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Extreme value of vehicle load plays an important role in bridge design and risk assessment. Peaks over threshold (POT) is a method
commonly used in extreme load estimation. The selection of thresholds for the POT method is extremely crucial, but the selected
optimal threshold varies under different test criteria. Therefore, a method to select the suitable threshold is developed based on
multiple criteria decision analysis (MCDA) in the paper. In MCDA, Chi-Square (𝜒2) test, Kolmogorov–Smirnov (K–S) test, and
Root Mean Square Error (RMSE) in probability distribution functions (PDF) are employed as the test criteria and the weight of
these criteria is calculated using the entropy method. Finally, vehicle loads obtained from simulation and field measurement are
adopted to validate the effectiveness and feasibility of the proposed method. The results indicate that the proposed MCDA is a
useful and complementary tool for threshold selection in the extreme value analysis.

1. Introduction

Vehicle load is one of the most significant factors for bridge
design, safety assessment, and fatigue analysis [1–5]. Over-
loaded heavy vehicles is the primary reason for the deteri-
oration of structural components and the degradation of the
bridge’s overall state [6–8]. The condition of road traffic has
gained a notable increase during the service period due to
the rapid economic growth. Many bridge collapse accidents
have resulted from overloading vehicles. In addition, the
number of bridges worldwide stepping into their ageing stage
is growing, which raises the risk of structural safety for
users. It is extremely expensive to rehabilitate or maintain the
degraded bridge due to the project itself, traffic disruption,
and resulting delays. Large amounts of costs associated with
rehabilitation and maintenance can be saved by proving that
the bridge is safe through accurate risk assessment or propos-
ing an appropriate repair scheme [9].Therefore, it is necessary
to have a good estimation of vehicle loads, and this typically
involves using Extreme Value Theory (EVT).

Collecting the actual load time history is time consuming
and costly. Generally, the extreme loads among the design life
of the bridge cannot be measured through limited period of

data. The EVT can solve the problem through the estimation
of the extreme vehicle loads from a relative short period to
a long period. The EVT is used to quantify the stochastic
behavior of a process at unusually large or small levels. Most
of the publishedworks about the EVT applied to vehicle loads
are on the basis of the block maximum (BM) and POTmeth-
ods [10].The BMmethod divides the observation period into
nonoverlapping periods of equal size. Then the largest value
in each period is extracted to generate maximum sample,
which can be fitted by generalized extreme value (GEV) dis-
tribution. Using the BMmethod to extreme value estimation
requires a large quantity of data, and thus it is not appropriate
to use this method when the available data is insufficient. An
alternative to the BM method is peak over threshold (POT)
method.The POTmethod extracts the peak values exceeding
a threshold, and the extracted data can be fitted by generalized
Pareto distribution (GPD).

A well-known problem for the POT method is to select
a suitable threshold [11]. Threshold selection is the trickiest
part of the POT method because only a narrow range of
thresholds is applicable. On the one hand, a considerable high
threshold is required to guarantee that GPD parameters are
stable. On the other hand, the threshold level cannot be too
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high so that sufficient data can be included [12].The literature
suggests that the most used threshold selection methods
are based on judgement [13]. One way is to use graphical
diagnostic plots, but interpreting these plots is subjective
and rather challenging. The other way is to select a fixed
quantile threshold corresponding to a high nonexceedance
probability. The drawback of this method is that once the
threshold has been determined, it is treated as fixed and the
associated subjectivity and uncertainty are ignored in sub-
sequent inferences.

In contrast to the above methods, the numerical ap-
proaches are relatively objective for threshold election, which
are conducted based on goodness-of-fit tests across a range
of different thresholds. There are many popular criteria for
the goodness-of-fit tests to measure the distance between
the cumulative distribution function of the reference dis-
tribution and the empirical distribution of the sample,
such as Root Mean Square Error (RMSE) test, Kolmogor-
ov–Smirnov (K–S) test, Pearson’s Chi-Square (𝜒2) test, and
Anderson–Darling (A–D) test. It is observed that the selected
threshold under one test criterion may not be the optimal
threshold for other criteria. The performance of extreme
value estimation is greatly affected when the extracted sample
changes due to the test criterion variation. To select an
optimal and stable threshold for the POTmethod, it is mean-
ingful to do some research to take multiple criteria into con-
sideration. The multiple criteria decision analysis (MCDA)
approach works when practical problems are characterized
by several conflicting criteria [14]. An entropy method is
employed to assign the weight value of each criterion for the
MCDA, and then the MCDA can integrate results obtained
from goodness-of-fit under different criteria into a compre-
hensive one, which makes the selection more scientific and
objective [15].

In this paper, theMCDA is proposed to select a threshold
for the POT method in the extreme value analysis of vehicle
loads. Section 2 presents the theory of the POT method, the
mathematical methodologies of MLE, and the framework of
extreme loads estimation. Section 3 presents details of the
MCDA approach involving test criteria and the maximum
entropy theory. Sections 4 and 5 present a practical applica-
tion of theories illustrated in Sections 2 and 3 on simulated
and field monitored vehicle loads. Finally, Section 6 presents
some conclusions of this paper.

2. Theory of Extreme Value Analysis

2.1. The POT Method. Figure 1 shows the POT method of
how to extract extreme values from the observations, where𝜇 is the threshold. The distribution of the entire observations
can be treated as a combination of the body part and the tail
part. Under the POT framework, our focus is the observa-
tions exceeding the threshold, not the entire observations.
When the values of the observations exceed the threshold,
these observations are called exceedances 𝑋 (𝑥1, 𝑥2, . . . , 𝑥𝑛).
Supposing 𝑋 is a sequence of independent and identically
distributed random variables belonging to a continuous
distribution function, that is,𝐹(𝑥).The exceedances above the
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Figure 1: Illustration of the POT method.

threshold 𝜇 are modelled by 𝑦𝑖 = 𝑥𝑖 − 𝜇, and the distribution
function of 𝐹𝜇(𝑦) is expressed as follows:

𝐹𝜇 (𝑦) = 𝑃 {𝑋 − 𝜇 ≤ 𝑦 | 𝑋 > 𝜇} = 𝐹 (𝑦 + 𝜇) − 𝐹 (𝜇)1 − 𝐹 (𝜇) ,
𝑦 > 0.

(1)

When𝜇 is sufficiently large, the distribution function of𝐹𝜇(𝑦)
approximately obeys theGPD,whose cumulative distribution
function is defined in

𝐹 (𝑦) =
{{{{{{{{{

1 − [1 + 𝜉𝑦𝜎 ]
−1/𝜉 , 𝜉 ̸= 0,

1 − exp(−𝑦𝜎) , 𝜉 = 0,
(2)

where 𝜉 is the shape parameter of the distribution, 𝜎 is
the scale parameter of the distribution, and 𝜃 is the vector(𝜎, 𝜉, 𝜇). Often, the threshold 𝜇 is supposed to be known prior
to parameters estimation and the GPD is specified only by
parameters 𝜎 and 𝜉. The GPD is divided into three types
depending on the value of shape parameter 𝜉: 𝐹(𝑦) is short-
tailed when 𝜉 < 0; 𝐹(𝑦) is medium-tailed when 𝜉 = 0; and𝐹(𝑦) is heavy-tailed when 𝜉 > 0. The estimation of extreme
vehicle loads is calculated through return level analysis. In the
GPD model, the return value of the 𝑇-year return period 𝑦𝑇
can be obtained as follows:

𝑦𝑇 = 𝜇 + 𝜎𝜉 [(𝜆𝑇)𝜉 − 1] , 𝜉 ̸= 0,
𝑦𝑇 = 𝜇 + 𝜎 log (𝜆𝑇) , 𝜉 = 0,
𝜆 = 𝑛𝑢𝑛 ,

(3)

where 𝑛 is the number of observations and 𝑛𝑢 is the number
of observations exceeding the threshold.

2.2. MLE Method. Calculating the parameters of the GPD
is another decisive issue in the extreme value analysis. The
maximum likelihood estimation (MLE) method can balance
the observed data and possible prediction [16]. When the
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distribution is known, the MLE method is commonly used
to calculate the unknown parameters of the distribution
with advantages of asymptotic normality, invariance, and
congruency. The MLE method is based on the likelihood
function as follows:

𝐿 (𝑦; 𝜃) = 𝑛∏
𝑖=1

𝑓 (𝑦𝑖; 𝜃) , (4)

where 𝑓(𝑦𝑖; 𝜃) is the PDF of 𝑖th observed variable 𝑦𝑖 and𝑛 is the number of the extracted samples. In practice, the
logarithmic form is more convenient to perform. The loga-
rithmic form of the likelihood function takes

ln 𝐿 (𝑦; 𝜃) = 𝑛∏
𝑖=1

ln𝑓 (𝑦𝑖; 𝜃) . (5)

When the extracted sample is obtained, the likelihood func-
tion ln 𝐿(𝑦; 𝜃) becomes the function of the variable 𝜃. The
maximum value of ln 𝐿(𝜃) occurs when d ln 𝐿(𝜃)/d(𝜃) = 0
and the variable 𝜃 is determined.

d ln 𝐿 (𝑦𝑖; 𝜃)
d𝜃 = 0. (6)

Substituting (5) into (6), (7) can be obtained.The parameters
of the GPD are obtained by solving

𝑛∑
𝑖=1

ln(1 + 𝜉𝑦𝑖𝜎 ) = 𝜉𝑛,

(1 + 𝜉) 𝑛∑
𝑖=1

𝜉 𝑦𝑖𝜎 + 𝜉𝑦𝑖 = 𝑛.
(7)

2.3. Flowchart of Extreme Loads Estimation. Figure 2 illus-
trates the flowchart of the extreme vehicle loads estimation.
As illustrated in Figure 2, once a value is set as candidate
threshold, the corresponding GPD fitting can be carried out.
The accuracy of the GPD fitting is checked by goodness-of-fit
tests under multiple criteria, and then the optimal threshold
is determined based on MCDA.

The key point of the flowchart is MCDA, whose process
contains four main stages including scope determination of
candidate thresholds, criteria selection, criteria weight deter-
mination, and threshold examination. According to the char-
acter of the load distribution, candidate thresholds (𝜇1, . . . ,𝜇𝑚) are set in ascending order, where 𝜇1 is the relatively low
quantile of the load data value and 𝜇𝑚 is the 99% quantile of
the load data value. Three popular test criteria are adopted in
the MCDA, and the weight of each criterion is determined
based on the maximum entropy theory. The maximum
entropy method is an objective weight-determining method
because the criterion that has the greatest difference will take
the largest weight in decision-making [15, 17]. To validate the
reliability of the proposed method of the threshold selection,
the graphical quantile-quantile (Q-Q) plot is performed.
Finally, the estimation of extreme vehicle loads is conducted
through return level analysis.

Vehicle load data

MCDA

Determine the

No

Sample extraction by POT method

Fit the sample by GPD

Calculate the fitting comprehensive
error using the entropy method

Goodness-of-fit test by multiple
criteria

Threshold examination

Extreme vehicle
loads estimation

Yes

Set initial threshold  = 1

If  ≤ m

 =  + ℎ

optimal threshold 

Figure 2: Flowchart of the extreme vehicle loads estimation.

3. Methodology of the Threshold Selection

3.1. Test of Goodness-of-Fit. There are nearly 40 test criteria in
the statistical literature, and the principles of these criteria are
different.Themost popularmethods are Chi-Square test (𝜒2),
Kolmogorov–Smirnov (K–S) test, Anderson–Darling (A–D)
test, Root Mean Square Error (RMSE) test, and correlation
coefficient test. To examine the fitting effect of the GPD in
the MCDA, three commonly used test criteria, the K–S test,𝜒2 test, and RMSE test, are adopted. The details of these tests
are shown as follows:
𝐾max = max

1≤𝑗≤𝑛−1
{󵄨󵄨󵄨󵄨𝐹 (𝑥𝑖) − 𝐺 (𝑥𝑖)󵄨󵄨󵄨󵄨 , 󵄨󵄨󵄨󵄨𝐹 (𝑥𝑖+1) − 𝐺 (𝑥𝑖)󵄨󵄨󵄨󵄨} ,

𝜒2 = 𝑛∑
𝑖=1

(𝑂𝑖 − 𝑄𝑖)2𝐸𝑖 ,

𝛿pdf = 1𝑛2
𝑛∑
𝑖=1

(𝑓 (𝑥𝑖) − 𝑔 (𝑥𝑖))2 .
(8)

The test value 𝐾max measures the greatest deviation between
the theoretical CDF and the empirical CDF; the test value𝜒2 computes the deviation between the observed frequency𝑂𝑖 and the expected frequency 𝑄𝑖; and the test value 𝛿pdf
calculates the root mean deviation between the theoretical
PDF and the empirical PDF. Among the three tests, the
smaller the test values𝐾max, 𝜒2, and 𝛿pdf , the better the effect
of the fitting distribution obtained.

3.2. Entropy Method. For each candidate threshold, a test
value will be calculated under the corresponding test crite-
rion. For a series of candidates under multiple test criteria,
there will be many test values. Each of them has its role in
the evaluation of fitting accuracy. To find a suitable threshold
under multiple criteria, these criteria should be considered
simultaneously. Considering the different principles of the
test criteria, the greater the weight value is, the more impor-
tant the test criterion will be.The weight values of the criteria
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should be settled objectively, and therefore the maximum
entropy method is used.

Given that the tests are achieved by a range of candidate
thresholds, each threshold belongs to a criterion.The number
of candidate thresholds is 𝑚, the number of test criteria is 𝑛,
and 𝑟𝑖𝑗 represents the performance value of the 𝑖th candidate
threshold to the 𝑗th criterion from the decision matrix 𝑅

𝑅 =

𝑤1 𝑤2 ⋅ ⋅ ⋅ 𝑤𝑛
𝐶1 𝐶2 ⋅ ⋅ ⋅ 𝐶𝑛𝐿1

𝐿2...
𝐿𝑚

[[[[[[
[

𝑟11 𝑟12 ⋅ ⋅ ⋅ 𝑟1𝑛
𝑟21 𝑟12 ⋅ ⋅ ⋅ 𝑟2𝑛... ... d

...
𝑟𝑚1 𝑟𝑚2 ⋅ ⋅ ⋅ 𝑟𝑚𝑛

]]]]]]
]
,

(9)

where the vectors (𝐶1, 𝐶2, . . . , 𝐶𝑛) represent the criteria and
the alternatives (𝐿𝑇1, 𝐿𝑇2, . . . , 𝐿𝑇𝑚) represent the candidate
thresholds. The vector (𝑤1, 𝑤2, . . . , 𝑤𝑛) represents the impor-
tance and relative weights of the chosen criteria, which can
be obtained from the decision matrix. To show the weight
values of different criteria more directly, the decision matrix𝑅 is transformed to

𝑝𝑖𝑗 = 𝑟𝑖𝑗∑𝑚𝑖=1 𝑟𝑖𝑗 . (10)

Then the normalized decision matrix 𝑃 is obtained from (10)
as follows:

𝑃 =
[[[[[
[

𝑝11 𝑝12 ⋅ ⋅ ⋅ 𝑝1𝑛
𝑝21 𝑝22 ⋅ ⋅ ⋅ 𝑝2𝑛
𝑝31 𝑝32 d 𝑝3𝑛
𝑝𝑚1 𝑝𝑚2 ⋅ ⋅ ⋅ 𝑝𝑚𝑛

]]]]]
]
. (11)

As a useful tool to describe the relative weights of the criteria,
the 𝑗th entropy value is defined by 𝐸𝑗 and obtained from the
following formulation:

𝐸𝑗 = − 1ln (𝑚)
𝑚∑
𝑖=1

𝑝𝑖𝑗 ln (𝑝𝑖𝑗) 𝑗 = 1, 2, . . . , 𝑛. (12)

Note that there is an inverse relationship between 𝐸𝑗 and 𝑤𝑗.
To ensure (13), 𝐸𝑗 is substituted with 1 − 𝐸𝑗 and normalized
for direct illustration

𝑛∑
𝑗=1

𝑤𝑗 = 1, 0 ≤ 𝑤𝑗 ≤ 1, (13)

where 𝑤𝑗 is the objective weight value of the 𝑗th criterion.
The most reasonable expression of normalized weight value
is defined by

𝑤𝑗 = (1 − 𝐸𝑗)
∑𝑛𝑗=1 (1 − 𝐸𝑗) . (14)

The normalized weight value of different criteria can be
obtained from

Table 1: Statistical parameters of vehicle loads.

Type 𝑢ln𝐺 (kg) 𝜎ln𝐺 (kg) 𝑝 (%)
I 7.65 0.36 63.48
II 8.84 0.67 4.84
III 9.51 0.39 24.89
IV 6.79

𝑊 = [𝑤1, 𝑤2, . . . , 𝑤𝑛]𝑇 . (15)

Finally, the comprehensive evaluation indicator can be cal-
culated considering multiple test criteria by (16). When the
GPD fitting is performed, the smaller the comprehensive
evaluation indicator, the better the fitting effect of goodness-
of-fit obtained

𝑆 = 𝑅𝑊. (16)

4. Simulation Study

To validate the application and feasibility of the proposed
MCDA method, a simulation study is carried out. The
advantage of the simulation is to produce a required mixture
distribution where the tail part obeys the GDP distribution
and the threshold is known. Referring to the probabilistic
vehicle load models (Yang et al. 2014), the proportions and
statistical parameters of different kinds of vehicles are shown
in Table 1. The body part of the mixture distribution in the
simulation includes two-axle vehicle loads of light vehicles
(Type I), heavy vehicles (Type II), and trucks (Type III).
The two-axle vehicle loads obey the log-normal distributions
as expressed in (17), where 𝑔 is the random variable of the
vehicle’s gross weight and 𝜇ln(𝐺) and 𝜎ln(𝐺) are the mean
value and the standard deviation of logarithmic values of
vehicle loads. The tail part of the mixture distribution in
the simulation includes multiple-axle vehicles (Type IV).The
multiple-axle vehicle loads obey theGPD, and the parameters
are set as 𝜉 = 0.001, 𝜎 = 6, and 𝜇 = 17.5. According Table 1,10𝑒5 simulated vehicle loads are generated, and their mixture
distribution is shown in Figure 3. The two-axle vehicle loads
in the body part range from 0 to 17.5 t and the multiple-axle
vehicle loads in the tail part are above the threshold 17.5 t, and
the threshold of the mixture distribution is 17.5 t

𝑓𝐺 (𝑔) = 1√2𝜋𝜎ln(𝐺)𝑔exp[−
12 (

ln (𝑔) − 𝜇ln(𝐺)𝜎ln(𝐺) )] . (17)

A total of 201 candidate thresholds are set from the inter-
val [10 30], and the GPD of each threshold is fitted to
the extracted samples of extreme values, respectively. The
goodness-of-fit tests are performed based on single criterion
and multiple criteria, and the results are shown in Figure 4.
It can be seen from Figure 4(a) that the statistics can reach
extremum rather than minimumwhen the candidate thresh-
old is 17.5 t. 𝐾max reaches its minimum when the threshold is
20.3 t, 𝜒2 reaches its minimum when the threshold is 21.6 t,
and 𝛿pdf reaches its minimum when the threshold is 16.1 t.
Based on themaximumentropymethod, the objective weight
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Figure 3: Mixture distribution of the simulated data: (a) entire range and (b) tail region.

0.00

0.02

0.04

0.06

0.08

St
at

ist
ic

s

15 20 25 3010
Threshold (t)

KＧax

2

Ｊ＞＠

(a)

Preset threshold
0.00

0.02

0.04

0.06

0.08

C
om

pr
eh

en
siv

e i
nd

ic
at

or

15 20 25 3010
Threshold (t)

(b)

Figure 4: Goodness-of-fit test: (a) single criteria and (b) multiple criteria.

values of the statistics 𝐾max, 𝜒2, and 𝛿pdf are calculated: 𝑤 =[0.2613, 0.3812, 0.3575]. Then the comprehensive indicator
is calculated. It can be concluded from Figure 4(b) that the
comprehensive evaluation indicator reaches the minimum
valuewhen the threshold is 17.5 t and that the value is the same
with the preset threshold of the mixture distribution.

5. Case Study

5.1. Fit the Distribution Using Traditional Approach. Figure 5
shows the real image of the Dalian Northern Suspension
Bridge. The bridge, opened to public in May 1987, is the Figure 5: Dalian Northern Suspension Bridge.
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Figure 6: Time history and log-normal fit of the vehicle load: (a) actual load history of vehicle load, (b) entire ranger, (c) tail region 1, and
(d) tail region 2.

first three-span suspension bridge in China with simply
supported stiffening trusses and earth anchorage system.The
bridge has two pedestrian lanes and two vehicular lanes
that can carry heavy traffic, which played a significant role
in the coastal highway of Dalian. Restricted to the road
width, multiple-axle wheeled vehicles are not allowed to pass
through the bridge. During the rehabilitation in April 2016, a
sophisticated online SHM systemwas designed and equipped
in the suspension bridge. The SHM system incorporates a
WIM system, which is located at the north side of the bridge
to measure the traffic load.Themeasured vehicle loads of the
suspension bridge from June 2016 to June 2017 are employed
to illustrate the proposed method of threshold selection for
the POT framework in the extreme vehicle load analysis.

Figure 6 shows the time history of the actual vehicle load
and its statistical distribution. The vehicle load of the Dalian

Northern Suspension Bridge has been continuously observed
since the installation of the SHM system, and a representative
example of themeasured load history is shown in Figure 6(a).
The entire range and tail region of the statistical distribution
of vehicle loads are illustrated in Figures 6(b)–6(d). The
theoretical fitting to the empirical data uses log-normal
distribution, which is recommend by Unified Standard for
Reliability Design of Highway Engineering Structures (GB/T
50283-1999). It can be seen fromFigures 6(c) and 6(d) that the
fitting effect is not ideal as the theoretical distribution deviates
considerably from the empirical distribution, especially in the
tail region.

5.2. Threshold Selection Using MCDA. The measured vehicle
loads range from 0.14 t to 32 t, a total of 281 candidate
thresholds from 2 t to 30 t are set as the intervals, and the
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Figure 7: Goodness-of-fit test: (a) single criterion and (b) multiple criteria.
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Figure 8: GPD fitting: (a) entire range above the threshold and (b) graphical Q-Q plot.

GPD fitting under each candidate threshold is conducted
after the POT process, respectively. Figure 7 shows the statis-
tics of 𝐾max, 𝜒2, 𝛿pdf , and their comprehensive evaluation
indicator. It can be seen from Figure 7(a) that the selected
thresholds are not consistent under different test criteria
and the curve trends for different test criteria are quite
different. 𝐾max reaches its minimum when the threshold is
3.6 t; 𝜒2 reaches its minimum when the threshold is 22.6 t;
and 𝛿pdf reaches its minimum when the threshold is 10.9 t.
Based on themaximumentropymethod, the objective weight
values of the statistics 𝐾max, 𝜒2, and 𝛿pdf are calculated:𝑤 = [0.3417, 0.3281, 0.3302], and then the comprehensive
evaluation indicator is obtained as shown in Figure 7(b). It

can be concluded from Figure 7(b) that the comprehensive
evaluation indicator reaches the minimum value when the
threshold is 7.4 t. The statistics of 𝐾max, 𝜒2, and 𝛿pdf reach
their extremum when the threshold is 7.4 t, and this value is
selected as the threshold for extreme load estimation.

5.3. GPD Fitting and Extreme Load Estimation. After select-
ing a reasonable threshold, the monitored vehicle loads are
processed through the POT framework and the extracted
extreme values are fitted to the GPD. Figure 8 shows the GPD
fitting of extracted extreme vehicle loads above the selected
threshold and its graphical Q-Q plot. It can be seen from
Figure 8(a) that the fitting accuracy of extreme vehicle loads
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Figure 9: Return level analysis: (a) 𝜇 = 7.4 t and (b) 𝜇 = 10.9 t.

has been improved considerably compared with traditional
approach.When the fitting effect is satisfactory, most empiri-
cal observation values excess threshold are scattered near the
line in the Q-Q plot. It can be seen from Figure 8(b) that
most empirical observations can scatter near the fitting line
and there is only a small difference between fitted values and
empirical values in the Q-Q plot.

To estimate the extreme vehicle loads and validate the
fitting effect of GPD, return level analysis is carried out.
Figure 9 shows the return level analysis of the vehicle loads
under the thresholds 𝜇 = 7.4 t and 𝜇 = 10.9 t. It can be from
Figure 9 that the empirical observations over the selected
threshold are located within 95% confidence interval of the
estimated levels. When the return period is 100 months, the
return values are 30.7 t and 33.7 t under the threshold 𝜇 = 7.4 t
and 𝜇 = 10.9 t, which indicates that the estimated values of
extreme load are in a more reasonable range because heavy
multiple-axle wheeled vehicles are restricted. The results
convince us that theGPDfitting effect is relatively satisfactory
and the selected threshold is reasonable.

6. Conclusions

When estimating extreme values of vehicle loads through the
POT method, threshold selection is the key point because
the chosen threshold is sensitive to the extracted extreme
loads sample and parameter estimation. To model a reliable
extreme distribution by reducing the fitting error of the
GPD and evaluate the selected threshold, a comprehensive
evaluation approach based on MCDA is proposed in this
paper. It is a new trial considering multiple criteria in thresh-
old selection, and the weight values are calculated by using
themaximum entropy theory.The optimal threshold is deter-
mined through a range of candidate thresholds automatically
and fitting results are analyzed quantitatively.

The simulated data and field measurement of vehicle
loadswere adopted to validate the practicability and superior-
ity of the proposedmethod, respectively.The results illustrate

that the MCDA method proposed in this paper reduces
subjectivity during threshold selection, which can be flexibly
used in various situations. The proposed MCDA can help
select a suitable threshold for the POT framework, and it
exhibits a better estimation of extreme vehicle loads through
return level analysis with the selected threshold. In practice,
the proposed MCDA is a useful tool in the extreme value
analysis that complements the existingmethods of thresholds
selection.
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[14] H. Çalışkan, B. Kurşuncu, C. Kurbanoğlu, and Ş. Y. Güven,
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