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-is paper proposes a new method to realize the quantitative trend diagnosis of bearings based on Protrugram and Lempel–Ziv.
Firstly, the fault features of original fault signals of bearing inner and outer race with different severity are extracted using
Protrugram algorithm, and the optimal analysis frequency band is selected which reflects the fault characteristic. -en, the
Lempel–Ziv complexity of the frequency band is calculated. Finally, the relationship between Lempel–Ziv complexity and fault
size is obtained. Analysis results show that the severity of fault is proportional to the Lempel–Ziv complexity index value under
different fault types. -e Lempel–Ziv complexity showed different trend rules, respectively, in the inner and outer race, which
realized the quantitative trend diagnosis of bearing faults.

1. Introduction

Rolling bearings are important components in rotating
machinery [1]. Regrettably, they are also prone to premature
failure due to a copious amount of possible influence factors
[2, 3]. Consequently, the detection and diagnosis of rolling
bearing faults are of great significance [4]. At present, the
research on bearing fault diagnosis based on vibration
signals mainly focuses on two aspects: the research on
feature extraction method of bearing vibration signal and
study on vibration mechanism of bearing fault [5]. Most of
these methods are qualitative analysis of bearing fault, but
quantitative diagnosis of bearing fault is relatively few. -e
development of modern equipment is becoming more
complicated and precise, so the quantitative analysis of
equipment failures is particularly important.

In recent years, the quantitative analysis of bearing fault
and damage severity has been widely concerned by scholars
both at home and abroad. For example, Jiang et al. [6]
obtained the relationship between the complexity and fault
severity of bearing signal and applied the improved

morphologic filtering method to the noise reduction and the
extraction of the complexity index of bearing fault signals.
Zhang et al. [7] used the permutation entropy index based
on EEMD (ensemble empirical mode decomposition) to
classify the bearing failure types and damage severity. Cui
et al. [8] proposed a quantified matching pursuit algorithm
based on new dictionary model for bearing fault diagnosis,
which can effectively measure the size of the spalling fault of
bearings and realize the quantitative diagnosis of rolling
bearing faults. A rolling element bearing in operation can be
considered as a nonlinear dynamical system, and the non-
linearity of a system is typically described using the com-
plexity index of the system. At present, many scholars
applied Lempel–Ziv complexity to calculate the complexity
of finite-length time series. Lempel–Ziv index is a new re-
search direction for quantitative diagnosis of bearing failure.
Gao et al. [9] measured the complexity of gear vibration
signals using the Lempel–Ziv, and the results show that the
complexities of the normal gear and the fatigue spalling gear
are significantly different, and the complexity measure may
be the characteristic parameter of fault diagnosis, which
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deserves further study. Hong and Liang [10] proposed a new
version of Lempel–Ziv complexity based on continuous
wavelet transform to measure the bearing fault severity, and
the result shows that, for all rotational speeds, the complexity
was proportional for outer race fault and inversely pro-
portional for inner race fault to failure size. Dou and Zhao
[11] proposed an evaluation method based on empirical
mode decomposition (EMD) and Lempel–Ziv index and
obtained the range of Lempel–Ziv value to evaluate different
faults of inner and outer race damage. Zhang and Chen [12]
proposed a method based on LMD and Lempel–Ziv to
identify the damage severity of rolling bearings, for different
rotation speeds and different inner or outer race defects
severity. -e above analysis shows that mechanical fault
signal contains information about the severity of fault.
-erefore, the quantitative analysis of the bearing fault se-
verity is necessary. Proper maintenance decision can be
made only when fault severity is accurately assessed.

However, in practical engineering, the signal features
are very weak and vulnerable to the influence of strong
background noise [13, 14], which is a typical nonstationary
signal [15]. At this point, not all frequency bands in the
signal have obvious fault characteristics. Under strong
background noise, the frequency band selection is often
subject to interference resulting in poor accuracy of center
frequency and filter bandwidth. Barszcz and Jabłoński [16]
pointed out that spectral kurtosis was not applicable to
non-Gauss and strong noise; in order to solve this problem,
the Protrugram algorithm is proposed, which selects the
optimal frequency band by calculating the kurtosis of
envelope spectrum amplitude and verifies the validity of the
method to extract fault features in the case of non-Gaussian
and strong noise. -erefore, we apply the Protrugram al-
gorithm to select the optimal center frequency and
bandwidth of the original signal with different fault sizes.
-e Protrugram is used to select the optimal frequency
band, which is designed to select the optimal center fre-
quency and bandwidth [17].

In view of the above, the Protrugram and Lempel–Ziv
are applied to the quantitative trend diagnosis of rolling
bearing failure. Firstly, the fault features of the signals are
extracted, and the frequency band is selected. -en, the
Lempel–Ziv index is used to measure the signal complexity.
Finally, the relationship between Lempel–Ziv complexity
and fault size is obtained. -e complexity of bearing vi-
bration signal is quantified to evaluate the state of bearing
and realizes the quantitative trend diagnosis of bearing fault.

2. Fault Mechanism of Rolling Bearings

2.1. Simulation Signals for Different Fault Sizes of Rolling
Bearings. -e rolling bearings are mainly composed of four
parts: inner race, outer race, rolling element, and cage. In the
process of rolling bearing installation and operation, the
outer race is connected with the bearing seat or box, and the
inner race is connected with the shaft neck of the drive shaft
and turns with the shaft. When the shaft runs at a certain
speed and a certain load, it will stimulate the vibration
system composed of bearing, bearing seat, and box [18].

In the case of the small area of the local damage of the
rolling bearing, it is assumed that the impact structure
produced by the fault is an ideal impulse similar to the
traditional impact dictionary model. However, when the
area of local damage increases, the pulse caused by the fault
cannot be in an ideal state, but it has a certain width. -e
rising edge of the pulse can be considered as the state when
the rolling element is just in contact with the fault edge, and
the falling edge of the pulse can be considered as the state
when the rolling element leaves the other edge of the fault, as
shown in Figure 1. When the fault has a certain width, the
rolling element will have two impacts on the edge of the fault
through the fault location.

In order to get the precise impact model, a simulation
signal which can reflect the size of the fault is established.
Firstly, we need to calculate the linear speed of the rolling
elements during motion and the pulse width caused by
different faults.

-e linear speed of rolling element: s � πdfr; pulse
width: px � (dx/s).

-e pulse generated by the defect can be expressed as
[19]

x(t) �
1, u< t< u + px,

0,
 (1)

∅imp(p, u, f) �
Kimpe−p(t−u) sin 2πft, t≥ u,

0, t< u,
 (2)

where u is the initial moment when the impact response
occurs (s); f is the damping natural frequency of the system
(Hz); p is the damping attenuation characteristics of impact
response; and Kimp is the normalization constant.

According to the above theory, the simulation signal of
bearing fault is processed. -e pulse sequence produced by
the defect of the bearing vibration signal is

x(t) �

y, n
1

fd
 < t< n

1
fd

  + px,

0,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

n � 0, 1, 2, 3, . . . ,

(3)

where px is the pulse width (mm); y is the amplitude
(mm/s2); and fd is the fault characteristic frequency (Hz).

-erefore, the vibration signal model of the outer race
pitting failure can be simplified as

ϕimp p, u, f, dx, d, fr(  � conv xf(t), ϕimp(p, u, f) . (4)

Based on the model, the simulation signal with pitting
fault in outer race is established, in which the motor speed is
R � 1496 r/min, the bearing outside diameter D � 80mm,
the bearing inner diameter r d � 35mm, the number of
rolling elements Z � 8, and the contact angle α � 0. -e
sampling frequency fs is 25.6 kHz and sampling number N
is 8192. According to the above parameters, the fault
characteristic frequency of bearing outer race is calculated to
be 76.7282Hz, and the characteristic frequency of inner race
fault is 122.738Hz. According to the above theory, the
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simulation signals of different fault sizes of rolling bearings
are constructed, the size of the fault is 0.5mm, 2mm,
3.5mm, and 5mm, and the signals are added with 2 dB
noise. -e inner race fault signals are shown in Figure 2, and
the outer race fault signals are shown in Figure 3.

2.2. 1e Fault Characteristic of the Bearing. Faults in rolling
bearings are usually caused by local defects in the outer race,
inner race, and roller. A series of shock vibrations are
generated when the running rolling element passes through
the defect surface.-e characteristic frequencies of a bearing
are calculated based on the bearing geometry and the rotor
frequency fr. By comparing the fault characteristic fre-
quencies in the spectra with calculated characteristic fre-
quencies of bearing, the cause of the defect can be identified.

Outer race defects are revealed at the outer race pass
frequency (fo):

fo �
Z

2
1−

d

D
cos α fr. (5)

Inner race defects are revealed at the inner race pass
frequency (fi):

fi �
Z

2
1 +

d

D
cos α fr, (6)

where d is the diameter of rollers,D is the pitch diameter, Z is
the number of rollers, α is the contact angle of the rollers,
and fr is the rotation frequency.

3. The Proposed Method of Quantitative
Trend Diagnosis

3.1. 1e Lempel–Ziv Algorithm. Lempel–Ziv was first pro-
posed by mathematicians Lempel and Ziv [10]. Lempel–Ziv
complexity is a powerful tool for measuring the complexity
of finite time series [20]. -e basic theory of Lempel–Ziv is
with the increase of the complexity of the sequence, the
periodic components in the sequence become less, and the
sequence becomes more irregular, at the same time, and it
approaches the random state. -e sequence contains more
frequency components, indicating that the system is more
complex. When the complexity of the sequence becomes
smaller, the periodic components of the sequence become
clearer and tend to become more periodic. -e sequence
contains fewer frequency components, indicating that the
complexity of the system will be lower.

For a signal S(i) (i � 1, 2, ..., N) [21], firstly, convert it
into a binary sequence, and set a � mean(S(i))ε, if S(i)≥ 0,
then S(i) � 0, else S (i). So transform S (i) into binary

sequence SN � s1, s2, s3, ..., sN , and Lempel–Ziv complexity
value of sequence SN can be calculated by cycling N times
with CN(r) (r≤N):

(1) Initialization, Sv,0{ }, Q0 � { }, CN(0) � 0 [11], r � 0,
makes Qr � Qr−1Sr , since Q0 does not belong
to Sv,r−1, then CN(r) � CN(r− 1) + 1, Qr � { },
r � r + 1;

(2) Make Qr � Qr−1Sr , judging weather Qr belongs to
Sv,r−1 � Sv,r−2sr−1 , if so, CN(r) � CN(r− 1),
r � r + 1, repeat step (2);

(3) If not, CN(r) � CN(r− 1) + 1, Qr �{ }, r � r + 1,
repeat step (2).
Take SN � 1 0 0 1 0 1 1 0  as an example,
N � 8, initial r � 0, Sv,0 � { }, Q0 � { }, CN(0) � 0.
r � 1, Sv,0 �{ }, Q1 � {Q0s1} � {1}, Q1 ∉ Sv,0, CN(1) �

CN(0) + 1 � 1, Q1 � { }
r � 2, Sv,1 � {Sv,0s1} � {1}, Q2 � {Q1s2} � {1 0}, Q2 ∉
Sv,1, CN(2) � CN(1) + 1 � 2, Q2 � { }
r� 3, Sv,2 � {Sv,1s2} � {1 0},Q3 � {Q2s3} � {0},Q3 ∈ Sv,2,
CN(3) � CN(2) � 2
r � 4, Sv,3 � {Sv,2s3} � {1 0 0}, Q4 � {Q3s4} � {0 1},
Q4 ∉ Sv,3, CN(4) � CN(3) + 1 � 3, Q4 � { }
r � 5, Sv,4 � {Sv,3s4} � {1 0 0 1},Q5 � {Q4s5} � {0},Q5 ∈
Sv,4, CN(5) � CN(4) � 3
r � 6, Sv,5 � {Sv,4s5} � {1 0 0 1 0}, Q6 � {Q5s6} � {0 1},
Q6 ∈ Sv,5, CN(6) � CN(5) � 3
r � 7, Sv,6 � {Sv,5s6} � {1 0 0 1 0 1}, Q7 � {Q6s7} � {0 1
1}, Q7 ∉ Sv,6, CN(7) � CN(6) + 1 � 4, Q7 � { }
r � 8, Sv,7 � {Sv,6s7} � {1 0 0 1 0 1 1},Q8 � {Q7s8} � {0},
Q8 ∈ Sv,7, CN(8) � CN(7) � 4.

-rough the above cycle, the Lempel–Ziv complexity
value of SN is 4.

-e complexity value related with the length N of SN,
CN(N) is affected by length N of SN. In order to make
Lempel–Ziv complexity index relatively independent, Lempel
and Ziv proposed the following normalized formula [11]:

0≤CnN �
CN(N)

lim
N⟶∞

CN(N)
�

CN(N)

lim
N⟶∞

N/(1− β)logk N( 

≈
CN(N) × logk N

N
,

(7)

where k is the number of elements in SN (for binary se-
quence SN, k � 2). Hong et al. [10] gave the empirical value

Figure 1: Physical model diagram.
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of N: N≥ 3600, and CnN is normalized indicator of
Lempel–Ziv.

3.2. 1e Protrugram Algorithm. Protrugram is an optimal
frequency band selection method based on the kurtosis of
the envelope amplitude of modulated signal. -is method

aims to select the optimal center frequency (CF) and
bandwidth(BW).

-e purpose of this method is to select the optimal center
frequency and bandwidth. Firstly, FFT is performed on the
measured time signal to obtain its spectrum. Second, the
bandwidth is selected ([16] indicates that the bandwidth is
usually 3 times of the fault characteristic frequency) and the
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Figure 2: Simulation vibration signal of bearing inner race with different fault sizes. (a) Fault diameter: 0.5mm. (b) Fault diameter: 2mm.
(c) Fault diameter: 3.5mm. (d) Fault diameter: 5mm.
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Figure 3: Simulation vibration signal of bearing outer race with different fault sizes. (a) Fault diameter: 0.5mm. (b) Fault diameter: 2mm.
(c) Fault diameter: 3.5mm. (d) Fault diameter: 5mm.
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iterative step length (usually 1Hz, 100Hz, or 1000Hz).
Subsequently, the interval [CF-BW/2, CF-BW/2] is selected
on the FFT spectrum (positive part) during each iteration.
-en, Hilbert envelope is used to obtain its envelope
spectrum and calculate its kurtosis. Finally, the relationship
between center frequency and kurtosis is plotted. -e
narrowest band signal with themaximum kurtosis is selected
for subsequent analysis.

3.3. 1e Quantitative Trend Diagnosis of Bearing Fault Based
onProtrugramandLempel–Ziv. Firstly, the center frequency
and bandwidth of the original signal is determined by the
FFT transform. -en, the optimal analysis frequency band is
selected and Lempel–Ziv complexity index of the frequency
band is calculated. Finally, the relationship between
Lempel–Ziv complexity and failure size is obtained.

-e process of the method is as follows:
(1) FFT transform. -e FFT transform is performed on

the original fault signal of the bearing fault with
different fault sizes.

(2) Initialization. Determine the bandwidth BW and the
step size and the range of the center frequency CF
[BW/2, fs/2−BW/2].

(3) Calculate the narrow-band envelope spectrum. -e
section of the spectrogram [BW−CFk, BW+CFk] is
subjected to IFFT transform and the envelope
spectrum of the signal is calculated.

(4) Calculate the kurtosis value. Calculate the kurtosis
value of the narrow-band envelope spectrum in the
(3) step.

(5) Draw the graph.-e correspondence between CFk as
the abscissa and Kurtosis as the ordinate.

(6) Select the optimal frequency band. -e frequency
band with the largest kurtosis value is selected and
the corresponding center frequency value CFo is
returned to obtain the best analysis frequency band.

(7) Calculate the Lempel–Ziv value. Calculate the
complexity index according to the method described
in Section 3.1.

(8) Draw the relation graph between the Lempel–Ziv
complexity value and fault size to realize the fault
quantitative trend diagnosis.
-e flowchart is shown in Figure 4.

4. Applications to Bearing Fault Based on the
Proposed Method

4.1. Simulation Signal Analysis. From Figures 2 and 3, we
can find that the time domain signals of the inner and outer
race have obvious periodic impact. However, with the in-
crease of fault severity, the fault signal of inner or outer race
will not change significantly.-erefore, the quantitative fault
diagnosis cannot be realized only by analyzing the time
domain of fault signal.

For the outer race fault, the inherently attenuated vi-
bration signal only related to the nature of the bearing itself,

and for the same size bearing, the inherent attenuation
vibration signal can be considered unchanged; therefore, the
pulse sequence xf(t) is dominated by defects. As the severity
of the fault increases, the width of each pulse in the impulse
train increases. -erefore, when the impact frequency of the
bearing defects remains unchanged, the duration of the
large-amplitude vibration in the bearing signal will become
longer and fuzzy before and after the superposition.With the
increase of fault severity, the periodic impulse component of
bearing signal will weaken, and the signal disturbance will
increase [22].-is will lead to an increase in the randomness
of the vibration signal x(t) in the same time domain. With
the increase of fault severity, the impact overlaps with each
other, resulting in signal confusion and approaching ran-
dom signals gradually, increasing the complexity. -erefore,
with increase of the severity of the outer race fault, the
Lempel–Ziv value should show an upward trend.

For the inner race fault, the fault position changes be-
cause the inner race rotates during bearing rotation.
-erefore, the modulated signal caused by uneven load
distribution will have a strong influence on the fault signal of
the inner race. -e pulse width increases as the fault severity
increases. -e combination of the pulse action and the
nonuniform load distribution makes the periodicity of the
signal envelope more obvious, that is, the modulation effect
of the signal is enhanced.-erefore, with the increase of fault
severity, the periodicity of signal envelope becomes more
and more obvious, indicating that the signal order increases
and the complexity decreases. In other words, with the
increase of fault severity of inner race, Lempel–Ziv value
should show a downward trend in theory.

Original vibration
signal 

FFT transform

Select CF = BW/2 and the step size: fs/2 – BW/2

Calculate the narrowband envelope spectrum

Calculate the kurtosis of spectral amplitudes of
positive frequencies, as a function of the CF

Select the optimal frequency band and center
frequency value CF0

Transform
CF

Protrugram

Calculate the Lempel–Ziv value

Draw the trend graph of Lempel–Ziv value
and fault size 

Select on the FFT spectrum (positive part only). The
interval: [CF – BW/2, CF + BW/2]

Figure 4: -e flowchart of the proposed method.
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It can be seen from the above analysis that the fault signal
components of bearing are relatively complex. -erefore, it
is necessary to divide the analyzed signal into two parts, high
frequency and low frequency, and calculate the complexity
separately to ensure the accuracy of the calculation results.
-e overall complexity value of the bearing can represent the
proportional sum of the high frequency complexity factor
CnNH (original signal) and the low frequency (envelope of
original signal) complexity coefficient CnNL. -e formula is

Cn � WHCnNH + WLCnNL. (8)

Nikolaou [23] pointed out that due to the difference in
the composition of the fault signal between the inner and
outer race, the empirical values of the weight coefficientsWH

and WH are also different. For the inner race damage:
WL � 2/3, WH � 1/3; for the outer ring damage: WL � 1/2,
WL�1/2.

Firstly, the outer race fault frequency is 76.73Hz, the
bandwidth BW is determined to be 300Hz, the step length is
100Hz, and the range of the central frequency is [150Hz,
7530Hz]. -e inner race fault frequency is 122.74Hz, the
bandwidth BW is determined to be 400Hz, the step length is
100Hz, and the range of the central frequency is [150Hz,
7530Hz]. according to Step 7 in Section 3.3.

-e signals with different fault sizes are processed to
obtain narrow-band signals and the Lempel–Ziv value of
narrow-band signals is calculated. Figure 5 shows the trend of
different Lempel–Ziv values for inner and outer race failures.

From Figure 5, when the fault size increases, the
Lempel–Ziv complexity index of the outer race fault signal
shows an upward trend, and the Lempel–Ziv complexity index
of the inner race fault signal shows a downward trend [21].-is
indicates that the Lempel–Ziv value of the signal produced by
the different bearing inner and outer race faults can be used to
realize the quantitative fault diagnosis of the bearing.

But in the process of dealing the measured signal because
of the useless vibration interference, it cannot get the same
result as the simulation signal only by using Lempel–Ziv. So,
the quantitative trend diagnosis method of rolling bearing
fault based on Protrugram and Lempel–Ziv is proposed.

4.2. Experimental Verification. -e experimental data come
from the bearing test bench of the laboratory, and we cited
this original experimental signal on pages 7 to 8 of the
paper [21]. -e experimental bench’s components (shown
in Figure 6) are described in Table 1. Table 2 shows the
parameters of the bearing. Four sizes of rolling bearing fault
are obtained by electrosparking manually; they are 0.5mm,
2mm, 3.5mm and 5mm, and experimental data of the inner
and outer race fault under the condition of each fault size are
obtained through acceleration sensor. Setting sampling fre-
quency as 12800Hz, the sampling number N is 8192. -e
investigated faulty bearing with fault size of 0.5mm is shown
in Figure 7.

4.2.1. Analysis of Inner Race Fault Data. Firstly, the inner
race fault frequency is 123.738Hz, the bandwidth BW is

determined to be 400Hz, the step length is 100Hz, and the
range of the central frequency is [200Hz, 6200Hz]. -e
signals with different fault sizes are processed to obtain
narrow-band signals, and the Lempel–Ziv value of narrow-
band signals is calculated. -en, the trend graph of
Lempel–Ziv complexity indicator is drawn, as shown in
Figure 8.

From Figure 8, it can be seen that the trend graph of
Lempel–Ziv complexity of narrow-band signals shows the
complete downward trend with better effect. On the other
hand, the Lempel–Ziv complexity index of narrow-band
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Figure 5: -e Lempel–Ziv trend chart of the original signal.

Figure 6: -e experimental bench system.

Table 1: -e test bench components.
① -ree-phase asynchronous motor
② Flexible shaft coupling
③ -e normal bearing
④ Bearing rotor
⑤ -e bearings with different fault size

Table 2: -e geometric parameters of the tested bearing.
Outer diameter of bearings D0 80mm
Inner diameter of bearings d0 35mm
Contact angle α 0°
Number of rolling elements Z 8
Motor speed R 1497 r/min

6 Shock and Vibration



signals has a very large trend slope, which has a significant
impact on the quantitative trend diagnosis of rolling
bearings.

-erefore, this method is more effective in diagnosing
the trend of bearing failure. In addition, it can be inferred
from the reverse that if the complexity of a series of fault
signals decreases after noise reduction, the set of signals is
the roller bearing signals with inner race, so as to realize fault
recognition and quantitative trend diagnosis.

4.2.2. Analysis of Outer Race Fault Data. Firstly, the outer
race fault frequency is 78.7282Hz, the bandwidth BW is
determined to be 300Hz, the step length is 100Hz, the value
range of the central frequency is [150Hz, 6250Hz], and 8192
points are intercepted. -e signals with different fault sizes
are processed to obtain narrow-band signals, and the
Lempel–Ziv value of narrow-band signals is calculated.
-en, the trend diagram of Lempel–Ziv complexity indicator
is drawn, as shown in Figure 9.

From Figure 9, it can be seen that the trend graph of
Lempel–Ziv complexity of narrow-band signals shows the
complete upward trend with better effect. On the other hand,
the Lempel–Ziv complexity index of narrow-band signals
has a very large trend slope, which has a significant impact
on the quantitative trend diagnosis of rolling bearings.

-erefore, this method is more effective in diagnosing
the trend of bearing failure. In addition, it can be inferred

from the reverse that if the complexity of a series of fault
signals increases after noise reduction, the set of signals is
roller bearing signals with outer race, so as to realize fault
recognition and quantitative trend diagnosis.

5. Conclusion

A quantitative trend diagnosis method based on Protrugram
and Lempel–Ziv is proposed for rolling bearing fault. -is
paper introduces the Protrugram algorithm to extract the
rolling bearing fault feature and select the optimal analysis
frequency band as the narrow-band signal, then calculates
the Lempel–Ziv complexity index of narrow-band signal and
gives the relationship between fault size and Lempel–Ziv
value to realize the quantitative trend diagnosis of rolling
bearing. -e Lempel–Ziv indicator can measure the com-
plexity of the signal. -e experimental analysis proves the
superiority of this method in the quantitative trends di-
agnosis of bearing fault.
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