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It is known that fatigue cracks are one of the most important problems of the mechanical components, since their propagation can
cause severe loss, both personal and economic. So, it is essential to know deeply the behavior of the cracked element to have tools
that allow predicting the breakage before it happens. ,e shafts are elements that are specially affected by the described problem,
because they are subjected to alternative compression and tension stresses.,is work presents, firstly, an analytical expression that
allows determining the first four natural frequencies of bending vibration of a nonrotating cracked shaft, assumed as an
Euler–Bernoulli beam, with circular cross section under pinned-pinned conditions, taking into account the elliptical shape of the
crack. Second, once the direct problem is known, the inverse problem is approached. Genetic Algorithm technique has been used
to estimate the crack parameters assuming known the natural frequencies of the cracked shaft.

1. Introduction

Shafts are a very common mechanical components that are
usually subjected to very hard working conditions, specifi-
cally bending loads that originate periodic stresses, changing
from tensile to compression stresses for each cycle of the
shaft, often accompanied by high temperatures and ag-
gressive environments. All of that frequently causes incipient
fatigue cracks which can quickly lead to catastrophic failures
[1–3]. So, it is very important to use diagnosis methodologies
that allow detecting possible cracks and also predicting both
the shape and size of cracks in order to replace the part
before reaching the total breakdown. When a crack appears
in a mechanical component it produces a change in the
modal properties (natural frequencies and modes shapes)
that is accompanied by an increase in its flexibility [1, 4].
Over the last four decades, from the 70s to the present day,
many researches have focused on developing nondestructive
maintenance methods founded on the vibration measure-
ment characteristics, clearly the mode shapes and natural
frequencies, for instance, some of them are presented in
[3, 5–10], besides, some extensive reviews can be found in
[11–14]. Some of these works are based on the fact that it is
possible to estimate the crack parameters by measuring the

changes in the natural frequency (inverse problem), since
the natural frequencies can be measured accurately andmost
easily in comparison with other dynamic characteristics of
a structure and the experimental errors do not significantly
change their values [15, 16]. Before considering the crack
identification inverse problem, the direct problem should be
studied, that is, the determination of natural frequencies of
the cracked element, assuming the crack parameters are
known.

First of all, to establish the relationship between crack
parameters and natural frequencies, assuming that, during
the test period the shaft does not rotate, countless authors
consider shafts as beams with a circular cross section, among
them [17–20]. According to Heydari et al. [21], one can find
three approaches for the vibration modelling of cracked
beams: continuous models with a continuous model for the
crack, discrete models with a local flexibility model for the
crack, and continuous models with a local flexibility model
for the crack. With regard to the third approach, the con-
tinuous beam models with a local flexibility crack model
many times consider two healthy segments that are linked by
a massless rotational spring in order to take into account the
flexibility due to the crack [5], so that the spring constant
depends on the crack parameters by the fracture mechanics
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theory. ,is type of model has been successfully applied to
Euler–Bernoulli cracked beams under different boundary
conditions and rectangular cross sections [8, 22, 23], or
circular cross sections [18, 24–27], but also concerning
circular section beams or shafts, it is easy to find works that
approach the problem by discrete methods [28–31].

It is known that the increasing flexibility caused by the
crack depends on the geometry of the crack, so it is im-
portant to estimate in the best possible way the actual crack
shape. In the case of cracked shafts, frequently, cracks grow
following transversal planes to their longitudinal axis ac-
quiring elliptical shape fronts [32–37]. However, at present,
in the knowledge of the authors, one cannot find in the
literature any expression that allows calculating the re-
lationship between crack parameters and natural frequencies
in the case of elliptical cracks. In this paper, natural fre-
quencies of bending vibrations of Euler–Bernoulli cracked
beamwith circular cross section, taking account the elliptical
shape of the crack, have been obtained. ,e natural fre-
quencies of the damaged beams have been calculated by the
perturbation analysis, a method that was developed to
calculate the eigenvalue and eigenvector of the damaged
structures for decreasing the computation expense [38]. ,e
perturbation techniques have been successfully used before
by other authors to calculate the variation of natural fre-
quencies induced by cracks in Euler–Bernoulli beams
[8, 39–41].

Once the direct problem is known, the inverse
problem must be approached. It is usually considered as
an optimization problem where the crack parameters are
regarded as design variables, so that they are estimated by
minimizing the differences between the reference values
and the ones predicted by the model. Several optimization
methods have been used to solve the inverse problem for
crack identification, for example, classical optimization
technique of minimizing a least square criterion [8, 42],
the minimization of the mean-square and min-max for-
mulations [43], or evolutionary algorithms [44]. Among
them, genetic algorithm (GA) optimization techniques
have been successfully included in fault detection
methods applied to mechanical systems, for instance, in
[45–50].

In this paper, the perturbation theory has been used to
obtain the analytical expressions of the natural frequencies
of bending vibrations of nonrotating cracked shafts with
circular cross section, taking into account location, size, and
shape of the elliptical crack. ,e crack is represented by
a rotational spring connecting the two parts of the beam
produced by the crack, whose constant is evaluated from the
expression of flexibility coefficient found in [35]. To solve the
inverse problem of detecting and identifying the crack, the
formulation previously obtained has been used in an opti-
mization genetic algorithmwhich has been developed within
the MatLab environment. Finally, in order to verify the GA,
input data for the developed algorithm have been obtained
from a modal 3D finite element (FE) model using Com-
mercial Code ABAQUS [51].

2. Direct Problem

2.1. Model of the Cracked Shaft Beam. A cracked Euler–
Bernoulli shaft beam that can vibrate in the X–Y plane is
considered (Figure 1). It has length L and longitudinal uni-
form round cross section with diameterD.,e beam contains
a transversal crack with elliptical front characterized by
semiaxes a and b, shown in Figure 1. It remains always open
during vibration, and it is situated in an arbitrary location of
abscissa xc.,e crack characteristic parameters are as follows:

(i) α � a/D characteristic depth of the crack
(ii) c � a/b shape factor of the crack (c � 1 corresponds

to a semicircular crack and c � 0 corresponds to
a straight crack)

(iii) δ � xc/L dimensionless location of the crack

In order to take into account the presence of the crack,
the shaft can be modelled with two beams connected by
a massless torsional spring. ,e model leads to a disconti-
nuity in the slope of the beam, Δθ, which is proportional to
the bending moment transmitted by the crack section,
M(xc):

Δθ α, c, xc( 􏼁 � Λm(α, c)M xc( 􏼁, (1)

Λm(α, c) is the bending flexibility coefficient that depends on
the crack characteristics, both depth and shape front. It is
given by

Λm(α, c) �
642 1− ]2( 􏼁

πED3 λm(α, c), (2)

where E and v are Young’s modulus and Poisson’s ratio of
the material and λm(α, c) is the nondimensional flexibility
coefficient for bending, which can be found in [35].

,e two beam segments can be treated separately. ,e
vertical displacement of each part of the cracked beam
connected by the spring is

yj(x, t) � uj(x)sin ωc
t( 􏼁, j � 1, 2, (3)

where subscripts j � 1 and j � 2 mean left and right parts of
the cracked beam, respectively, uj(x) is the transverse de-
flection, and ωc is the frequency of vibration of the cracked
shaft. Both can be calculated solving the following eigen-
value problem:

EJ
d4uj

dx4 − ωc
( 􏼁

2ρAuj � 0, j � 1, 2, (4)

where J is the moment of inertia, A is the area of the cross
section of the beam, and ρ is the mass density of the material.

,e general solution for Equation (4) leads to a pair of
equations one for each part of the cracked beam:

u1(x) � A1 sin ξcx( 􏼁 + B1 cos ξcx( 􏼁 + C1sinh ξcx( 􏼁

+ D1cosh ξcx( 􏼁, 0≤ x≤xc,
(5)

u2(x) � A2 sin ξcx( 􏼁 + B2 cos ξcx( 􏼁 + C2 sinh ξcx( 􏼁

+ D2 cosh ξcx( 􏼁, xc ≤ x≤ L,
(6)
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where the coordinate x is measured from the left support of
the beam and

ξc( 􏼁
2

� ωc

���
Aρ
EJ

􏽳

. (7)

,e coefficients Ak, Bk, Ck, and Dk (k � 1, 2) can be
found using the boundary conditions. In this work, pinned-
pinned end condition has been considered. ,e mathe-
matical relations describing the boundary restraints are as
follows:

u1(0) � 0,

d2u1(0)

dx2 � 0,

u2(L) � 0,

d2u2(L)

dx2 � 0.

(8)

Also, four conditions corresponding to the cracked
section are used:

(i) Transverse deflection continuity:

u1 xc( 􏼁 � u2 xc( 􏼁. (9)

(ii) Slope discontinuity:

Δθ �
du2 xc( 􏼁

dx
−

du1 xc( 􏼁

dx
� EJΛm

d2u2 xc( 􏼁

dx2 . (10)

(iii) Bending moment continuity:

d2u1 xc( 􏼁

dx2 �
d2u2 xc( 􏼁

dx2 . (11)

(iv) Shear force continuity:

d3u1 xc( 􏼁

dx3 �
d3u2 xc( 􏼁

dx3 . (12)

In consonance with other authors [8, 39, 40], the
problem has been solved using the perturbation method.
According to this method, the solution for the cracked beam
can be expressed from the uncracked beam solution as

u1(x) � uo(x) + εϕ(x) + O ε2􏼐 􏼑, (13)

u2(x) � uo(x) + εφ(x) + O ε2􏼐 􏼑, (14)

ωc
( 􏼁

2
� ωnc

( 􏼁
2

+ εμ + O ε2􏼐 􏼑, (15)

where ωnc is the frequency of the harmonic vibration of the
uncracked shaft and uo(x) is its transverse deflection, ε is
a positive parameter of the same order as Λm and ϕ, and φ
and μ are the variables of the problem that have to be
obtained as a part of the solution.

Substituting (13), (14), and (15) into (4) and keeping the
first-order terms only, the natural frequencies of the cracked
shaft beam can be derived from the natural frequencies of
the uncracked one and the flexibility of the spring that
models the crack:

ωc
( 􏼁

2
� ωnc

( 􏼁
2 −Λm

EJd2uo(x) xc( 􏼁/dx2􏼂 􏼃
2

􏽒
L

0 ρA uo(x)( 􏼁
2

dx
. (16)

,e displacement uo takes different expressions
depending on the support conditions of the shaft beam [52].
From (16), the relation between ωc and ωnc (frequency ratio)
can be calculated in terms of D, L, and λm and two pa-
rameters called g and f that depend on the support
restrains:

ω∗ �
ωc

ωnc �

�������������������

1−
64 1− ]2( 􏼁Dλm

L
g
4β
f

􏽳

, (17)

where β is a value that also depends on the end conditions of
the beam [52]. Table 1 shows β values for the first four
natural frequencies of the shaft beam for pinned-pinned
boundary condition.

,e expressions of g and f until the 4th natural fre-
quency are shown below (subscript i � 1, 2, 3, and 4 means
the order of the natural frequency):

gi � sin βiδ( 􏼁􏼂 􏼃
2
,

fi � 2βi − sin 2βi( 􏼁.
(18)

2.2. Results of the Forward Problem. In this section, the
expressions calculated before are applied to a nonrotating
shaft beam whose characteristic parameters are L � 2m,
D � 0.05m, E � 72000MPa, ] � 0.33, and ρ � 2800 kg/m3.

a

b

Cracked section

D

L

xc

Y

X

Z

Figure 1: Cracked shaft beam.

Shock and Vibration 3



2.2.1. Effects of the Crack Location. As a representative
example of all crack shapes and sizes, for a cracked shaft with
relative depth α � 0.3 and shape factor c � 0.2, the variations
of the first four normalized natural frequencies of the
component with different crack locations (δ) are shown in
Figure 2.

As would be expected, the normalized natural fre-
quencies depend on the position of the crack along the beam.
If the crack is placed in a mode shape node, the natural
frequency of the beam is not affected by the crack, that is, to
say, ω∗ � 1, and also, the normalized natural frequencies
decrease with the distance from the crack to the nearby
nodes.

2.2.2. Effects of the Crack Depth and Crack Shape.
Figure 3 shows the variations of the first four normalized
natural frequencies of the component in terms of crack
depth (α) and position (δ) for c � 0.5, and Figure 4 shows
the variations of the first four normalized natural fre-
quencies in terms of crack front shape (c) and location (δ)
for α � 0.25; the conclusions are also valid for other values of
c and α, respectively. Both in Figures 3 and 4, axes have been
oriented in order to achieve the best view of the represented
surfaces.

With regard to the crack size influence in the frequency
values, for all cases, the natural frequency of the cracked
shaft decreases as crack is deeper. If one analyzes the var-
iations of the frequency values depending on the crack shape
front, it can be seen that, for all given frequencies, the natural
frequencies of the element increase as crack shape is less
straight, the largest values appear in the case of circular
cracks (c � 1).

3. Inverse Problem

3.1. Genetic Algorithm. Once the direct problem is known,
the crack detection and identification can be considered as
an inverse problem. ,e direct problem, in this case, has
consisted in obtaining the first four natural frequencies from
the knowledge of the location and the crack properties. ,e
inverse problem will be then, obtaining the location and the
flexibility of the cracked section, δ and λm(α, c), knowing the
natural frequencies. In the proposed methodology, the ge-
netic algorithm (GA) optimization technique is applied to
solve the inverse problem.

,e proposed GA is developed under the MatLab en-
vironment. To begin the GA, an initial population of 500
individuals are randomly generated. Every individual con-
sists of 2 genes, λm and δ, encoded as a binary string
(chromosome). Among the different selection techniques,

the roulette wheel method has been chosen, that gives every
member a chance of being selected according to each in-
dividual’s relative fitness. In relation to the crossover
technique, the two-point operator has been employed; in this
case, two points of the chromosome are randomly chosen in
both individuals, and then the alleles falling in-between the
two points are swapped to give two new offspring. On the
contrary, the mutation method is used, which randomly
creates adaptive rules with respect to the last successful or
unsuccessful generation. At last, 85 is the percentage of the
population to replace each generation.

,e fitness function is the most important element of
a optimization genetic algorithm. According to the GA
toolbox of MatLab, the fitness function, f, should be
minimized. It is computed as the root mean-square (RMS) of
the differences between the actual first four dimensionless
natural frequencies and the computed dimensionless fre-
quencies as follows:

f λm, δ( 􏼁 � 􏽘
4

i�1
ω∗i,a −ω

∗
i,c􏼐 􏼑

2⎛⎝ ⎞⎠

1/2

, (19)

where i denotes the order of the natural frequency and ω∗i,a
and ω∗i,c represent the actual and the computed values of
ratio frequencies, respectively.

To decide if the possible optimal values have been cal-
culated, the best fitness value is checked in every step; if the
fitness reaches a prefixed level or if the maximum number of
iterations is achieved, the algorithm is stopped. As the stopping
level, a value of 10−6 has been chosen, and to guarantee that the
algorithm converges to the optimal solution, each case has been
run five times during 250 generations.

3.2. Numerical Results. In order to test the proposed algo-
rithm, the same shaft beam previously described has been
considered, with cracks in different positions and with
different depths and front shapes, that is to say, different
flexibilities. ,e study has been carried out for three couples
of α and c and three crack locations δ. ,e three couples
(α, c) have been chosen considering the fact that the front of
incipient cracks is practically circular and that when a crack
grows its front becomes straight [53] (Figure 5). In sum-
mary, 9 cases have been considered. Table 2 shows the
description of the considered cases.

Input data for the genetic algorithm have been obtained
from a modal 3D finite element (FE) model using Com-
mercial Code ABAQUS [51]. ,e mesh of the three-
dimensional model is made by employing 8-node linear
brick elements called C3D8, and in order to determine the
level of mesh refinement, convergence analysis was carried
out. ,e FE model finally included about 45000 elements
and 50000 nodes. In Figure 6, as an example, in the case of
healthy beam, both the first four bending vibration modes
related to the first four natural frequencies obtained and
undeformed beams obtained from the finite element model
can be seen.

In Table 3, the values of the reference frequency ratios for
9 cases calculated by the FE model can be seen.

Table 1: Values of β.

Pinned-pinned
β1 π
β2 2π
β3 3π
β4 4π
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It is important to take into account that it is possible to
�nd that cracked shaft beams with di
erent depths and front
shape crack present identical vibration behavior as long as
the λm value is the same in all cases. In Figure 7, it can be seen
the surface that λm represents values in function of α and c.
In addition, Figure 8 shows several curves that have been
calculated as the intersection of the aforementioned function
and di
erent planes characterized by constant λm values. As
shown, there are in�nite values of couples (α, c) with which
the same value of λm can be obtained.

After applying the proposed GA, Table 4 shows the
obtained results, where the estimated values of λm and δ have
been calculated as the average of the �ve repetitions of the
same case, and the standard deviation values are given as

σ(x) �

�����������
∑ni�1 xi − x( )2

(n− 1)

√

, (20)

where x can be λm or δ and n is the number of repetitions; in
this case, n � 5.

In all cases the error is calculated as

error(%) �
|estimated value− true value|

true value
× 100. (21)

Firstly, in the case of the crack location (δ), the esti-
mation can be considered very good, since the error always
keeps under 2.5% and the average error, taking into account
all the studied cases, is less than 1%. Secondly, regarding the
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Figure 2: Variations of the �rst four normalized frequencies in terms of crack position (δ) for α � 0.3 and c � 0.2.
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Figure 3: Variations of the �rst four normalized frequencies in terms of crack depth (α) and position (δ) for c � 0.5.
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cracked section �exibility (λm), one can �nd errors ranging
from 3.2% to 7.1%. With respect to �exibility, as it is
explained in previous sections, for a given λm value, in�nite
couples (α, c) can be found, so every λm value can be
graphed as a curve composed by the corresponding in�nite
(α, c) points. Figure 9 shows, for the studied cases that can

be found in Table 2, that given a shape front (c), for every λm
constant value, there is a di
erence between the real di-
mensionless depth of the crack obtained from λm real and
the estimated crack size calculated from λm predicted. In
other words, one can see the �exibility curves, both real (λm
real) and predicted (λm predicted), as a function of their

0.98 11

0.99

1

0.50.5 00γ δ

ω 1
∗

(a)

0.98 11

0.99

1

0.50.5 00γ δ

ω 2
∗
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0.50.5 00
γ δ

ω 3
∗

(c)

0.98 11

0.99

1

0.50.5 00
γ δ

ω 4
∗

(d)

Figure 4: Variations of the �rst four normalized frequencies in terms of crack front shape (c) and position (δ) for α � 0.25.

Table 2: Input data: case description.

α � 0.15, c � 0.73 α � 0.28, c � 0.55 α � 0.49, c � 0.12
(λm � 7.04 · 10−4) (λm � 5.58 · 10−3) (λm � 3.74 · 10−2)

δ � 0.25 Case 1 Case 2 Case 3
δ � 0.46 Case 4 Case 5 Case 6
δ � 0.82 Case 7 Case 8 Case 9

α = 0.49, γ = 0.12
α = 0.28, γ = 0.55
α = 0.15, γ = 0.73

Figure 5: Considered cases in numerical results.
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related in�nite couples (α, c). Besides, in Figure 9, the
speci�c points corresponding to the cases in Table 2 have
also been highlighted.

In Table 5, one can see the calculated errors (εα(%)),
according to Equation (20), for the depth crack α corre-
sponding to the previous analyzed cases and for the c limit
values, and these are straight front (c � 0) and circular front
(c � 1).

According to the results shown in Table 5, it can be said
that the errors for α estimated values, in the limit cases of

straight and circular fronts, are less than the errors associated
with �exibility λm for the same shape fronts. Ultimately, the
proposed algorithm allows estimating well enough the size of
the crack for all the studied boundary conditions since in the
worst situations, the errors are under 7%.

4. Conclusions

Analytical novel expressions available to calculate the �rst
four natural frequencies of an Euler–Bernoulli cracked shaft

Mode 2

Mode 1

Mode 3

Mode 4

Figure 6: Both �rst four bending vibration mode shapes and undeformed beams, for a healthy beam, obtained by the �nite element model.

Table 3: Values of the reference frequency ratios.

Pinned-pinned
ω∗1 ω∗2 ω∗3 ω∗4

Case 1 0.9995 0.9989 0.9995 1
Case 2 0.9956 0.9915 0.9959 1
Case 3 0.9717 0.9485 0.9767 0.9999
Case 4 0.9990 0.9999 0.9991 0.9998
Case 5 0.9915 0.9995 0.9927 0.9981
Case 6 0.9468 0.9967 0.9570 0.9889
Case 7 0.9997 0.9991 0.9990 0.9994
Case 8 0.9975 0.9930 0.9918 0.9952
Case 9 0.9835 0.9556 0.9529 0.9746

0
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0.80.4
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0.2 0.40.20.1 00
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Figure 7: λm values in function of α and c.
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Figure 8: λm values in function of α and c for constant λm values.

Table 4: Location and �exibility errors.

σ(λm) λm ελm(%) σ(δ) δ εδ(%)
Case 1 5.14 · 10−7 7.37 · 10−4 4.7 2.15 · 10−5 0.249 0.6
Case 2 1.58 · 10−6 5.96 · 10−3 6.7 5.58 · 10−6 0.252 0.8
Case 3 2.90 · 10−6 3.58 · 10−2 4.3 6.29 · 10−6 0.256 2.5
Case 4 6.85 · 10−6 7.24 · 10−4 3.2 2.16 · 10−4 0.461 0.2
Case 5 1.80 · 10−6 5.95 · 10−3 6.5 1.24 · 10−5 0.46 0.0
Case 6 2.26 · 10−6 3.57 · 10−2 4.6 2.50 · 10−6 0.459 0.1
Case 7 1.09 · 10−5 7.28 · 10−4 3.4 2.62 · 10−3 0.819 0.1
Case 8 2.52 · 10−6 5.90 · 10−3 5.6 2.64 · 10−5 0.817 0.3
Case 9 3.05 · 10−6 3.48 · 10−2 7.1 3.72 · 10−6 0.811 1.1
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Figure 9: Flexibility curves. Real and predicted values in function of α and c for the studied cases. (a) Cases 1/4/7. (b) Cases 2/5/8. (c) Cases
3/6/9.
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beam have been presented in this work. ,ese expressions
consider that, most of the times, the cracks presented in
a shaft have elliptical fronts, so the natural frequencies values
of the cracked element depend not only on the location and
the size of the crack but also on the shape of the crack front.
,e method employed is based on linking the two un-
damaged parts of the shaft by a rotational spring, located in
the cracked section, which constantly depends on the crack
parameters, that is to say, on the flexibility due to the crack;
meanwhile, the formulated problem has been solved by the
perturbation technique. Results obtained from the de-
veloped expressions show the natural frequency of the
cracked shaft decreases as crack is deeper and increases as
crack shape is less straight. Once the analytical expressions
have been formulated, the inverse problem has been
approached. ,e genetic algorithm technique has been used
as an optimization method in order to provide an algorithm
that allows to estimate the crack parameters; these are the
location and the flexibility due to the crack, which depends
on the size and shape of the defect. A finite element model
has also been created in order to use its results to check the
validity of the proposed algorithm. In regards to the di-
mensionless crack section flexibility, which depends on the
size and shape of the crack, the calculated errors are in
a range of values between from 3.2% to 7.1%. However,
because that it is possible to find that damaged shaft beams
with different depths and front shape crack present identical
vibration behavior as long as the λm value is the same in all
cases, the proposed algorithm allows to estimate well enough
the size of the crack since in the worst situations, the errors
are under 6.5%, and the average error is 2.3%. Last, in the
case of the crack location, the estimation can be considered
very good, because the error always keeps under 2.5%, and
the average error, taking into account all the studied cases, is
less than 1%.
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