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According to nonlinear characteristics of vibration signals measured on the turbine used in the aircraft environment control
system (ECS), the ensemble empirical mode decomposition (EEMD) together with fractal dimension analysis is investigated in the
paper to extract characteristic quantities for the goal of fault diagnosis of turbine bearings. Firstly, in order to filter noise signal
vibration and advance signal-to-noise signals under different statements of bearings, including normal bearing, inner ring fault,
outer ring fault, and cage fault, are decomposed by EEMD. (en correlation dimension of those signals phase is calculated,
contrasted, and analyzed after space reconstruction. (e experimental result shows that the correlation dimension, as nonlinear
geometric invariants, can be used as the characteristic quantity of ECS turbine bearing on running state. Moreover, this method
can accurately and effectively identify the running state of the bearing.

1. Introduction

(e environmental control system (ECS) of the aircraft can
ensure the comfort of the plane cabin and the safety of the
whole flight process [1]. Bearing, as the key component of
the ECS turbine, plays a vital role in the normal operation of
the whole system. (e vibration signals produced in the
bearing operation contain a lot of information. (e running
state of the bearing can be learned through the extraction
and analysis of the eigenvalues of the signals. It further
predicts the trend of state change, discovers, and eliminates
trouble in time.

Due to the large number of excitation sources in the
working environment of bearings, the vibration signals are
strongly nonlinear and nonstationary. (e traditional
classical signal processing method including time domain,
frequency domain, and time-frequency domain analysis take
time domain eigenvalue, such as root-mean-square, peak
value, and so on and Fourier transform as the foundation
mainly [2–5]. All of the methods assuming that the signal is
stationary and linear are evidently not in conformity with

the reality, which produce errors. To solve the problem, the
theory of nonlinear dynamics like fractal theory has been
developed rapidly. Fractal dimension, which is widely used
in quantitative description of nonlinear system behavior, can
quantitatively characterize chaotic attractors [6] because
different running conditions can cause different geometric
structures of vibration signals, which is in favour of dis-
tinguishing bearing states [7]. Some articles have demon-
strated the validity of fractal theory in instrument state
recognition [8–10].

Before analysis of the fractal dimension, it is necessary to
preprocess the original signal to reduce the adverse effect of
noise signal. In this research, a novel feature extraction
method based on ensemble empirical model decomposition
(EEMD) and correlation dimension is proposed and its
application for rolling bearing fault diagnosis is described.
Firstly, the original vibration signals decomposed into a
series of intrinsic mode function (IMF) that contain the
characteristics of the signal are selected to calculate its
correlation dimension. Finally, the bearing state is judged
according to the trend of dimension change.
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2. Ensemble Empirical Mode Decomposition

In 1998, Huang [11] et al. proposed a data-driven adaptive
decomposition, empiricalmode decomposition (EMD)method,
which greatly improved the analysis effect of the nonlinear and
nonstationary signal. However, in practical applications, there is
a general problem of model mixing that is a single IMF con-
taining the characteristic signal with maximum frequency dif-
ference or a signal with similar frequencies decomposed into
different IMF in the method. (e main reason for the model
aliasing is that the abnormal events in the signal have an adverse
effect on the selection of the extreme points which results in the
uneven distribution of the extreme points to bring about the
phenomenon of “overshoot” and “undershoot” in EMDprocess.
To solve this problem,Wu [12] et al. put forward the method of
EEMD.(emethod is to add the Gauss white noise of the finite
amplitude to the decomposed signal and use the characteristic of
Gauss white noise in the time frequency domain to smoothen
the abnormal events, so as to reduce the adverse effects of
abnormal events on the extreme point selection in the EMD
process to achieve the purpose of the distribution of the extreme
value point of the uniform signal. Finally, the white noise zero
mean value is used to cancel the noise repeatedly.

(e EEMD decomposition steps are summarized as
follows:

(1) Gauss white noise ni(t) with a mean value of 0 and a
constant amplitude standard deviation is added N
times in the original signal x(t), respectively:

xi(t) � x(t) + ni(t), (1)

where i � 1∼N.
(2) EMD decomposition of xi(t) is carried out,

respectively. K IMF components and a remainder
ri(t) are obtained at each decomposition:

xi(t) � 
K

j�1
cij(t) + ri(t). (2)

Among which, cij(t) is the j-th IMF obtained
through EMD decomposition after the i-th adding
Gauss white noise, j � 1∼N.

(3) According to the principle that the mean value of the
uncorrelated random sequence is 0, the total average
operation of the IMF corresponding to the above steps
is used to eliminate the effect of repeated Gauss white
noise on real IMF. (en, the IMF and the remainder
r(t) after the EEMD decomposition are obtained:

cj(t) �
1
N



N

i�1
cij(t),

r(t) �
1
N



N

i�1
ri(t),

(3)

where cj(t) is the j-th IMF obtained through EEMD
decomposition of original signal.

Finally, K IMF components and a remainder r(t) are
gained:

x(t) � 
K

j�1
cj(t) + r(t). (4)

In order to verify the effectiveness of EEMD for over-
coming model aliasing, a high frequency pulse signal was
added to a low frequency sine signal to synthesize a sim-
ulation signal as shown in Figure 1.

(en, the simulation signal was decomposed by EMD
and EEMD, respectively, to get a series of IMF components
as shown in Figures 2 and 3. It can be clearly seen from
Figure 2 that model mixing was caused by EMD de-
composition because not only c1 but also c2 contained both
the pulse signal and the sinusoidal signal. At the same time,
the sinusoidal signal was decomposed into different IMF,
which made the decomposition result lose the physical
meaning seriously and not reflecting the essence of the
signal. In contrast, the average number of times in the
EEMD decomposition process was 50 times, and the added
Gauss white noise amplitude was 0.02 times the standard
deviation of the original signal. It can be clearly seen from
Figure 3 that the decomposition result avoided the model
mixing effectively in which the pulse signal decomposed into
the c1, and the sinusoidal signal decomposed into the c3 and
the c2 caused by the signal modulation.

3. Correlation Dimension

Dimension refers to the number of independent coordinates
used to describe the location of a point in space. In classical
geometry, the dimensions are all integers, while the fractal
theory extends the dimension to the fractions. (ese frac-
tions are called fractal dimensions. As a fractal dimension,
correlation dimension is very sensitive to the change of the
attractor’s mechanism and can effectively reflect the non-
linear behavior of the system.

(eG-P algorithm is an effectivemethod for calculating the
correlation dimension of the system according to time series
based on the embedding theorem and the phase space re-
construction theory, which mainly consists of two steps: phase
space reconstruction and correlation dimension calculation.

3.1. Phase Space Reconstruction. Phase space reconstruction,
proposed by R Mane and F Takens, is the delay embedding
principle which constructs the one-dimensional time xi  �

x1, x2, · · · , xN  into multidimensional phase space to show
the parting characteristics of the internal structure of the
data.(e reconstructed phase space can be shown as follows:

Xn×m �

x1 x1+τ · · · x1+(m−1)τ

x2 x2+τ · · · x2+(m−1)τ

⋮ ⋮ ⋱ ⋮

xn xn+τ · · · xn+(m−1)τ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

X1

X2

⋮

Xn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (5)

where N is the number of time series, n is the number of
vectors of reconstructed phase space and n � N− (m− 1)τ,
m is embedding dimension, and τ is embedded time delay
parameter, integer times of sampling time interval Δt.
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3.2.CorrelationDimensionCalculation. In the reconstructed
phase space Xn×m, the space distance between any two points
is calculated by using vectors Xi as points:

Sij � Xi −Xj



 �

����������������


m−1

k�0
xi+kτ − xj+kτ 

2




, (6)

where i, j � 1, 2, · · · , n.(e distance between any two points in
the phase space is reconstructed to form the following matrix:

Sn×n �

s11 s12 · · · s1n

s21 s22 · · · s2n

⋮ ⋮ ⋱ ⋮

sn1 sn2 · · · snn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (7)
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Figure 1: Simulation signal.
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Figure 2: EMD decomposition results.
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Figure 3: EEMD decomposition results.
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(ematrix is a symmetric matrix of 0 diagonal lines.(e real
number r is in the interval [smin, smax] in which smax is the
maximum of the matrix and smin is minimum. (e ratio of
the number of elements in the matrix smaller than r to the
total number of elements is recorded as follows:

C(r) �
1
n2 

n

i,j�1
H r− sij , (8)

where H(r− sij) is unit step function.
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Figure 4: (e correlation integral map of 5 IMFs under normal condition. (a) IMF1. (b) IMF2. (c) IMF3. (d) IMF4. (e) IMF5.
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H r− sij  �
1, r≥ sij,

0, r< sij.

⎧⎨

⎩ (9)

(e value of r is changed arbitrarily in the interval
[smin, smax] to get the corresponding value C(r) and make a
double logarithmic coordinate curve lnC(r)− ln(r). (e
interval of a better linear relationship in the curve is called
scale-free region, whose slope is the correlation dimensionD
of one-dimension time series:

D � lim
r⟶0

lnC(r)

ln(r)
. (10)

3.3. Selection of Key Parameters. In the whole calculation
process, there are three main parameters: time delay τ,
embedding dimension m, and distance reference value r to
consider.

Time delay can separate signal data to expose its internal
fractal characteristics. If it is too big, the correlation of data
will become weaker, which causes the reconstructed time
series not reflecting the overall information of the system. If
it is too small, the correlation of data will become redundant,
which causes the information of the system not expose
easily. (is paper used autocorrelation function to de-
termine the value of time delay τ.

(e autocorrelation function of vibration signal time
series xi  is defined as follows:

R(τ) �
1

N− τ


N−τ

i�1
x(i)x(i + τ), (11)

where R(0) is the largest. When R(τ) is reduced to 1− 1/e
times of R(0) for the first time, τ is the best delay for phase
space reconstruction.

Embedding dimension m refers to the minimum phase
space series that can completely contain attractors of state
transition. In 1980, Takens proved that it should be greater
than 2d + 1, where d is the dimension of the space in which
the attractor of the original state space. Meanwhile, when r
tends to 0, the selection of m should make the correlation
dimension tending to be stable. If the embedding dimension
is too small, the reconstructed phase space can not reflect the
dynamic characteristics of the original system. If the em-
bedding dimension is too large, the amount of computation
will increase, while the excess phase space dimension will
enlarge the noise effect of the original time series.

In this paper, the embedding dimension m is 3 and
gradually increased to 20. (e phase space of the bearing vi-
bration signal is reconstructed, respectively, and the correlation
integral map of 5 IMFs under normal condition, shown in
Figure 4, with different embedding dimensions is made.

As we can see from the graph, there is a strongly linear
scale-free region on the curve between the two red dotted
lines. When the m value is small, the slope of the scale-free
zone is small and the interval is large. With the increase of
m, the slope is also increasing, the interval decreases, and
finally reaches saturation state. At the time m> 12, the
straight line of scale-free zone tended to be parallel, that is,

the correlation dimension tended to be stable. Overall
consideration, the m of this experimental data is 12 which is
more reasonable. Other working conditions are similar.

It can be obtained by Formula (10) that the distance
reference value r directly affects the correlation dimension. If
r is too small, the number of the distance of two points in the
reconstructed phase space is too less. C(r) is close to 0,
which can not reflect the internal relationship of signal data.
On the contrary, if r is very large, C(r) is close to 1, which is
also of no practical significance.

4. Experimental Analysis

(e experimental platform consisted of rotor system and data
acquisition system as shown in Figure 5.(e rotor systemwas
composed of the driving system module, the spindle system
module, the tooling module, and the lubricating system
module, which can simulate the characteristics of the actual
ring control system. (e driving system module is composed
of an asynchronous motor with rated speed of 2800 r/min and
rated power of 750W. (e rolling bearings of four different
working conditions (normal condition, inner ring fault, outer
ring fault, and cage split) were placed in the specimenmodule,
and the vibration signals were measured by eddy current
sensor with a sensitivity of 1.3V/mm.

(e inner ring fault and outer ring fault were all 2mm
width scratches by spark cutting. (e speed of the motor is
2400 r/min. (e sampling frequency of the data acquisition
system is 4000Hz. One set of data were collected at each
condition.(e sampling time last for one second, which means
there are 4000 values in each group. (e time-domain of vi-
bration signals under 4 working conditions are shown in
Figure 6.

From Figure 6, we can see that a large number of vi-
bration signals were generated when the bearings were
running and eddy current sensors can accurately collect
these signals. It is difficult for us to distinguish the working
state of the bearing from the time domain diagram. Each
group of vibration signal was decomposed by EEMD in
order to calculate correlation dimension, and the results are
shown in Figure 7.

Since EEMD decomposition is a principle component
separation method, that is, the most important information
contained in the original signal, it is extracted firstly. As can
be seen from Figure 7, the main components of the vibration
signal of the bearing are concentrated in the first 5 IMFs, and

Figure 5: Experimental platform.
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Figure 7: Continued.
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Figure 6: (e time-domain of original vibration signals in 4 working states.
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the environmental noise is separated to the low frequency
part.(e above correlation dimension algorithm was used to
calculate these IMFs to distinguish different working states.
(e result is shown in Figure 8. It can be seen that the
correlation dimension of IMF in four working states is
different. Furthermore, the number decreases in turn with
the modal decomposition of all signals except in case of
outer ring fault, in which the dimension of fourth layers of
IMF increases suddenly. (is situation can be also seen from
Figure 9, the correlation integral diagram of the fourth layer
IMF.

In Figure 9, the dashed line 1 is approximate to the scale-
free area under normal working sate, line 2 to the outer ring
fault, and line 3 to the inner ring fault and the cage split. It is
obvious that the slope of line 2 larger than that of the other
two.

In Figure 8, the coincidence degree and trend of the
signal under unknown condition and the signal in outer ring
fault is higher than the other two states. (erefore, it is
possible to determine the unknown condition as the outer
ring fault, which also proves the feasibility of bearing fault
diagnosis combined with EEMD and correlation dimension.
(e method is reasonable. Meanwhile, the slope of No. 2
dotted line is obviously greater than that of No. 1 and No. 3.
(is phenomenon confirms the sudden increase of the
correlation dimension of IMF4 in the outer ring fault signal
in Figure 8.

5. Conclusion

(e complexity of the vibration signal of the ECS turbine
bearing under different working conditions is different. As a
nonlinear analysis method, fractal theory is of general
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Figure 7: EEMD decomposition results of vibration signals in 4 working states. (a) Normal condition. (b) Outer ring fault. (c) Inner ring
fault. (d) Cage split.
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significance in measuring the complexity of time series.
(erefore, the fractal dimensions are very suitable for the
analysis of various states of bearing vibration. Correlation
dimension as a fractal dimension can be used to characterize
the vibration signal. (is paper uses EEMD instead of EMD
to decompose the signal to avoid the appearance of modal
aliasing. (en, the first 5 IMFs including the main com-
ponents of the vibration signal are selected to draw the
correlation dimension curve. (e fault type of unknown
signal can be accurately identified by comparing the co-
incidence degree and changing trend of the curve in the
experiment. So this is a valuable method.
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