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For solving detection problems ofmultifrequencyweak signals in noisy background, a novel weak signal detectionmethod based on
variationalmode decomposition (VMD) and rescaling frequency-shiftedmultistable stochastic resonance (RFMSR)with analytical
mode decomposition (AMD) is proposed. In this method, different signal frequency bands are processed by rescaling subsampling
compression to make each frequency band meet the conditions of stochastic resonance. Before the enhanced signal components
are synthesized, they are processed to achieve the enhanced signal by means of AMD, leaving only the enhanced sections of the
signal.The processed signal is decomposed into intrinsic mode functions (IMF) by VMD, in order to require the detection of weak
multifrequency signals. The experimental analysis of the rolling bearing inner ring fault and gear fault diagnosis demonstrate that
the proposedmethod can not only enhance signal amplitude, reduce false components, and improve theVMDalgorithm’s accuracy,
but also effectively detect weak multifrequency signals submerged by noise.

1. Introduction

Because rotating machinery has come to play an increasingly
significant role in transportation and industrial production,
mechanical faults and damage, particularly bearing and gear
faults, have recently been the cause of greater catastrophes
and losses. Therefore, an accurate health monitoring and
diagnosis system is required to identify incipient faults that
may occur in rotating machines. However, two challeng-
ing issues exist in vibration signal analysis: nonstationary
collected signals and signals that are usually mingled with
heavy noise as a result of coupled machine components and
the working environment [1, 2]. Advanced signal processing
techniques have been extensively developed for machine
fault feature extraction, voice recognition, image processing
techniques, leak detection in pipelines [3–5], and so on.
Established techniques include wavelet transform [6], time-
frequency distribution (TFD) [7], Hilbert–Huang transform
(HHT) [8], blind source separation [9], and multivariate sta-
tistical analysis [10]. In summary, signal detection technology
can be divided into two concepts [11–13]. The first involves
obtaining a useful signal by eliminating or suppressing

noise. Standard techniques, such as the wavelet denoising
method, analytical mode decomposition (AMD), empirical
mode decomposition (EMD) method, ensemble empiri-
cal mode decomposition (EEMD), local mean decomposi-
tion (LMD) method, and variational mode decomposition
(VMD), inevitably weaken the useful signal while removing
noise. For example, in the wavelet denoising method, the
appropriate wavelet basis needs to be selected; if selection
of the wavelet basis is improper, the final result will differ
from the original signal. EMD exhibits a boundary effect
and produces many false mode components, which has an
impact on signal detection results [14–16]. EEMD, developed
to overcome the mode mixing of EMD in [17], must be
conducted numerous times, which inevitably results in a
large computational burden [18]. Meanwhile, LMD methods
are still recursive and data-driven and never consider the
form of fault features. As a new adaptive decomposition
method, VMD, which is also based on the concept of IMF,
was proposed by Dragomiretskiy and Zosso [19]. It has been
pointed out that VMD is theoretically much better founded
than the sequential iterative sifting of EMD, because VMD
is based on a clear variational model, and the resulting
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Figure 1: Multistable nonlinear system.

minimization steps perform concurrent mode extraction
intuitively. As a result of noniterative decomposition and
adaptively selected bands, VMD has the ability to overcome
the mode mixing and misclassification problems caused by
fixed band allocation [20]. Furthermore,much of the research
[21, 22] has indicated that VMD, which can decompose
the nonstationary signal into a couple of intrinsic mode
functions adaptively and nonrecursively, offers a feasible tool.
However, VMD is still not appropriate for analysis of a
vibration signal with strong background noise [23], and the
presence of strong noise in the measured vibration signal is
unavoidable.

The second detection method is stochastic resonance
(SR), which can detect signals by using the noise instead of
removing it. Since the SR concept was proposed by Benzi
et al. in 1981 [24], it has been widely applied in signal
processing, physics, biology, largemechanical fault diagnosis,
and other fields [25–33]. A weak periodic signal SR method
has been proposed in locally optimal processors with a Fisher
information metric [34]. Tan et al. realized SR with large
parameters by means of subsampling [35]. Leng et al. [36]
developed methods for transforming a high frequency into a
low frequency, based on frequency rescaling or modulation,
in order to satisfy the traditional SR requirements. These
studies provide methods for the application of SR technology
in processing large parameters signals. However, themajority
of research has been based on the bistable SR system.
The noise metastatic capacity of a multistable SR system is
superior to that of the bistable SR system; therefore, using the
multistable SR method to obtain frequency provides greater
accuracy [37]. Meanwhile, the rotating machine’s defect-
induced fault signal is often corrupted by noise from other
coupledmachine components and the working environment,
which makes certain incipient faults difficult to recognize. In
particular, for the detection problem of weak multifrequency
noisy signals under the influence of strong noise, extracting
useful information is highly challenging, and has important
practical significance.

In this paper, a novel method is proposed based on
VMD after denoising, by means of rescaling frequency-
shiftedmultistable SRwithAMD.The remainder of this paper
is organized as follows. Section 2 provides a brief introduction
to the principles ofmultistable SR and theAMDalgorithm, as
well as introducing the principle of VMD and the limitations
of the method in practical applications. Section 3 presents
the application examples for the bearing and gears. Finally,
conclusions are outlined in Section 4.
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Figure 2: The multistable potential function 𝑈(𝑥).

2. Multistable SR with Analytical
Mode Decomposition

2.1. Principles ofMultistable SR. Themodel formultistable SR
consists of a multistable nonlinear system, driven by periodic
signals and Gaussian noise, which is shown in Figure 1. The
Langevin equation can be obtained as follows [38]:

d𝑥
d𝑡 = −d𝑈 (𝑥)

d𝑥 + 𝑠 (𝑡) + 𝜂 (𝑡) , (1)

where 𝑠(𝑡) = ∑𝑛𝑖=1 𝐴 𝑖sin(2𝜋𝑓𝑖𝑡) is the input signal with
periodic signal amplitude𝐴 𝑖 and driving frequency𝑓𝑖, 𝜂(𝑡) =√2𝐷𝜀(𝑡). Furthermore, ⟨𝜂(𝑡)𝜂(𝑡 + 𝜏)⟩ = 2𝐷𝜀(𝑡) denotes the
noise item, in which the 𝐷 is the noise intensity and 𝜀(𝑡)
represents the Gaussian white noise with a zero mean and
unit variance.

Based on the structural characteristics of current res-
onance models, the reflection-symmetric sextic potential
function 𝑈(𝑥) in (1) is defined as [37]

𝑈 (𝑥) = 𝑥66𝑎󸀠 − (1 + 𝑐) 𝑥44𝑏󸀠 + 𝑐2𝑥2, (2)

where 𝑎󸀠, 𝑏󸀠, and 𝑐 denote the barrier parameters of the
multistable potential with positive real values and 𝑏󸀠 = 5,𝑐 > 0, 𝑎󸀠 = 20+5𝑐 (0 < 𝑐 < 1), 𝑎 = 27.5−2.5𝑐 (1 < 𝑐 < 3).The
above equation has three stable and two unstable solutions, as
shown in Figure 2.
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Figure 3: The schematic diagram of the extracted signal by AMDmethod.

Meanwhile, (2) can be rewritten as

d𝑥
d𝑡 = −𝑥5𝑎󸀠 + (1 + 𝑐)𝑏󸀠 𝑥3 − 𝑐𝑥 + 𝑛∑

𝑖=1

𝐴 𝑖 sin (2𝜋𝑓𝑖𝑡)
+ 𝜂 (𝑡) .

(3)

When ∑𝑛𝑖=1 𝐴 𝑖 sin(2𝜋𝑓𝑖𝑡) + 𝜂(𝑡) = 0, the potential energy
is at a minimum and the system is most stable. When a
weak periodic signal and noise are input into the system, the
noise energy is partially transferred to the signal to produce
interactions; the output signal amplitude is greater than that
of the input signal, which illustrates the SR phenomenon.

2.2. Brief Introduction to AMD Algorithm. A signal decom-
position method known as AMD was proposed by Chen and
Wang in 2012 [39]. This method can decompose signals with
closely spaced frequency components, which results in the
ability to extract the signal [40]. Furthermore, Feldman [41]
presented a proof with a new interpretation of the formula,
using the Bedrosian identity for overlapping signals, and
further explained the decomposition method, which can be
used as a low-pass filter. Because the AMD method can
decompose a time series into the form of any two signals, it
can not only realize the low-pass filtering function, but also
extract the signal on any frequency components. However,
the key to solving this problem is knowledge of the original
signal’s frequency components. Suppose a time series exists𝑥(𝑡) = 𝑥1(𝑡)+𝑥2(𝑡)+⋅ ⋅ ⋅+𝑥𝑛(𝑡), with frequencies𝑓1, 𝑓2, . . . , 𝑓𝑛,
respectively, and 𝑓1 < 𝑓2 < ⋅ ⋅ ⋅ < 𝑓𝑛. If we extract 𝑓𝑛
frequency components of the signal, we can simply take the

value between 𝑓𝑛 and 𝑓𝑛+1 as the two-partitioning frequency
to decompose. Figure 3 illustrates a schematic diagram of the
extracted signal, and the details of the AMD algorithm can be
obtained from [39].

2.3. Brief Introduction to VMD. As a new, adaptive, and
quasi-orthogonal signal decomposition method, VMD aims
to decompose a real-valued signal 𝑓 into a discrete number
of subsignals 𝑢𝑘 with certain sparsity properties, and all
subsignals are mostly compact around a centre pulsation 𝜔𝑘.
Therefore, VMD can be regarded as a constrained variational
problem, as given in (4) [19]:

min
𝑢𝑘,𝜔𝑘

{∑
𝑘

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝜕𝑡 [(𝛿 (𝑡) + 𝑗𝜋𝑡) ∗ 𝑢𝑘 (𝑡)] 𝑒−𝑗𝜔𝑘𝑡󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
2

2

}
s.t. ∑

𝑘

𝑢𝑘 = 𝑓.
(4)

In (4), 𝑢𝑘 represents the sub-signals and 𝜔𝑘 the centre
frequencies of the submodes, 𝛼 denotes the penalty param-
eter, and 𝛿(𝑡) is the Dirac distribution. In order to render
this problem unconstrained, the quadratic penalty term and
Lagrangian multipliers are incorporated, and the problem is
rewritten as

𝐿 (𝑢𝑘, 𝜔𝑘, 𝜆) = 𝛼∑
𝑘

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝜕𝑡 [(𝛿 (𝑡) + 𝑗𝜋𝑡) ∗ 𝑢𝑘 (𝑡)] 𝑒−𝑗𝜔𝑘𝑡󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
2

2

+ 󵄩󵄩󵄩󵄩󵄩𝑓 − ∑𝑢𝑘󵄩󵄩󵄩󵄩󵄩22 + ⟨𝜆, 𝑓 − ∑𝑢𝑘⟩ .
(5)
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Figure 4: The time domain and spectrum of the simulated signal with the𝐷 = 0.

Eq. (5) can be solved by means of the alternate direction
method of multipliers (ADMM) [42]. Firstly, the mode
number 𝑘 is determined artificially, while the frequency
domain expression ofmode function 𝑢̂1𝑘, the centre frequency
of each mode 𝜔1𝑘, and the Lagrangian multiplier 𝜆̂1 are
initialized.Then, modes 𝑢𝑘 and their centre frequency 𝜔𝑘 are
updated by (6) and (7), respectively:

𝑢̂𝑘𝑛+1 ←󳨀 𝑓̂ − ∑𝑖<𝑘 𝑢̂𝑖𝑛+1 − ∑𝑖>𝑘 𝑢̂𝑖𝑛+1 + 𝜆̂𝑛/2
1 + 2𝛼 (𝜔 − 𝜔𝑛𝑘)2 , (6)

𝜔𝑘𝑛+1 ←󳨀 ∫∞
0

𝜔 󵄨󵄨󵄨󵄨󵄨󵱰𝑢𝑛+1𝑘 (𝜔)󵄨󵄨󵄨󵄨󵄨2 d𝜔∫∞
0

󵄨󵄨󵄨󵄨󵱰𝑢𝑛+1𝑘 (𝜔)󵄨󵄨󵄨󵄨2 d𝜔 . (7)

Following the updating of modes and centre frequencies,
the Lagrangian multiplier 𝜆̂ is also renewed by

𝜆̂𝑛+1 ←󳨀 𝜆̂𝑛 + 𝜏(𝑓̂ − ∑
𝑘

󵱰𝑢𝑛+1𝑘 ) . (8)

The updating is executed iteratively until the convergent
Eq. (9) is satisfied, and

∑𝑘 󵄩󵄩󵄩󵄩󵄩𝑢̂𝑛+1𝑘 − 𝑢̂𝑛𝑘󵄩󵄩󵄩󵄩󵄩22󵄩󵄩󵄩󵄩𝑢̂𝑛𝑘󵄩󵄩󵄩󵄩22 < 𝜀. (9)

IMFs based on the preset mode number are obtained.

2.4. Limitations of VMD in Feature Extraction. As VMD
regards the mode as an AM–FM signal and allocates modes
adaptively in the frequency domain, it can effectively extract
the characteristic frequency. In order to verify the efficiency
of the VMD method, three sine signals are selected as the
simulated signals. The test signals are generated according to
the following equation:

𝑥 (𝑡) = 0.1 × sin (2𝜋 × 10 × 𝑡) + 0.1
× sin (2𝜋 × 60 × 𝑡) + 0.1 × sin (2𝜋 × 500 × 𝑡)
+ 𝜂 (𝑡) ,

(10)

where 𝜂(𝑡) = √2𝐷𝛿(𝑡) represents the noise item, in which 𝐷
is the noise intensity and 𝛿(𝑡) denotes Gaussian white noise
with zero mean and unit variance. In order for this signal to
consist of three different frequencies, the value of 𝑘 is set to
3. At first, we set the value of 𝐷 = 0. Figure 4 illustrates the
simulated signal waveforms, where the labels (a) and (b) rep-
resent the time domain and spectrumwaveform, respectively.
Subsequently, we decompose the simulated signal by using
VMD and show the decomposition result in Figure 5, where
we note that the VMD method accurately distinguishes the
mixed sine signals in the spectrum. Furthermore, we set the
value of𝐷 to 2, in order to observe the robustness of theVMD
method for mixed sine signals. The result of the simulated
signals is presented in Figure 6, which indicates that the
characteristic frequency is submerged in the heavy noise
background. It can be seen from Figure 7 that the characteris-
tic frequency is submerged by noise in the spectrum of IMFs,
which means that the VMD method cannot fully identify
the feature frequency hidden in the heavy noise background,
although the VMD method decomposition is based on an
accurate mode number.Therefore, we can conclude that even
if themode number is accurately preset, the feature frequency
is still difficult to extract from the heavy background noise.
Therefore, signal processing is required for noise reduction
prior to VMD decomposition.

3. Method for Weak Multifrequency
Signal Detection Based on VMD following
Denoising by RFMSR with AMD

3.1. Detailed Implementation Steps of ProposedMethod. It can
be observed that although the VMD method can effectively
extract fault features from the multifrequency signal, heavy
background noise may lead to information loss. Meanwhile,
improved mode number selection of mode number plays an
important role in avoiding weak fault features submerged by
noise [19]. In order to overcome these constraints, we propose
a method based on the VMD following denoising by RFMSR
with AMD, for better extracting the characteristic frequency
and to observe clearly the VMD decomposition results. In
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Figure 5: The spectrum of three IMFs by VMD with𝐷 = 0.
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Figure 6: The time domain and spectrum of noisy signal.

order to obtain the better selection of mode number 𝑘 and
penalty parameter 𝛼, this paper adopted the method pro-
posed by [23].We use the genetic algorithm [43, 44] to search
the best value and regard the envelope spectrum entropy of
the intrinsic mode as the fitness value of the optimization
process. The envelope spectrum entropy minimization is the
final goal of optimization. The faults in bearings and gears
usually are indicated as periodic impact features, which can
be detected through the envelope spectrum of a given signal.
Therefore, the envelope spectrum entropy value of intrinsic

mode components obtained by VMD can be selected as the
fitness value. For a given signal 𝑥(𝑡), its envelope spectrum
entropy value 𝐸𝑝 can be described as follows:

𝐸𝑝 = − 𝑁∑
𝑗=1

𝑝𝑗 ln (𝑝𝑗) ,

𝑝𝑗 = 𝑎𝑗 (𝑡) 𝑙 𝑁∑
𝑗=1

𝑎 (𝑗) ,
(11)
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Figure 7: The spectrum of three IMFs through VMD with noise intensity𝐷 = 2.

𝑥̂ (𝑡) = 1𝜋 ∫+∞
−∞

𝑥 (𝑡)𝑡 − 𝜏d𝜏,
𝑧 (𝑡) = 𝑥 (𝑡) + 𝑗𝑥̂ (𝑡) = 𝑎𝑗 (𝑡) 𝑒𝑗𝜃(𝑡),

(12)

𝑎𝑗 (𝑡) = √𝑥2 (𝑡) + 𝑥̂2 (𝑡),
𝜃 (𝑡) = arctan 𝑥 (𝑡)𝑥̂ (𝑡) ,

(13)

where 𝑎(𝑗) represents the envelope of the given signal 𝑥(𝑡),
which can be obtained from (13), 𝑝𝑗 is the normalized form
of envelope 𝑎(𝑗), 𝑥̂(𝑡) is the Hilbert transform results of
the given signal 𝑥(𝑡), 𝑧(𝑡) is the analytic signal, and 𝜃(𝑡)
is the instantaneous phase. According to the information
theory, the strongest sparse characteristics have theminimum
entropy value. That is, the smaller the size of the envelope
spectrum entropy 𝐸𝑝 is, the clearer the distribution of signal
sequence will be. Therefore, in this study, the minimum
envelope spectrum entropy value (MESEV) of intrinsicmode
components is regarded as the fitness value of the genetic
algorithm, and it can be expressed as follows:

min {𝐸𝑃} = {𝐸𝑃1, 𝐸𝑃2, . . . , 𝐸𝑃𝑘} , (14)

where 𝑘 is the number of intrinsic mode components
obtained by VMD and 𝐸𝑃𝑘 represents the envelope spec-
trum entropy value of the kth intrinsic mode components.
Consequently, we obtain the optimal decomposition param-
eters, regarding the minimization of MESEV as the ultimate

optimization goals. That is, when MESEV becomes the
smallest, the optimal decomposition parameters 𝛼 and mode
number 𝑘 can be obtained. In this paper, we generate the
initial population 𝑝 = [𝑝1, 𝑝2, . . . , 𝑝𝐿]. In this process, the
decomposition parameters 𝛼 and 𝑘 are subject to binary
coding, and the encoded 𝛼 and 𝑘 form the individuals 𝑃𝑖
(𝑖 = 1, 2, . . . , 𝐿). The population scale 𝐿 and the number of
iterations are set as 50 and 30, respectively. And the crossover
probability and aberration rate are set as 0.05 and 0.7. In
order to improve the computational efficiency and precision,
the value range for parameters 𝛼 and 𝑘 is set to [100, 2000]
and [2, 10], respectively. Carry out the procedure of selection,
crossover, and mutation and use new individuals to update
the population until obtaining the minimization of MESEV,
so that themode number 𝑘 could be obtained.Moreover, fault
feature frequency in the theory of bearings and gears can be
calculated prior to the experiment, which greatly promotes
application of the AMD method. The steps of the proposed
method are as follows:(1) Use the genetic algorithm to search the best value
and regard the envelope spectrum entropy of the intrinsic
mode as the fitness value of the optimization process. The
envelope spectrum entropy minimization is the final goal of
optimization. So the number of characteristic frequencies can
be obtained.(2) A frequency band transform of the sampling fre-
quency of the noisy signal is carried out, in order to satisfy
the SR small parameter condition in the two sampling
frequencies.
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Figure 8: The flow process diagram of proposed method.

(3)The transformed signal passes through themultistable
SR system to enhance the frequency band’s useful signal.(4)The random resonance output signal is restored.(5) The AMD method is used to restore the signal, and
only the signal components of the band are reserved.(6) The steps are repeated for different frequency bands
(n) of the original signal (1)–(5).(7) The enhancement signals of the different frequency
bands are synthesized to obtain an enhanced signal to realize
the weak multifrequency signal measurement.

The flow process diagram for the proposed method
can be seen in Figure 8. As opposed to [34], which is

based on improving the VMD itself, the proposed method
is based on the multistable SR and AMD method can be
considered as an improved pretreatment method prior to
VMD decomposition. Furthermore, the combination of the
RFMSR with AMD and VMD takes full advantage of each
method, increasing its practicality and effectiveness.

3.2. The Simulation Validation. In Section 2.4, it was noted
that the primal VMD method cannot effectively extract the
feature frequency from a noisy signal; therefore, we apply
the improved method to address this problem. On this
occasion, we still use the simulated noisy signal structured
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in Section 2.4, and the mixed signal waveform is shown in
Figure 6(a), in which we can hardly determine the charac-
teristic frequency. The spectrum in Figure 6(b) also reveals
little information about the feature frequency; therefore,
the improved method is applied. The relation curve of the
MESEV changing with evolutional generation is depicted in
Figure 9. It can be seen from Figure 9 that the MESEV is
the steadiest and smallest when the evolutional generation is
gradually increased from 23 to 50. Consequently, according
to the evolution results of the genetic algorithm as shown
in Figure 9, the optimal decomposition parameters 𝛼 and𝑘 of VMD are set as 1800 and 3, respectively. According
to the decomposition 𝑘, we can assume three characteristic
frequencies with 𝑓1, 𝑓2, and 𝑓3, respectively, and we then
process the RFMSR on each frequency range in order to
improve the signal intensity of 𝑓1, 𝑓2, and 𝑓3, respectively.
It should be noted that the parameter 𝑐 of the multistable
model is set to 0.2 and the double sample frequencies are
set to 3, 1, and 0.8Hz, respectively. The enhancement effect
of the rescaling frequency-shifted SR can be observed in
Figure 10. It can be seen from Figure 10(a) that certain high-
frequency components are weakened, while the amplitude of
the corresponding frequency bands is greatly improved. The
amplitude of the characteristic frequency of 10Hz increases
from 0.1 to 0.7133, that of 60Hz increases from 0.1 to 0.5183
in Figure 10(b), and that of 500Hz increases from 0.1 to 0.346
in Figure 10(c). Although the amplitudes of the three feature
frequencies in Figures 10(a), 10(b), and 10(c) are enhanced,
they are still weak; therefore, they are difficult to detect in
the output signal. Moreover, certain interference frequencies
exist around the fault frequency, which means that at times
the weak multifrequency signals cannot be detected using
multistable SR alone. Next, the three output signals through
the multistable system are, respectively, dealt with by means
of the AMDmethod.The different frequency band signals are
selected by the AMD method, and each resonance band is
retained only after AMD processing. The time domain plot
of synthetic signals in Figure 11(a) has been obtained. Finally,
the synthesized signal is decomposed by means of VMD, in
order to obtain an ideal frequency enhancement effect, as
shown in Figures 11(b)–11(d), which effectively demonstrates
that simulated signal frequencies exist. Therefore, this study
verified the effectiveness of the method.

Table 1: The main parameters of the rolling bearings.

Inner diameter 17.0002 (mm)
Outer diameter 39.9999 (mm)
Pitch diameter 28.4988 (mm)
Ball diameter 6.7462 (mm)
Ball number 8
Contact angle/(∘) 0

Table 2: Rolling bearing fault feature frequency (𝑓𝑟 = 29.95Hz).

Bearing element Failure frequency
Inner ring 4.9469𝑓𝑟
Outer ring 3.0530𝑓𝑟
The retainer 0.3817𝑓𝑟
Rolling body 3.9874𝑓𝑟

3.3. Application of Proposed Method

3.3.1. Analysis of Rolling Bearing. Rolling bearing fault signals
are typically nonstationary, modulated, and weak, making it
challenging to detect and extract feature information, which
is often submerged in strong background noise. The data
used in this study are taken from the Case Western Reserve
University (CWRU) Bearing Data Centre. As illustrated in
Figure 12, the apparatus for data acquisition consists of a
1.5 kw motor, torque transducer, dynamometer, and control
electronics (not shown). The IEPE Accelerometer is adopted
with linear frequency band from 0.7 to 13,000Hz in this
paper.

Two deep-groove ball bearings support the motor shaft at
the drive and fan ends of the motor. Single-point defects are
set on the test bearings at the location of the outer raceway,
inner raceway, and rolling element, using electrodischarge
machining. The vibration data were taken from the fan end
of the bearing (type 6203-2RS JEM SKF) with the inner race
defects, by using an accelerometer attached to the motor
housing at the drive end. The bearings used in this test
are deep-groove ball bearings of type 6203-2RS JEM SKF,
the motor speed is 𝑛 = 1797 rpm (𝑓𝑟 = 29.95Hz), and
the sampling frequency is 12kHz. The geometric details
of this bearing type are provided in Table 1, while the
characteristic frequencies are displayed in Table 2. Taking the
inner raceway faults as an example, calculating the feature
frequencies results in 148.2Hz; twice this is 296.4Hz and
triple is 444.6Hz.

Figure 13 illustrates the time domain and spectrum of
the rolling bearing inner race fault and its partial amplified
graph. In Figure 13, we label the respective fault characteristic
frequencies in order to compare these with the output signal
through the multistable system. It can be seen that the time
domain waveform of the signal periodic impact vibration is
very obvious. However, the spectrum energy is distributed
in a wide frequency range, rather than in the low-frequency
vibration characteristics, causing the fault characteristic fre-
quencies to be extremely weak. According to the proposed
method, firstly, genetic algorithm is adopted to acquire the
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Figure 10: The time domain and spectrum of output signal through the rescaling multistable SR.

optimal decomposition parameters of VMD based on the
minimization criterion ofMESEV. In the process, the optimal
decomposition parameters 𝛼 and 𝑘 of VMD are set as 2000
and 3, respectively. According to the mode number 𝑘, the
experimental data is handled using the RFMSR system with
three different double sampling frequencies, namely, 1.4, 1.6,
and 2Hz.

It can be seen from Figures 14(a)–14(c) that certain
high-frequency components are weakened and the amplitude
of the corresponding frequency bands is greatly improved.
The amplitude of the characteristic frequency of 148.1 Hz
increases to 0.3687, while twice this increases to 0.1377, and

triple increases to 0.1186. Following AMD, only the signal of
each resonance band is reserved and the synthesized signal in
the time and frequency domains is shown in Figure 15(a).The
results of the VMD can be seen in Figures 15(b)–15(d), where
it can be clearly observed that imf1, imf2, and imf3 consist of
the respective fault feature frequencies, proving the accuracy
and effect of the proposed method.

3.3.2. Analysis of the Gears. In order to verify the effect of
the proposedmethod on single-frequency diagnosis, the fault
simulation in a multiple gear transmission system test bench
experimental device is shown in Figure 16. Furthermore, the
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Figure 11: (a) The synthesized signal by AMDmethod and (b–d) the three IMFs of simulated signal with VMD decomposition.
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Figure 12: Rolling bearing fault simulation platform.

schematic diagram of the fixed axis gearbox can be seen in
Figure 17.Thegeometric details of these types of experimental
parameters are provided in Table 3. We analysed sets of data
from gear fault information using the method illustrated in
Figure 8.

The number of the big gear’s teeth on a low-speed shaft is
90, while the number of the small gear’s teeth on a medium-
speed shaft is 36. And the number of big gear teeth on the
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Figure 13: The time domain and spectrum of experimental signal.
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Figure 14: The time domain and spectrum of output signal through the rescaling multistable SR with different double sample frequency: (a)
1.4Hz, (b) 1.6Hz, and (c) 2Hz.

Table 3: Experimental parameter table.

Experimental parameters Parameter values
Model of experimental gear ER-16K
The number of big gear’s teeth on medium
speed shaft 100

Rotational speed
Gear box ratio

1500 r/min
39.408867

Sampling frequency 12kHz
Characteristic frequency of low speed shaft 2.9Hz

medium-speed shaft is 100. The meshing frequency of the
gear can be calculated as follows:

𝑓2 = 𝑛1 × 𝑓𝑧 = 𝑛1 × 𝑓𝑟𝑅 = 4.571 × 2539.408867
= 2.898 ≈ 2.900Hz,

𝑓𝑚 = 𝑧1 × 𝑓1 = 𝑧1 × 𝑓2 × 𝑀1𝑀2 = 100 × 2.900 × 9036
= 725Hz,

(15)
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Figure 15: (a) The synthesized signal by AMDmethod and (b–d) the three IMFs of experimental signal with VMD decomposition.

Induction motor Fixed axle gear box Planetary gear wheel box

Magnetic vibrator

Figure 16:Machinery fault simulator- (MFS-)magnum experimen-
tal platform.

where 𝑛1 is the characteristic coefficient of the low-speed
shaft, 𝑓𝑧 is the feature frequency of the spindle, 𝑓𝑟 is the
rotating frequency, 𝑅 is the gearbox ratio, 𝑧1 represents the
number of big gear teeth on the medium-speed shaft, and𝑀1 and 𝑀2 represent the number of the big gear’s teeth on
the low-speed shaft and that of the small gear’s teeth on the
medium-speed shaft, respectively.

The vibration signal is measured by an accelerometer
under the condition of large gear wear on the medium-
speed shaft (the area marked by the dashed-dotted red line

High speed shaft

Medium speed shaft

Low speed shaft

The small gear on the
medium speed shaft

The big gear on the low
speed shaft

The big gear on
the medium
speed shaft

Bear

Figure 17: The schematic diagram of fixed axis gearbox.

in Figure 17). The gear fault signal and its spectrum diagram
are illustrated in Figure 18, where it can be seen that there
are obvious periodic shocks in the time domain waveform;
however, the fault characteristic frequency can hardly be
seen in the frequency spectrum map, because of heavy back-
ground noise interference. Therefore, we must process the
gear fault signal using other effectivemeans.The time domain
waveform and frequency spectrummap of the output signals,
after passing through the multistable SR system, are shown
in Figure 19. Following the steps in Figure 8, the minimum
entropy value appears in the twenty-seventh generation, and
the best combinations of parameters 𝛼 and 𝑘 are set as
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Figure 18: The experimental time domain signal and frequency domain signal.
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Figure 19: The output signal of experimental data through the rescaling multistable system.
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Figure 20: (a) The time domain of output signal by AMD. (b) The experimental signal results of VMD decomposition.

1900 and 1. The signal in the time and frequency domains
through AMD and VMD can be observed in Figure 20. It is
clear that the fault feature characteristics have been extracted
using the AMD andVMDmethods.The experimental results
demonstrate that the proposed method also proves to be
accurate and practical for weak single-frequency signals.

4. Conclusion

In order to address the detection problems inmultifrequency
signals in noisy backgrounds, a novel method based on

VMD after denoising by RFMSR with AMD is proposed.The
following conclusions have been reached:(1) A rescaling frequency-shifted multistable SR with
AMD can enhance the weak multifrequency signal at differ-
ent scales and effectively extract useful signals in different
frequency bands.(2) Combining the RFMSR and AMD with VMD, signal
noise reduction processing can be realized. Meanwhile, the
RFMSR with AMD can be considered as an improved
pretreatment method, prior to VMD decomposition, which
solves the overdecomposition problem due to the selection
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of parameter 𝑘. In addition, it is beneficial for VMD to
decompose the frequency components contained in the sig-
nal accurately, so as to improve the decomposition accuracy.(3) The analysis of the simulation results and exper-
imental examples demonstrates that this method can not
only effectively detect the weak multifrequency signal under
a strong noise background (including single-frequency sig-
nals), but also accurately decompose the characteristics of the
signal, which further reduces the false components of VMD,
improving the decomposition quality.

These conclusions provide a reliable basis for realizing
weakmultifrequency signal detection, and improve the short-
comings of the VMD method, particularly in a heavy noise
background.
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