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Considering the internal and external excitations such as time-varying mesh stiffness (TVMS), backlash, transmission error, torque of
the traction motor, and load torque of the wheel/rail, a lumped mass model of the spur gear drive system for a railway locomotive is
established. Based on Ma models in the relevant literatures, TVMS is calculated by simplifying a gear tooth as a cantilever beam on the
root circle, taking into account the effects of extended tooth contact as well as revised foundation stiffness.(e bifurcation diagrams and
Lyapunov exponent curves of the model parameters are drawn by the numerical method, and the mechanism of chaos evolution of the
gear transmission system is analyzed. According to the Floquet theory, variation curves of the maximum Floquet multiplier with pinion
speed and support stiffness ratio are drawn by numerical methods. Combined with the bifurcation diagram of the system, the influences
of model parameter on the stability of the system are analyzed, and the evolution laws of periodic motion and bifurcation phenomenon
are gained. (ese research results provide the theoretical evidence of model parameter design of the locomotive transmission system.

1. Introduction

As an important device of rotating machinery, the gear
transmission system has found extensive applications in
many fields such as high-speed locomotive, petrochemical,
and power generation industries. Due to the complicated
structure, harsh operation environment, and flexible exci-
tations, the geared system is prone to damage to some degree
and recognized as the vulnerable part in most cases. At
present, there is a growing demand for development of
reliable transmission systems, with higher requirements
of torque, speed, and compactness. To satisfy these demands,
engineers and researchers need to further understand the
function of nonlinear phenomena involved in gear trans-
mission. As a consequence, it is imperative to investigate
dynamic behavior and evolution mechanism by developing
a reliable dynamic model of the gear system [1] and ensure
the safe and stable operation for the rotating equipment.

With the development of nonlinear dynamics theory, the
nonlinear characteristics of the geared system including
stability, bifurcations, and chaos have become the most in-
teresting research areas [2, 3]. Over the past decades, the
characteristic analysis above is practically based on the

modelling, and thus, modelling of the gear system is con-
sidered as a fundamental problem which is still the research
hotspot [4, 5].(e factors such as backlash [6, 7], time-varying
mesh stiffness (TVMS) [8, 9], and transmission error and
lateral-torsional coupled vibration [10, 11] will directly affect
the dynamics including the stability and reliability of the gear
system. Various approaches were successively adopted to
illustrate the nonlinear characteristics including stability of
the periodic solution, bifurcation, and chaos. In these gear
models, TVMS is usually considered a simple sinusoidal
function, a Fourier series, or a rectangular waveform function
expression. An effective way to evaluate the TVMS is essential
to understand the dynamic properties. In general, the finite-
element methods (FEMs) and analytical methods are two
main ways to calculate TVMS. FEM is time-consuming be-
cause every gear pair requires modelling, while analytical
method can offer a general approach to evaluate TVMS. (e
relative contribution of individual components, such as
bending, shear, and Hertzian contact stiffness, can be ana-
lyzed separately. Considering various impact factors in-
cluding extended tooth contact, revised fillet-foundation
stiffness, and nonlinear contact stiffness, Ma et al. [12] de-
veloped an analytical model for TVMS calculation. Chen and
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Shao [13] proposed a TVMS model with tooth root crack
propagating along both tooth width and crack depth. In [14],
the potential energy method was applied to evaluate TVMS as
a planetary gear set. Based on single-point estimation of
TVMS, Wan et al. [15] obtained the TVMS of a helical gear
pair and verified the simulated results by the FEM and ISO
standard method.

In [16], Wei et al. developed a six-degree-of-freedom
dynamic model coupled flexional, torsional, and axial mo-
tion of the helical gear transmission system, which includes
TVMS, bearing support stiffness, mesh damping, and back-
lash. (e effects on dynamic transmission errors and sta-
bilities by contact ratio, support stiffness, and mesh damping
as well as backlash were analyzed. Farshidianfar and Saghafi
[17] studied the global homoclinic bifurcation and transition
to chaotic behavior of a nonlinear gear system bymeans of the
Melnikov method.(e research results of Seyranian et al. [18]
show that Floquet theory is more suitable for analyzing the
stability of the multiparameter periodic system and multi-
degree-of-freedom gear system. Based on the nonlinear dy-
namic model of the three-degree-of-freedom gear system, Liu
et al. [19] studied the system stability and the type of bi-
furcation by Floquet theory and obtained the stable and
unstable periodic orbits. Considering TVMS, variable
damping, and sliding friction, Vaishya and Singh [20] built
a spur gear system model and discussed the stability of the
gear transmission system on the basis of Floquet theory.

(e gear transmission system of railway locomotive is
a kind of typical nonlinear system with a complex structure
and service environment. Due to the complex meshing re-
lationship andwheel/rail excitation, the key components of the
transmission system are prone to complex dynamic behaviors.
At present, the research of chaos and stability is mostly limited
to the general mechanical transmission system, and very
limited works have addressed the effect on the gear dynamic
response for railway locomotive. On account of the harsh
operation environment including high speed and heavy load,
the driving system of locomotive often bears a high-frequency
alternating load generated by single- and double-gear meshing
in the process of operation. For this reason, a three-degree-of-
freedom spur gear drive system model is derived for a typical
locomotive, in which the parameters including TVMS,
transmission error, mesh damping, and wheel/rail adhesion
torque are considered as uncertain but bounded parameters.
(e effects of those uncertain parameters on the chaos are
discussed. And the influences of model parameter changes on
the stability of the system are also analyzed on the basis of
Floquet theory. Some results are considered as references for
the parameters design or vibration control of the gear
transmission system for railway locomotive.

2. Dynamic Model of the Geared
System for Locomotive

2.1. Gear Transmission System Model. As illustrated in Fig-
ure 1, the spur gear transmission system is mainly composed
of amotor, spur gear pair, and wheel set.(e pinion is directly
installed on the armature axis of the motor, which provides

driving torque of the transmission system, and a gear is in-
stalled on the wheel set, which is considered to be the load
applied on the geared system. (e gear transmission system
can be simplified as seen in Figure 2, in which gear meshing is
described by backlash, stiffness, and damping elements along
the line-of-action (LOA) direction.

Letm1 andm2 be the mass of the pinion and gear, I1 and I2
the mass moment of inertia of the pinion and gear, R1 and R2
the base circle radius of the pinion and gear, k1 and k2 the
bearing support stiffness of the pinion and gear, c1 and c2
the bearing damping of the pinion and gear, k (t) the time-
varying mesh stiffness, cm the damping coefficient of the gear
mesh, y1 and y2 the translational displacement of the pinion and
gear, θ1 and θ2 the rotational displacement of the pinion and
gear, T1 the drive torque provided by the motor under the rated
power, and T2 the load torque caused by the wheel/rail. Hence,
the model of the geared system can be derived as follows:

m1 €y1 + c1y1
.

+ k1y1 � F0(t),

I1
€θ1 � T1 −R1F0(t),

m2 €y2 + c2y2
.

+ k2y2 � −F0(t),

I2
€θ2 � −T2 + R2F0(t),

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(1)

wheremeshing force F0(t) � k(t)f(R1θ1 −R2θ2 + y1 −y2 −
e(t)) + cm(R1

_θ1 −R2
_θ2 + _y1 − _y2 − _e(t)). Let y � R1θ1 −

R2θ2 + y1 −y2 − e(t) and e(t) be the static transmission
error, then the model above can be rewritten as follows:

m1 €y1 + c1y
.

1 + k1y1 � cmy
.

+ k(t)f(y),

m2 €y2 + c2y
.

2 + k2y2 � −cmy
. − k(t)f(y),

me €y−me €y1 + me €y2 + cmy
.

+ k(t)f(y) � Fe(t) + Fh(t),

⎧⎪⎪⎨

⎪⎪⎩

(2)

where ω is the meshing frequency and me is the equivalent
mass of the gear pair. If the total backlash is 2b, introducing
natural frequency ωn �

�������
k(t)/me


, nondimensional time

τ � ωnt, w1 � y1/b, w2 � y2/b, and w3 � y/b; hence, the
model (2) can be simplified as follows:

€w1 + c11 _w1 + k11w1 � c13 _w + k13f w3( ,

€w2 + c22 _w2 + k22w2 � −c23 _w3 − k23f w3( ,

€w3 − €w1 + €w2 + c33 _w3 + k33f w3(  � Pm + Pa cos(Ωτ).

⎧⎪⎪⎨

⎪⎪⎩

(3)

Figure 1: Schematic of the spur gear transmission system for
railway locomotive.
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(e relevant variables are defined as follows:

c11 �
c1

m1ωn

,

c22 �
c2

m2ωn

,

c33 �
cm

meωn

,

c13 �
cm

m1ωn

,

c23 �
cm

m2ωn

,

k11 �
k1

m1ω2
n

,

k22 �
k2

m2ω2
n

,

k33 �
k(t)

meω2
n

,

k23 �
km

meω2
n

,

Fm � cm R1θ1
.

−R2θ2
.

+ y1
. −y2

. − e
.

 ,

Pm �
Fm

bkm

,

Pa �
eaΩ2

b
,

f w3(  �

w3 − 1, w3 > 1,

0, −1<w3 < 1,

w3 + 1, w3 <−1.

⎧⎪⎨

⎪⎩

(4)

2.2. Wheel/Rail Adhesion Torque. To express the slippage in
a more physical sense, the slip rate of locomotive trans-
mission dynamics can be defined as follows [21]:

s �
v−ωwR( 

v
, (5)

where v is the instantaneous speed of the wheel set, ωw the
instantaneous angular velocity, and R the radius of the wheel.
If the number of gear teeth is Z2, ωw � 2πω/Z2. (e wheel/
rail tangential force coefficient is inversely related to the slip
after the peak of adhesion, and the simplified wheel/rail
adhesion curve can be indicated by a sectional linear func-
tion [21], as shown in Figure 3:

F �

fms

sc
, 0≤ s≤ sc,

fm + kf s− sc( , sc < s,

⎧⎪⎪⎨

⎪⎪⎩
(6)

where fm is the maximum tangential force coefficient, sc the
critical slip rate, and kf the negative slope on sliding. For the
simplified model, the adhesion state under positive slope is
considered to stick, the adhesion state under negative slope
is considered to slip, but the dispersion of adhesion is not
considered. When the motor runs at rated power, sc is 0.01,
and s is changed from 0 to 0.03.

Let the axle load of locomotive be mg, the wheel/rail
adhesion torque can be obtained as follows:

T2 � FrR �

mgRfms

sc
, 0≤ s≤ sc,

mgRfm + mgRkf s− sc( , sc < s.

⎧⎪⎪⎨

⎪⎪⎩
(7)

3. Calculation of Time-Varying Mesh Stiffness

(e mesh stiffness is a time-varying parameter, as the number
of engaged teeth varies according to the contact ratio. Con-
sidering themisalignment of the gear root circle and base circle,
Ma et al. [22] proposed a TVMS model for a healthy gear pair;
thereafter, they presented an improved method for mesh
stiffness of spur gears with tip relief [23, 24]. Based on ANSYS
software, Wang [25] presented an approach to predict TVMS
by establishing contact elements. Saxena et al. [26] developed
a method to calculate TVMS for different spall shapes, sizes,
and locations. In the traditional method, the gear tooth is
mostly modelled as a nonuniform cantilever beam on the base
circle. In this study, in order to improve the analytical method,
considering the effects of extended tooth contact and revised
foundation stiffness, an improved analytical TVMS calculation
method is given according to Ma models and methods above.

3.1. Determination of the Tooth Profile Model. Deflections of
a spur gear tooth can be determined by considering it as
a nonuniform cantilever beam with an effective length d dis-
played in Figure 4. Here, rint is the radius of the gear inside
holes, rc the radius of the tip fillet, β the operating pressure
angle, θb the half tooth angle on the base circle of the gear, θc the
angle corresponding to the point c, xβ the distance between
contact point and central line of the tooth, and yβ the distance
between contact point and original point:

yT1

T2

y1

y2

R1

R2

c1

c2

k1

k2

k(t)

I1, m1

I2, m2

cm

e

θ1

θ2

Figure 2: Simplified model of the spur gear transmission system
for railway locomotive.

Shock and Vibration 3



rb �
mZ cos α

2
,

rf �
mZ

2− h∗a + c∗( )m
.




(8)

For an involute curve, there exists the following geo-
metric relationship:

x � ri sinφ,

y � ri cosφ,

φ �
π

2Z− invαi − invα( )
.




(9)

�e transition curve is the tooth pro�le between involute
starting point and root circle, and it is cut out by the cutter tip.
Hence, the transition curve equations can be written as follows:

x � r sinψ −
a1

sin c + rρ
( )cos(c−ψ),

y � r cosψ −
a1

sin c + rρ
( )sin(c−ψ),

ψ �
a1/tan c + b1( )

r
,




(10)

A
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Figure 3: (a) Simpli�ed curve of the tangential force coecient of locomotive. (b) Mechanism curve of slippery vibration.
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Figure 4: Modelling of the spur gear tooth as a nonuniform cantilever beam.
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and
a1 � h∗a + c∗( m− rρ,

rρ � c∗ ×
m

(1− sin α)
, α≤ c≤ π/2,

b1 �
πm

4 + h∗am tan α + rρ cos α
.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(11)

3.2. An Energy Method for TVMS Calculation. Based on
elastic mechanics, Hertzian contact stiffness can be written
as follows [23–27]:

kh �
πEL

4 1− v2( )
,

kf �
EL

cos2 β L∗ uf/Sf 
2

+ M∗ uf/Sf  + P 1 + Q∗ tan2( )β 
,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(12)

where the parameters uf, Sf, L∗, M∗, P∗, and Q∗ can be
found in [27]. (e Hertzian energy, bending, shear, fillet
foundation, and axial compressive energies can be written as
follows [22]:

Uh �
F2

2kh

,

Ub �
F2

2kb

,

Us �
F2

2ks

,

Uf �
F2

2kf

,

Ua �
F2

2ka

.

(13)

Based on the beam theory, the potential energy stored in a
meshing gear tooth is obtained by the following equation [22]:

Ub � 
yC

yD

M2
1

2EIy1
 dy1 + 

yβ

yC

M2
2

2EIy2
 dy2,

Us � 
yC

yD

1.2F2
b

2GAy1
 dy1 + 

yβ

yC

1.2F2
b

2GAy2
 dy2,

Ua � 
yC

yD

F2
a

2EAy1
 dy1 + 

yβ

yC

F2
a

2EAy2
 dy2,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(14)

and

M1 � Fb yβ −y1 −Faxβ,

M2 � Fb yβ −y2 −Faxβ,

G �
E

2(1 + v)
,

xβ � rb β + θb( cos β− sin β ,

yβ � rb β + θb( sin β + cos β ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Iy1 �
2x1( 

3
L

12
,

Iy2 �
2x2( 

3
L

12
,

Ay1 � 2x1L,

Ay2 � 2x2L,

x1 � r sinψ −
a1

sin c + rρ
 cos(c−ψ),

x2 � rb τ + θb( cos τ − sin τ ,

y1 � r cosψ −
a1

sin c + rρ
 sin(c−ψ),

y2 � rb τ + θb( sin τ + cos τ ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(15)

where M1 and M2 are the bending moments of Fb and Fa on
the part of transition and involute curves, y1 and y2 the
horizontal coordinates, and G the shear modulus. Hence, the
bending, shear, and axial compressive stiffness can be ob-
tained as follows:

1
kb

� 
α

π/2

cos β yβ −y1 − xβ sin β 
2

EIy1

dy1

dc
dc

+ 
β

τc

cos β yβ −y2 − xβ sin β 
2

EIy2

dy2

dτ
dτ,

1
ks

� 
α

π/2

1.2 cos2 β
GAy1

dy1

dc
dc + 

β

τc

1.2 cos2 β
GAy2

dy2

dτ
dτ,

1
ka

� 
α

π/2

sin2 β
EAy1

dy1

dc
dc + 

β

τc

sin2 β
EAy2

dy2

dτ
dτ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(16)

with
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dy1
dc

�
a1 sinψ 1 + tan2c( )

tan2c
+
a1 cos c sin(c−ψ)

sin2c

−
a1
sin c

+ rρ( )cos(c−ψ) 1 +
a1 1 + tan2 c( )

rtan2c
( ),

dy2
dτ

� rb τ + θb( )cos τ.




(17)

Let subscripts 1 and 2 be pinion and gear, the single-
tooth-pair mesh sti�ness can be de�ned as follows [23, 24]:

ki �
1

1/kh + 1/kt1 + 1/kf1 + 1/kt2 + 1/kf2( )
, (18)

and

kt �
1

1/kb + 1/ks + 1/ka( )
. (19)

IfN is the number of meshing tooth pairs, the TVMS can
be calculated as follows:

k �∑
N

i�1
ki. (20)

However, in fact, two meshing tooth pairs share the one
gear body, which leads to a mesh sti�ness higher than the
actual value in double-tooth engagement.�us, an improved
method is adopted where the total mesh sti�ness is expressed
as follows [23, 24]:

k �
1

1/λ1Nkf1 + 1/ktooth + 1/λ2Nkf2( )

λ11 � λ21 � 1, when N � 1( ),

ktooth �∑
N

i�1
kitooth,

kitooth �
1

1/khi + 1/kt1 + 1/kt2
,

(21)

where λ represents the correction coecient of the �llet-
foundation sti�ness, ktooth the total mesh sti�ness for N
meshing tooth pairs, and kitooth the mesh sti�ness of the ith
tooth pair.

�e correction coecients of the �llet-foundation
sti�ness need to be determined using the FE method, and
the detailed calculation is given in [23, 24]. Hence, the
sti�ness caused by tooth deformation during double-tooth
engagement can be calculated by the following equation:

ktooth �
F

E2
r −E

i
P

with Eip � min E1
p, E

2
p( ). (22)

�e total mesh sti�ness can be obtained from Equation
(20). In addition, mesh sti�ness of a single-tooth pair is
a function of tooth contact deformation Ed and meshing
position j, which can be expressed as follows [23, 24]:

k �
ki, Eid > 0,

0, Eid ≤ 0,


 (23)

where the calculation of correction coecients is shown in
the relevant literatures.

�e parameters of the gear pair are chosen as follows: the
number of teeth on the pinion and gear is 23 and 120, radius
of the pinion and gear is 86 and 450mm, module is 8mm,
teeth width is 140mm, coincidence degree is 1.7315, elastic
modulus is 209GPa, and Poisson’s ratio is 0.3. �e TVMS
curve which changes with dimensionless time is displayed in
Figure 5. With the help of this �gure, the curve-�tted
sti�ness equation is derived as follows:

k(τ) �
1.55 × 109 + 5.31 × 108τ − 1.06 × 109τ2, 0< τ ≤ 1.463π,

5.72 × 108 + 9.93 × 108τ − 8.25 × 108τ2, 1.463 × π < τ ≤ 2π.
{

(24)

4. Chaos and Stability Analysis of Locomotive
Gear Transmission System

In this section, a case study is analyzed to demonstrate the
e�ect of model parameters on the chaos and stability re-
sponses. For the subsequent numerical simulations, some
parameters are as follows: k1 � 4.5 × 109 N/m, k2 � 9×
109 N/m, c1 � c2 � 500 Ns/m , k33(τ) � k(τ), and c33 � 0.05.
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4.1. E�ect of Pinion Speed on Chaotic Characteristics.
Figure 6 shows the bifurcation diagram of the gear system in
dimensionless displacement using the pinion speed Ω as the
control parameter. It can be seen that various kinds of
periodic, multiperiodic, and chaotic responses exist in
the system. When Ω is less than 1070 rpm, the dynamic
behavior is synchronous with periodic-1 motion; sub-
sequently, it comes into periodic-2 and periodic-4 motion at
district of (1080–1160) and (1170–1240) rpm, respectively.
After a short chaos at district of (1250–1270) rpm, the system
enters periodic-1 motion of (1280–1430) rpm. With the
increasing pinion speed, it enters chaos at district of
(1440–1830) rpm. �ereafter, it comes into periodic-1 and
periodic-2 motion between (1840–1990) and (2000–2110)
rpm, respectively, and then it enters chaos again within
(2120–2220) rpm. When Ω is higher than 2230 rpm, the

system enters periodic-4, chaotic, and periodic-2 motion in
sequence, in which the intervals are (2230–2400), (2410–
2670), and (2680–2830) rpm, respectively. Once Ω is higher
than 2840 rpm, the gear system eventually returns to the
periodic-1 motion state.

�e Lyapunov exponent is an important parameter for
studying and determining whether the dynamic system is
chaotic motion. Figure 7 presents the Lyapunov exponent
diagram of the geared system when pinion speed is changed
from (500–3000) rpm. It is obvious that the Lyapunov ex-
ponents are greater than zero when chaos emerges in the
same region of speed change. To accurately determine
chaotic motion of the geared system, the phase-plane dia-
grams, Poincaré maps, time-domain response diagrams, and
amplitude-frequency spectrums are listed to illustrate dy-
namic characteristics of the system in Figures 8–10.
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Figure 7: Lyapunov exponent diagram of the system with the gear speed changes.
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Figure 8: �e dynamic characteristic curve of the system at Ω � 1000 rpm. (a) Phase-plane diagram. (b) Poincaré map. (c) Time-domain
response diagram. (d) Amplitude-frequency spectrum.
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Figure 9: �e dynamic characteristic curve of the system at Ω � 1150 rpm. (a) Phase-plane diagram. (b) Poincaré map. (c) Time-domain
response diagram. (d) Amplitude-frequency spectrum.
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Figure 10: �e dynamic characteristic curve of the system at Ω �1600 rpm. (a) Phase-plane diagram. (b) Poincaré map. (c) Time-domain
response diagram (d) Amplitude-frequency spectrum.
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When Ω � 1000 rpm, there is a single point in the
Poincaré map, the phase-plane diagram is only one closed
circle, the time-domain response diagram shows a sine wave,
and the amplitude-frequency spectrum has one-peak am-
plitude. It means that the system has periodic-1 motion.
When Ω � 1150, there are two closed circles in the phase-
plane diagram, the Poincaré map shows two isolated
points, and the amplitude-frequency spectrum has har-
monics 1/2, 2/2, and 3/2, signifying the presence of a period-
2 unstable ghost attractor, as indicated in Figure 9. When
Ω � 1600 rpm, it can be seen that the phase-plane diagram is
disordered, the Poincaré map shows many discrete points,
the time-domain response diagram also shows nonperiodic
motion, and the amplitude-frequency spectrum is contin-
uous. All the dynamic characteristics reveal that the system is
in a state of chaos.

4.2. E�ect of Support Sti�ness Ratio onChaoticCharacteristics.
Support sti�ness of the pinion and gear is the key parameter
that a�ects the dynamic behavior of the gear system. To
study the e�ects, support sti�ness ratio K, namely, support
sti�ness of the pinion to gear, is incorporated in the paper,
where support sti�ness of the pinion k1 � 4.5 × 109 N/m.
Figure 11 shows the bifurcation diagram of displacement
using the support sti�ness ratioK as a bifurcation parameter.
When K is less than 4.5, the system is in the state of periodic-
2 motion; after a short periodic-1 movement, the system

enters chaotic motion at the district of 5-6. Once K is higher
than 6, the gear transmission system returns to synchronous
vibration with period-1.

Figure 12 also shows the Lyapunov exponent diagram of
the geared system when the support sti�ness ratio K is
changed from 1 to 10, in which Lyapunov exponents are
greater than zero in the same region compared to the bi-
furcation diagram, and the chaotic regions are basically the
same as those in Figure 11. To accurately determine chaotic
motion of the proposed system, the dynamic characteristic
curves are also listed in Figures 13–15. �e dynamic char-
acteristics have obvious chaotic characteristics as seen in
these �gures, so the gear system is in chaotic motion in these
sti�ness ranges.

4.3. Stability Analysis of Locomotive Gear Transmission
System

4.3.1. Floquet Stability �eory. For the perturbation equa-
tion of a nonlinear system [15],

_X � A(t)X,
A(t + T) � A(t),


 (25)

where T represents a system of periodic motion and
A(t + T) is the Jacobi matrix of the periodic solution
of the steady state. Let X(t) be the basic solution matrix
of the equation, there is a constant matrix D and
a nonsingular periodic T matrix φ(t) � φ(t + T) and
X(t) � φ(t) · exp(t ·D).

Since dX(t)/dt � A(t)X(t), it follows that
dX(t + T)

dt
� A(t + T)X(t + T) � A(t)X(t + T), (26)

and

X(t + T) � φ(t + T) · exp((t + T) ·D)
� φ(t) · exp(t ·D) · exp(T ·D)
� X(t) · exp(T ·D),

(27)

where the constant matrix exp(T ·D) is called the system
state transfer matrix, and the eigenvalue of the matrix is
called the Floquet multiplier λi.

�e research on the stability of periodic motion of
nonlinear systems can be carried out in the following
steps:

(1) Transform di�erential equation of the original model
into a matrix form:

€x{ } +[c(t)] _x{ } +[k(t)] €x{ } � F(t){ }. (28)

(2) Transform the matrix equation into the state equa-
tion form:

y{ } �
x{ },
_x{ },

{

_y{ } �[A(t)] y{ } + B(t){ },




(29)
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Figure 11: Bifurcation diagram of the displacement with support
sti�ness ratio changes.
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Figure 13: �e dynamic characteristic curve of the system at support sti�ness ratio K � 2.5. (a) Phase-plane diagram. (b) Poincaré map. (c)
Time-domain response diagram. (d) Amplitude-frequency spectrum.
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with

[A(t)] �
[0] [I]
−[k(t)] −[c(t)]
[ ],

B(t){ } �
0{ }
F(t){ }

{ }.
(30)

(3) �e value of the following matrix equation at periodic
T is solved by the numerical integration method:

_y{ } �[A(t)] y{ },
y(0){ } �[I]n.

{ (31)

(4) �e Floquet multiplier of the state transition matrix
is obtained from the QR algorithm based on the
eigenvalue of the matrix.

(5) According to the location of the Floquet multiplier
relative to the unit circle displayed in Figure 16, the
stability and bifurcation characteristics of the system
can be judged as follows [28]:

(i) When |λi| < 1 (i � 1, 2, . . . , n), the stable periodic
solution is asymptotically stable.

(ii) If there is λj which passes the unit circle out-
wards through the point of −1 and other |λi| < 1
(i � 1, 2, . . . , n, i ≠ j), the stable periodic so-
lution will have period-doubling bifurcation.

(iii) If there is λj which passes the unit circle
outwards through the point of +1 and other
|λi| < 1 (i � 1, 2, . . . , n, i ≠ j), the stable
periodic solution will have the saddle-node
bifurcation.

(iv) If there is a pair of conjugate complex charac-
teristic multipliers, λj � a ± jb, which passes
the unit circle outward, and other |λi| < 1 (i � 1,
2, . . . , n, i ≠ j), the stable periodic solution will
have the Hopf bifurcation, and the bifurcation
will lead to an invariant torus.
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Figure 15: �e dynamic characteristic curve of the system at support sti�ness ratio K � 7.5. (a) Phase-plane diagram. (b) Poincaré map.
(c) Time-domain response diagram. (d) Amplitude-frequency spectrum.
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4.3.2. E�ect of Pinion Speed on Stability. �e variation
diagram of the maximum Floquet multipliers |λi| against
the pinion speed of the gear system is displayed in Fig-
ure 17. It can be seen that when Ω is less than 1160 rpm,
|λi| is less than 1, as shown in Figures 18(a) and 18(b), in
which the maximum Floquet multipliers are in the unit
circle, and the stable periodic solution is asymptotically
stable according to the Floquet theory. But when the speed
is changed at district of (1250–1270) or (1440–1830) rpm,
the maximum Floquet multiplier is away from the unit
circle in the form of a pair of conjugate complex eigen-
values. It means that the period-doubling bifurcation
occurs, as shown in Figure 18(c).

When Ω is changed at the district of (1840–2110) rpm,
|λi| is less than 1, and the gear system returns to stable
periodic-1 state. With the increasing pinion speed, |λi| is
greater than 1, and the system leaves periodic-1 motion
and enters chaos within (2410–2670) rpm, as shown in
Figure 18(d). Once the speed is higher than 2680 rpm, the
system leaves chaos and enters periodic-2 and periodic-1
motion, as shown in Figures 18(e) and 18(f).

4.3.3. E�ect of Support Sti�ness Ratio on Stability. �e
variation diagram of maximum Floquet multipliers |λi|
against the support sti�ness ratioK of the system is displayed
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Figure 19: Diagram of the maximum Floquet multiplier with support sti�ness ratio.
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in Figure 19. It can be seen that when K is less than 5, |λi| is
less than 1, and the stable periodic solution of the system is
asymptotically stable, as shown in Figures 20(a) and 20(b).
With the increasing K, the system leaves periodic-1 motion
and enters chaotic motion at the district of (5∼6), in which
the maximum Floquet multipliers are away from the unit
circle in the form of complex eigenvalues, as shown in
Figures 20(c) and 20(d). Once K is higher than 6, |λi| is less
than 1, and the gear system returns to synchronous vibration
with period-1.

5. Conclusions

Taking the locomotive gear system as the object, the chaotic
characteristics of the transmission system are analyzed when
the pinion speed and stiffness are changed. At the same time,
the parameter stability of the system and the evolution of
periodic motion are studied based on the Floquet theory.(e
following conclusions can be drawn from the study:

(1) (e system is relatively stable when the locomotive
gear system runs at low speed; however, with the
increasing speed of the traction motor (pinion), the
responses of the gear system enter the unstable state
of the chaotic motion through a variety of ways,
which has an effect on the stable operation of the
locomotive. (erefore, when the railway locomotive
is operated, the speed of the traction motor can be
increased selectively so that the transmission system
can leave an unstable area of the speed as soon as
possible. (e analysis results show that the speed of
the traction motor (pinion) is nearly 1500 rpm (rated
speed), which ensures stable and safe operation of
locomotives.

(2) With the increase of the support stiffness ratio of
the pinion to gear, the stability of the system will
fluctuate. Considering the manufacturing cost, the
pinion stiffness of the gear system can be selectively
designed. For instance, when the stiffness is varied
from 4.5 × 109 to 4.9 × 109 N/m, the gear system
reaches the stable motion with period-1. (erefore,
the interval above is the most suitable range of se-
lection in the stiffness design of the transmission
system.
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