes full use of the previously calculated input
weight matrix to reduce its calculation time. I-ELM algo-
rithm 2 improves the algorithm structure only by adding
hidden layer nodes, as shown in Figure 3.

In order to verify the difference between the two
methods, different updates of hidden layer neuron numbers
and recalculation of input weights are done. In this paper,
the two methods (I-ELM algorithm 1 and I-ELM algorithm
2) were tested by using the iris set, respectively. /e results
are shown in Figure 4. As can be seen in Figure 4, I-ELM
algorithm 2 significantly converges faster than I-ELM al-
gorithm 1, making the ELM structure more compact and
avoiding unnecessary training time consumption.

3.3. %e Performance Analysis of the VSI-ELM Algorithm.
In order to compare the performance of the VSI-ELM al-
gorithm and I-ELM algorithm, the UCI classification data
set (statlog (heart), diabetes, parkinsons, and iris) provided
in Table 3 was used to test the two algorithms. /e update
rate curves of the sample classification accuracy are shown in
Figure 5. /e detailed comparison results of the training
time-consuming and hidden layer neuron node for the VSI-
ELM algorithm and I-ELM algorithm are shown in Table 4.
For iris, the preimprovement algorithm (I-ELM) takes twice
the time-consuming training of the modified algorithm
(VSI-ELM). So the VSI-ELM algorithm is of faster training
speed of the multiclassification samples.

Numerical analysis shows that the VSI-ELM algorithm
can guarantee the optimal number of neurons in the hidden
layer and faster convergence than the I-ELM algorithm and

Table 2: Data set description of the selected UCI regression
problems.

Sample
set

Number of
characteristics

Total number of
samples

Training
samples

Test
samples

Spectra 401 60 30 30
Fertility 9 100 50 50
Concrete 7 103 51 52
Sinc 2 10000 5000 5000

Table 3: Data set description of the selected UCI classification
problems.

Data set Sample
category

Number
of

features

Total
number of
samples

Training
samples

Testing
samples

Abalone 3 8 4177 2000 2177
Statlog
(Heart) 2 13 270 135 135

Diabetes 2 8 768 576 192
Parkinsons 2 22 192 95 97
Wdbc 2 30 569 284 285
Iris 3 4 150 75 75
Wine 3 13 178 90 88
Breast
Tissue 6 9 106 44 62

Glass 6 9 214 110 104
Seeds 3 7 210 105 105
Waveform
(version 2) 3 21 5000 2500 2500
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Figure 1: ELM training and testing results of the selected UCI regression data sets: (a) spectra; (b) concrete; (c) fertility; (d) sinc
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make the ELM network structure more compact; general-
ization ability is also stronger.

4. Practical Application Based on the
VSI-ELM Algorithm

4.1. Research Background of Broken Wire Detection. Mine
lifting wire rope is one of the most critical components of the
coal mine transportation system. It is responsible for the
transportation of personnel, coal, and equipment, and its
working condition is directly related to the safe and orderly
production of coal mine. As the mine lifting wire rope is
affected by the long-term friction, humidity, corrosion, and
other harsh production conditions and bears the repeated
tensile load and bending load, broken wire, abrasion, cor-
rosion, and other structural damage will inevitably appear,
which results in the strength reduction of wire rope and

brings harm to the safe operation of the wire rope. With the
increasing depth of mining, the requirements for wire rope
that can withstand high-speed, long-term, and heavy-load
conditions have become exigent. However, the complex
structure of wire rope and uncertainty of damage type and
location have brought a lot of technical problems to the wire
rope nondestructive detection, especially the use of the
magnetic flux leakage method. In that case, the relation
between magnetic field change and structure, movement
mode, and stress change of wire rope is becoming more
complex, and it also brings troubles to the magnetic flux
leakage signal detection. Magnetic flux leakage (MFL) is an
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Figure 2: ELM training and testing results of the selected UCI classification data sets: (a) abalone; (b) statlog (heart); (c) diabetes; (d)
parkinsons; (e) wdbc; (f ) iris; (g) wine; (h) breast tissue; (i) glass; (j) seeds; (k) waveform (version 2).
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efficient nondestructive testing technique for the defected
wire rope and plays an important role in the dynamic
monitoring of wire rope [26–28]. Because of the intricate
structure of wire rope, there is a complicated relation be-
tween the diverse damages and MFL signals. Permanent
magnet is characterized by small volume, low cost, light-
weight, high magnetic field, not requiring power, and easy to
dispose and install. /e MFL signals are gathered by some
arrays of Hall effect sensors disposed at the circumference
clinging to the outer surface of wire rope [29]. So the MLF
signals are influenced by the lift-off distance, velocity effect,
shaking, and various properties of the defects. /e MFL
signal of each channel is different from that of other
channels in a multistage ring MFL detection device [30].
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Figure 5: Classification accuracy updating curves of training samples of VSI-ELM and I-ELM: (a) statlog (heart); (b) parkinsons; (c)
diabetes; (d) iris.

Table 4: Performance comparison of VSI-ELM and I-ELM in the
UCI set classification problem.

Sample
set Algorithm Time-

consuming

Time-consuming
ratio of I-ELM
to VSI-ELM

Hidden
layer
neuron
node

Statlog
(Heart)

I-ELM 17.4606 50.64 537
VSI-ELM 0.3448 515

Diabetes I-ELM 69.796 18.08 520
VSI-ELM 3.8594 518

Parkinsons I-ELM 4.5163 28.89 262
VSI-ELM 0.1563 260

Iris I-ELM 0.3125 2.86 19
VSI-ELM 0.1094 18
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Certainly, all influencing factors are very important to study
the design of the subsequent signal processing. In recent
years, a large amount of the defect detection methods have
gained great achievement in respect of monitoring of wire
rope; meanwhile, there are also some issues that need to be
resolved. /erefore, it is an important and urgent lesson in
the research field that explains how to apply the simplest and
fastest method for fault feature extraction of the broken wire
of wire rope. /e effect of variable tensile stress on the MFL
signal response of defective wire ropes is analyzed and dealt
with as needed [31]. /e filtering system consisting of the
Hilbert–Huang transform and compressed sensing is used to
obtain the defect RMF image characteristics of wire rope,
and the characteristics are extracted as the input of a radial
basis function neural network to identify the defects of wire
rope [32].

To remove the effects of channel-to-channel mismatch
on the disposition, an adaptive method for MFL channel
equalization is based on PCA and ELM [33]. For the clas-
sification of the MFL signal for different broken wires, the
neural networks are very popular methods. /e BP neural
network was employed for the quantitative identification of
broken wires [34]./e improved radial basis function neural
network was applied for the quantitative identification of
defected wire rope [35]. /e wavelet neural network was
used for the prediction and diagnosis of hoisting wire rope
[36]. /erefore, the choice of the wire rope breakage
identification method is to be solved.

4.2. Experimental Study of the Classification of Different
Degrees of Broken Wires. In this paper, a new MFL de-
tection device is used to obtain the MFL signal. /e MFL
detection device is shown in Figure 6. Twenty-four Hall
sensors are distributed in space of the MFL detection
device. Each of the three Hall sensors is a group. /e
acquisition board includes three diverse direction Hall
sensor arrays. Each direction is composed of 8 channels of
Hall sensors, which are uniformly arranged at the annular
circuit board. /ere are 24 Hall sensors to measure the
magnetic flux leakage of defected wire rope by using the
necessary amplification and filter to record the MFL
signal. /e multichannel MFL signals are transmitted to
the acquisition system. /e time-domain and time-
frequency domain characteristics of MFL signals of
the diverse wire rope are analyzed. In order to train the
VSI-ELM algorithm, some normal samples are needed in
this experiment. /e mixed-features vector can be used as
the effective characteristic input of the quantitative
identification when wire rope appears to be broken wires.
To avoid the training sample set getting too large, the
length of the sample set is set to a certain length (2048 data
points). Table 5 shows the characteristic samples of MFL
signals of broken wires, where n is the sequence number, P

is the peak of the MFL wave, W is the width of the MFL
wave, S is the area under the MFL wave, R is the diameter
of wire rope, d is the lift-off distance, and k is the damage
type. In this section, VSI-ELM was utilized to extract the
characteristics of MFL signals of different broken wires.

For MFL signals, the characteristic samples include
training samples and testing samples. /e number of
training samples is 80. /e number of testing samples is
80. /e classification accuracy of defected broken wires is
up to the best value of 97.5% by using VSI-ELM. Com-
pared to the I-ELM algorithm, VSI-ELM can not only gain
the optimal number of hidden nodes but also the fast
convergence rate. /e experimental results show that the
VSI-ELM algorithm is of faster classification speed and
higher classification accuracy of different broken wires.

5. Conclusions

In this paper, the theory of ELM based on the single-hidden
layer feed-forward neural network is reanalyzed. /e clas-
sification model of ELM is theoretically deduced, and the
existing improving methods of ELM are compared. /e
number of hidden layer nerves of ELM is emphatically
analyzed. So the key is the hidden layer neuron growth
strategy. /is article focuses on the analysis of the influence
of the number of hidden layer nodes on the performance of
ELM.

/e numerical simulation analysis of the UCI data set is
used to test the effect of the number of hidden layer neuron
nodes of ELM./rough comparative analysis, it is found that
I-ELM algorithm 2 has better performance. It is verified that
the I-ELM algorithm 2 is more conducive to finish of sample
training by using stacking the hidden layer nerves. Based on

Figure 6: MFL detection device.

Table 5:/e characteristic samples of MFL signals of broken wires.

n P W S k

1 0.274 0.572 0.321 1
2 0.267 0.592 0.311 1
3 0.258 0.502 0.325 1
4 0.345 0.632 0.442 2
5 0.324 0.616 0.431 2
6 0.317 0.634 0.421 2
7 0.495 0.772 0.599 3
8 0.494 0.796 0.560 3
9 0.501 0.762 0.551 3
10 0.591 0.857 0.709 4
11 0.599 0.856 0.706 4
12 0.603 0.861 0.713 4
13 0.751 0.887 0.819 5
14 0.769 0.886 0.836 5
15 0.743 0.891 0.813 5
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the above analysis, a novel adjustment strategy of hidden
layer neuron nodes of the ELM (VSI-ELM) algorithm is
proposed in this paper./e feasibility of VSI-ELM is verified
by the UCI classification data set (statlog (heart), diabetes,
parkinsons, and iris). /e time-consuming ratio of I-ELM to
VSI-ELM of statlog (heart), diabetes, parkinsons, and iris is
50.64, 18.08, 28.89, and 2.86, respectively. /e experimental
results show that the VSI-ELM algorithm can find the best
number of hidden layer neuron nodes faster than the I-ELM
algorithm. Finally, the VSI-ELM algorithm is applied to
identify the characteristics of the MFL signal of different
broken wires. /e classification accuracy of defected broken
wires is up to 97.5% by using VSI-ELM.
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