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Taking a herringbone star gear transmission (HSGT) with floating sun gear as an example, the system bifurcation characteristics
with the changing of the eccentric error of star gear and the working frequencies are analyzed. For this analysis, a generalized
dynamic model of HSGT considering the manufacturing eccentric errors, time-varying mesh stiffness, and load balancing
mechanism is established and solved by numerical method. The floating process of sun gear is explained. In this paper, there are
seven cases about the eccentric errors of star gears which are calculated, respectively. To study the effect of the working frequencies
(including meshing frequency and rotation frequency), the calculation is done at three kinds of input speed in which the working
frequencies are close to the system natural frequencies. The results are demonstrated in detail by the bifurcation diagrams, phase
plane plots, and Poincare maps. The system bifurcation characteristics are particularly analyzed and compared in every case. This

work provides important guidance to the engineering of HSGT.

1. Introduction

Star gear transmission (SGT) is a power split transmission
with fixed axis gears. This transmission uses star gears to
load together, which form power branches. Unlike planetary
gear train (PGT), the carrier of SGT is not rotating, and
star gears only rotate on their axes. This difference results
in no centrifugal force influencing on star gears when the
SGT rotating in high speed and star gears can be lubricated
continually, which benefits the smooth running of SGT [1]. In
the decelerator of aeroengine and helicopter, it is broadly used
due to its advantages such as compact dimension, low weight,
and high load capability. However, manufacturing errors
are inevitable when SGT is produced in a project, which
must affect directly the dynamic response and load share
capacity of SGT. Furthermore, the dynamic performance of
SGT relates to the reliability and stability of the machinery
which uses SGT. To resolve this problem, the load balance
mechanism is widely adopted in SGT from home and abroad

[2-4]. This method can improve the load sharing capability
of SGT to some extent, but the dynamic properties of SGT
will be must influenced. So, the study about the effect of
manufacturing errors on the dynamic performance of SGT
with load balance mechanism has a high value of practical
application.

Many scholars have done a lot of research work about
dynamic analysis of PGT. Most of them focus on dynamic
behavior and load sharing of PGT [5-12]. The methods
used by these research are classified into three main types:
numerical analysis [10], finite element method [13, 14], and
experiment [11]. The influence factors considered in the works
consist mainly of meshing stiffness [15], support stiffness
[16], assembly error, eccentric error [3, 11, 12, 17-19], profile
modification [9], floating component [5, 17, 20], flexible
component [21, 22], and so on.

However, the study with regard to SGT is rare so far.
Sun et al. [23, 24] established a torsional and translational
nonlinear dynamic model for SGT to predict the dynamic
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FIGURE I: Herringbone star gear transmission. (a) Sketch map. (b) 3D model.

characteristics. They also use the Gill numerical method
to obtain the dynamic response for a torsional nonlinear
dynamic model of SGT and analyze the numerical results in
time histories, phase plane plots, Poincare maps, and Fourier
spectra. Bao and Zhu [25] develop a dynamic analysis model
for a two-stage star gear train considering manufacturing
and assembly errors to analyze the characteristics of sharing
load and some relations between errors and the load sharing
coefficient. Mo et al. [1, 26] probe into the natural char-
acteristics and load sharing behavior of double-helical star
gearing system for geared turbofan engine. Up to now, there
are no literatures including the reports on the bifurcation and
chaos of SGT with the manufacturing errors and load balance
mechanism yet.

In this paper, using the lumped-parameter method and
taking into account the manufacturing eccentric errors, time-
varying mesh stiffness, and load balancing mechanism, a
generalized dynamic model of HSGT with floating sun gear
is presented to study the forced vibration characteristics. Sun
gear is bore by a spline shaft with radial clearance, so it
can float along the radial direction to improve unbalanced
load which star gears bear because of eccentric errors.
The evolution of system dynamic response is studied with
changing eccentric errors of star gears which are divided
into seven cases, and the process from periodic motions to
chaos is shown by bifurcation diagrams, phase plane plots,
and Poincare maps. The effect of the variation of working
frequencies is also investigated by choosing three kinds of
working speed in which the working frequencies are close to
the system natural frequencies.

2. Dynamic Model of HSGT with
Floating Sun Gear

Figure 1 depicts the structure of HSGT. It includes a sun
gear, N star gears (N, the number of star gears), a ring gear,
and a carrier. The input power is transmitted by sun gear
and distributed by N star gears which form power branches,
confluent in ring gear finally.

In order to build the dynamic model of HSGT, the
following principles of treatment are adopted. In the case of
engaging correctly, the axial forces exerted by left handed
helical angle and right handed helical angle of herringbone
gear are counteractive. Based on this feature of herringbone
gear, the axial motion of gear is not considered, and only
the radial and torsional motions of gear need to be taken
into account. The carrier has radial two degrees of freedom
(axial and torsional support stiffness is deemed very high).
Gears are treated as rigid discs. Gear meshing is treated as
a spring which has time-varying stiffness and acts on the
gear tooth surface along the meshing line direction. The
support from bearings and shaft to sun gear, the ring, and
the carrier is equivalent to spring fastened to the foundation.
The support from the carrier, bearings, and shaft to star gears
is equivalent to the stiffness of carrier and shaft and the
stiffness of bearings calculated by cascade spring connection
calculation method. Star gears are assumed to be equispaced
and same in mass, moment of inertia, support stiffness, and
so on. The effect of friction is not taken into account. Based
on these principles, the lumped-parameter dynamic model is
constructed, as shown in Figure 2.

The indexing conventions s, r, and ¢ for sun gear, ring
gear, and the carrier, pi or p for star gears,i = 1,2,...,N
for the sequence number of star gears, spi for ith sun-star
meshing pair, and pir for ith star-ring meshing pair are
maintained throughout this paper.

As shown in Figure 2, the coordinate systems are built as
follows: 0,x;y; (j = s, 7, ¢, pi) is a fixed coordinate system, and
its coordinate origin o; (j = s,7,¢, pi) is located in the center
of mass for the components. The indexing conventions K,
Kj, and C;, C;, (j = s,7,¢, p) denote the support stiffness
and support damping in x and y separately. K,;, K, and C,,;,
C,ir are the time-varying mesh stiffness and mesh damping
separately, and e, e,;, stand for the transmission error along
the end meshing line direction.

The model has 8 + N x 3 degrees of freedom, and its gen-
eralized coordinates are as follows: [x,, Vg, Ug, X5 ¥y Uy X5 Ve
Xpi> Y piv up;], where x;, i (j=s1, ¢ pi) are.the trans!at.ional
displacement along x-axis and y-axis, u; (j = s, 7, pi) is the
rotational displacement around the z-axis, with u ;= 0 i Ty
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FIGURE 2: Dynamic model of herringbone star gear transmission.
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FIGURE 3: (a) Sketch map of the support reaction force. (b) 3D model of the spline support structure.

0; (j = s,r, pi) is the angular displacement around z-axis,
and ry; (j = s, 7, p) are the radii of base circles.

3. Analysis of Floating Process of Sun Gear and
Internal Excitation

3.1 Analysis of Floating Process of Sun Gear. The power is
transmitted to sun gear by the spline shaft. Because of radial

clearance existing between the inner and outer spline, when
sun gear bears unbalance force, it can float in radial direction
until the force becomes balanced.

In Figure 3, the sketch map expresses the support reaction

force which sun gear bears. The horizontal axis denotes the
floating amount of sun gear R, with R, = +/x2 + y2. The
vertical axis denotes the support reaction force of the spline
shaft P.. F,, is the friction between the inner and outer spline,
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FIGURE 4: The procedure of the time-varying mesh stiffness.

with F,, = 7 - F,, where 7 is the friction coeflicient, F, is
the normal pressure which the tooth surface of the spline
sustains. L is the radial clearance between the inner and outer
spline, with L = R, — R,.

As can be seen from Figure 3, in the floating process,
sun gear bears mesh forces of N star gears and the support
reaction force of the spline shaft. If P, < F, , the slipping does
not happen between the inner and outer spline. The stiffness
of the spline shaft can be reduced on the premise of meeting
the requirement of intensity, so the bending deformation of
the spline shaft will fit the radial displacement of sun gear. At
the moment, the range of R, is between 0 and R,. If P, > F,,
the inner and outer spline will show relative sliding, which fits
the radial displacement of sun gear. At this stage, the range of
R, is between R, and R,. However, when the radial clearance
between the inner and outer spline disappears, the bending
deformation of the spline shaft fits the radial displacement
of sun gear again, and the range of R, is greater than R,.
Based on the above analysis, the support reaction forces of the
spline shaft along x-axis and y-axis are, respectively, defined
as follows.

The support reaction force of the spline shaft along x-axis
is as follows:

Ky x,+Cy - %, 0<R;<R;orR >R,
P, = 1)
E, -cosy R, <R, <R,.
The support reaction force of the spline shaft along y-axis is
as follows:
Ky -y +Cy -y 0<Ry<Rjor R >R,

E, -siny

P, =

()
R, <R <R,

where v is the direction angle of the deformation vector
(%o Y-

3.2. Time-Varying Mesh Stiffness Excitation. In this paper,
the time-varying mesh stiffness is computed by using tooth
contact analysis (TCA) [27] and loaded tooth contact analysis
(LTCA) [28]. The particular calculate process is shown in
Figure 4. The object is the inner or outer meshed gears.
TCA and LTCA are applied to obtain the comprehensive
contact deformations §,, in normal direction at n contact
points of tooth surface in a meshing period (the so-called
comprehensive contact deformation considers the effect of
other teeth meshing simultaneously). Then, the normal force
F, which the contact tooth surfaces bear is calculated by the
following formula:

F, =F, - cos B, ©)
where 3, is the base helix angle and F, is the tangent force,
with

E,

in
= Py 4
N - T ( )

where T;, is the input torque, N is the number of star
gears, and 1, is the radius of base circle of sun gear. The
ratio of F, and §, is the normal mess stiffness K, at n
contact points of tooth surface in a meshing period. Finally,
the discrete values K, need to be interpolated by piecewise
cubic-Hermite’s interpolation function and expressed as the
periodic function in the form of 10-order Fourier series.
According to the process above, a MATLAB program is wrote
to solve the time-varying mesh stiffness. Using this program,
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FIGURE 5: The time-varying mesh stiffness for external and inner
gearing.

under various operating conditions, the time-varying mesh
stiffness of gear pairs of various parameters can be calculated
fast and efficiently. The mesh stiftness of the example in this
paper is calculated, shown in Figure 5.

3.3. Eccentric Error Excitation. Figure 6 depicts the location
relationships between the eccentric errors of sun gear and ith
star gear and the end meshing line of ith sun-star pair. As
shown here, the angle ®; between the eccentric error of sun
gear E; and the end meshing line of ith sun-star pair is

7T
®s=<5_aw>+¢pi_(ws't+))s)> €)

where «,, is the transverse pressure angle of external gearing,
®pi = 2m (i — 1)/N is the assembly position angle of ith star
gear, w, is the angular velocity of sun gear, and y; is the initial
phase of the eccentric error of sun gear relative to x,-axis. So

The end meshing
line direction of
ith sun-star

Sun

F1GURE 6: The location relationships of between the eccentric errors
of sun gear and ith star gear and the end meshing line of ith sun-star
pair.

Star

Xpi The'end meshing
line direction of
ith star-ring pair

|

F1GURE 7: The location relationships of between the eccentric errors
of ith star gear and ring gear and the end meshing line of ith star-ring
pair.

the equivalent error of E; projected to the end meshing line
of ith sun-star pair is

ES:Es-cos(DS:E3~sin(ws~t+ys+cxw—(ppi). (6)

The angle @ ,,;,, between the eccentric error of star gear E,;
and the end meshing line of ith sun-star pair is

7
Dy = (5 - “w) T Ppi — (wpi L Vpi)> 7)

where w,,; is the angular velocity of star gear and y,, is the
initial phase of the eccentric error of ith star gear relative to
xp;-axis. So the equivalent error of E,; projected to the end
meshing line of ith sun-star pair is
E, i = Epi - cos @y,
(8)

= Epi-sin(wpi-t+ypi+ocw—(pp,~).

Figure 7 depicts the location relationships of between the
eccentric errors of ith star gear and ring gear and the end
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and ith star-ring pair. (b) The location relationship of between the displacement of the center of mass for ith star gear and the carrier.

meshing line of ith star-ring pair. The angle ®,;, between the
eccentric error of the star E,; and the end meshing line of ith
star-ring pair is

v
D, =<—
pin P

where a,, is the transverse pressure angle of internal gearing.
So the equivalent error of E,; projected to the end meshing
line of ith star-ring pair is

- (xn> + (wpi St yp,-) — Ppi> ©))

Epin =E,-cosD,,
(10)

= —Ep,» - sin (wpi A (pp,-).

The angle ®, between the eccentric error of ring gear E, and
the end meshing line of ith star-ring pair is

(Dr = <§_“n>+(wr't+%‘)_¢pi’ (11)

where w, is the angular velocity of ring gear and y, is the initial
phase of the eccentric error of ring gear relative to x,-axis. So
the equivalent error of E, projected to the end meshing line
of ith star-ring pair is

E,=E,-cos®, :—E,-sin(w,-t+yr—(xn—gopi). (12)

Based on the above analysis, the equivalent displacements
of the eccentric errors of gears are

espi = Es + Epiw
=ES'sin(ws-t+ys+(xw—(ppi)+Epi

- sin (wpi -t+ypi +a, - (ppi),

epir = Lpin + Er
=-E,; - sin (wpi Ym0, — (ppi) -E,
-sin(wr't+y,—ocn—(pp,»),
(13)
where e, e,;, are, respectively, the equivalent errors for the

ith sun-star pair and ith star-ring pair.

4. Motion Differential Equation of HSGT with
Floating Sun Gear

According to the location relationships of between the dis-
placement of the center of mass for gears and the end meshing
line of ith sun-star pair and ith star-ring pair, as shown in
Figure 8(a), the relative displacements of the translational
gear pairs along the meshing line of ith sun-star pair and ith
star-ring pair are separately defined as follows. The relative
displacement of the translational gear pairs along the meshing
line of ith sun-star pair are

65191‘ = [(xS -cos By + yg - sin By, + us)

- (xpi + €08 By + y,,; - in By, + up,-) + esp,-] (14)
- o8 fBy,
where B, is the angle of the end meshing line of ith sun-star

pair relative to x-axis, with By,; = 71/2 - e, + ¢,,;. The relative
displacement of the translational gear pair along the meshing
line of ith star-ring pair is

8pir = [(xp,- - cos By, + yp; - sin B, + upl-) )
15

- (xr -cos B, + y, - sin By, + ur) + epi,] - cos fB,
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where B,,;, is the angle of the end meshing line of ith star-ring
pair relative to x-axis, with B,;. = ¢,,; — (/2 — a,).

In Figure 8(b), the radial displacements of ith star gear
relative to the carrier along x-axis and y-axis are separately
defined as follows:

O picx = X

picx X

pi ¢ (16)

Spicy =Ypi = Ve

Based on Newton’s second law and the above analysis,
the motion differential equations of components are listed as
shown in

M, - X, + P,
5
+ z [( spi 8 i K 6Spi) - cos fB, - cosBspi]
i=1
= 0)
M-y + Psy (172)
5
+ Z [(Cspi . 8Spi + Ky - (Ssp,-) - cos f3, - sin Bsp,-]
i=1
= 0’
Is .. > Tin
1’_2 TUg + Z( spi 851)1 + Kspz : (Sspi) ’ COSBb = r_’
bs i=1 bs
Mp ’ xpi + Cpx : 6picx + pr : 8picx
[( spi 851)1 + Kspz ' (Sspi) - cos Bh * cos Bspi]
+ [(Cpi, O + Ky - 8P,-r) - cos f3, - cos Bpi,]
= 0’
My - Fpi+ Cpy * Opicy + Ky Opiy (17b)
- [( spi 85171 + Kspz : (Sspi) * cos ﬁb - sin Bspi]
+ [(Cpir ‘ SP” + Ky - 8Pi,) - cos f3 - sian,»,] =0,
T‘upi—( spi 6 i+ Ky 85pi)~cosﬁb
rbp
( pir 6p1r + szr : 6pir) - cos 3, = 0,
M, - % +C - % + K - x,
5
- Z (Cpx 8pzcx + K ' 8picx) =0,
i=1
(17¢)

Mc'yc+ccy'yc+Kcy'yc

5
=3 (Cpy *Bpicy + Kpy - 81iey) = 0,

py “picy Py Picy)

7
M, % +C,. % + K, -x,
5 .
- Z [(Cpir ! 8pir + Kpir ' (Spir) - €os ﬁb " €Oos Bpir]
i=1
= 0)
Mr'j}r+cry'yr+Kry'yr
: (17d)

- Z [(Cpir . 8 r + Kpip - 6pi,) -cos f3, - sianir]

I . .
rTr U~ Z (Cpir : 8pir + Kpir ' 8pir) - €os ﬁb
br i

where M ; (j = s, p,t,c) are the mass of each component,

I; (j = s, p,r) are the moment of inertia, PSX, Py, are depicted
in (1) and (2), the support stiffness K K Kj, (j=s,p,r,c) are
abstained by FEA, and the support damping C;,, C;, (j =
s, p» 1, ¢) are calculated by using this formula, which is

Ciy = 26K, M,
Cjy = 28K, M;

(see [1]), where &, is the support damping ratio, whose value is

0.003 in this paper. C,;, C,;, are the mesh damping coefficient

of engagement pairs, with

(18)

K., LI

C,,; =2 SP’—SP)
P Isrbp + 1,
(19)
K,,I I,
pirpir
Cpir = 26

IPrbr + I,rb}7

where & is mesh damping ratio, whose value is 0.03 in
this paper. Kspl, K pir are the mean mesh stiffness of each
engagement pair, and T;,, T, are, respectively, input torque

and load torque.

5. Simulation and Analysis

A herringbone star gear transmission (HSGT) with floating
sun gear and five equally spaced star gears (N = 5) is used as
an example, and the motion differential equation is solved by
Runge-Kutta numerical calculation method. The parameters
of the example are shown in Table 1.

In this chapter, the focus is the effect of eccentric errors of
star gears with different phase and number on the dynamic
response of HSGT with floating sun gear. So the eccentric
errors of sun gear and ring gear are set to 0 yum. According
to the place and number of star gears, the cases of star gears
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TABLE 1: Parameters of the herringbone star gear transmission.

Parameters Sun Star Carrier Ring

Number of teeth, Z 44 41 - 126

Normal modulus, 7, (mm) 35 3.5 - 3.5

Normal pressure angle, «,, (deg.) 225 225 - 225

Helix angle, 8 (deg.) 28 28 - 28

Helical tooth width, b (mm) 60 60 - 55

Mass, M (kg) 68 1.3 83 207.7

Inertia, I (kg-m”) 0.42 0.06 - 8.58

Support stiffness in x, y-direction (N/m) K, =352x10" K,  =161x10" K, =256x10° K, =146x10°

Mean meshing stiffness in the direction of contact line (N/m) fspi =1.7x10° fpi, =1.68 x 10°

The value of the radial clearance between inner and outer

50

spline, L (ym)
Input speed, n, (r/min) 7500
Input power, T;,, (Kw) 1000
Note. The mass and inertia of sun gear and ring gear include the mass and inertia of input and output shaft.

TABLE 2: The cases of star gears carrying eccentric error.
Cases 1 2 3 4 5 6 7
Sequence number of star gears 1 1,2 1,2,3 1,2,3,4 1,2,3,4,5 13 1,2,4

carrying eccentric errors are divided into seven patterns,
shown in Table 2.

Setting the initial phase of the eccentric error of star
gear equal to its assembly position angle, changing the
eccentric errors from 0um to 50 yum, we solve the system
motion differential equation for the bifurcation behaviors. To
study the regularity of the system motion development, the
bifurcation diagrams on the relative vibration displacement
between sun gear and star gear for the seven situations shown
in Table 2 are given. Aiming at some typical system motion
form, the phase plane plots, Poincare maps are given.

In the seven cases, there are about four kinds of motion
appearing in the system. They are periodic, period-doubling,
quasiperiod, and chaos motion. How to judge the three
motions, towards periodic or period-doubling motion, the
phase plane plot is a regular curve, the Poincare map of
periodic motion is a dot, and the Poincare map of period-
doubling motion is composed of dots which collect on
several areas; to quasiperiod motion, the phase plane plot
is a belt-like curve, and the Poincare map is composed of
dots looking like serial; for chaos, the phase plane plot is a
curve whose shape is noncircular and nonelliptic, and the
Poincare map is composed of dots arranged disorderly. It
is difficult to distinguish the quasiperiod motion and chaos
in the bifurcation diagram, so the phase plane plots and
Poincare maps are needed to comprehensively observe.

To study the effect of the variation of system working
frequency on the dynamic characteristics of HSGT, we
give the 23th order natural frequencies of HSGT in two
situations of floating and nonfloating, shown in Table 3. At

speed 4251.8 r/min, Cases 1, 5, and 6 are calculated. Under
this speed, the meshing frequency is close to the 14th and
15th order natural frequencies. At speeds 5862 r/min and
7320 r/min, Case 1 is calculated. Under these two speeds, the
rotation frequency is close to the second and third-order
natural frequencies in the floating and nonfloating state,
shown in Table 4.

5.1. The System Bifurcation Characteristics with Changing
Eccentric Errors of Adjacent Star Gears

Case I (star gear 1 with eccentric error). The system dynamic
response is shown in Figure9. It can be seen from the
enlarged images in Figure 9 that the system response bifur-
cates into period-doubling from single-periodic motion
where E,; = 24 um. When the eccentric error of star gear
1 is greater than 24 ym, the system motion bifurcates into
complicated motion state (quasiperiod or chaos). The phase
plane plots and Poincare maps of the system response where
E,, = 24um are shown in Figure 10. As can be seen from
Figures 10(b), 10(f), and 10(h) that there is period 5 motion
appearing in the system, Figure 11 describes the phase plane
plots and Poincare maps of the system response where E,; =
42 ym. In Figure 11(e), it is quite clear that chaos develops in
the system. We can also conclude that the gear pairs of sun-
star 2 and sun-star 5 have the same dynamic characteristics,
so do the gear pairs of sun-star 3 and sun-star 4.

Case 2 (star gears 1 and 2 with eccentric errors). Figure 12
depicts the system bifurcation characteristic with the
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TaBLE 3: The natural frequencies of HSGT.
Ranks Natural frequency (Hz)
Floating Nonfloating
1 0 0
2,3 97.7 (97.7) 122.0 (122.0)
4,5 159.2 (159.2) 167.6 (167.6)
6 824.1 824.1
7,8 946.8 (946.8) 948.5 (948.5)
9,10 1699.2 (1699.2) 1699.2 (1699.2)
11 1749.0 1749.0
12,13 2074.8 (2074.8) 2074.9 (2074.9)
14,15 3118.0 (3118.0) 3118.0 (3118.0)
16,17 3204.7 (3204.7) 3204.7 (3204.7)
18,19 3252.8 (3252.8) 3252.8 (3252.8)
20 3280.4 3280.4
21,22 3416.5 (3416.5) 3416.7 (3416.7)
23 3572.4 3572.4
TABLE 4: The working frequencies of HSGT at three speeds.
Working frequency (Hz)
Input speed (r/min
putsp ( ) Shaft frequency (Hz) Meshing frequency (Hz)
Sun Star Ring
4251.8 70.9 76.0 24.6 3118.0
5862 97.7 104.8 341 4298.8
7320 122.0 130.9 42.6 5368.0
5 x107° x107° s «107° %106 3 x107°
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e el 22
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FIGURE 10: The phase plane plots and Poincare maps for five sun-star pairs, when E

plots. (b), (d), (f), (h), are (j) are the Poincare maps.

changing of eccentric errors of star gears 1 and 2. We can see
that the gear pairs of sun-star 1 and sun-star 2 have the same
dynamic characteristics, so do the gear pairs of sun-star 3
and sun-star 5. From Figures 9 and 12, it can be drawn that
the effect of the eccentric errors of star gears 1 and 2 on the
system response is greater than one of star gears 1. In Case
2, the system response bifurcates into period-doubling from
periodic motion where E,;, = 15um. Beginning around
E,, = 20pum, the system response shows the complex
bifurcation characteristics. As shown in Figures 13 and 14,
there are period 5 motion and chaos, respectively, appearing
in the system where E,; , = 15um and 22.5 um. In Figures
14(a) and 14(e), the curves distort.

Case 3 (star gears 1, 2, and 3 with eccentric errors). It is the
same as Case 2 that the system response bifurcates into period
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= 24 ym. (a), (c), (e), (g), and (i) are the phase plane

5 from periodic motion where E,; ,; = 15 um and the two
cases have the similar bifurcation characteristics shown in
Figures 12 and 15. The difference from Case 2 is that the gear
pairs of sun-star 1 and sun-star 3 have the same dynamic
characteristics, so do the gear pairs of sun-star 4 and sun-star
5. Figures 16 and 17 separately depict the phase plane plots and
Poincare maps between sun gear and five star gears, where
Epip3 = 15pm and 26.5 ym. There are period 5 and chaos
motion, respectively, appearing in the system.

Case 4 (star gears 1, 2, 3, and 4 with eccentric errors). As
shown in Figure 18, the system response is relatively stable
compared with Cases 2 and 3, which bifurcates into period-
doubling motion starting with E, , ; , = 18.5 yum. Each sun-
star pair has different dynamic characteristics. The sun-star 1
pair is the most stable in five sun-star pairs. Figures 19 and 20
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FIGURE 11: The phase plane plots and Poincare maps for five sun-star pairs, when E,; = 42 ym. (a), (c), and (e) are the phase plane plots. (b),
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(d), and (f) are the Poincare maps (note: only one of the gear pairs which have the same dynamic characteristics is shown).
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FIGURE 12: The system bifurcation diagram with the variation of eccentric error of star gears 1 and 2.

depict the phase plane plots and Poincare maps between sun
gear and five star gears, where E; 5 54 = 18.5 ym and 44 ym.
There are period 5 and chaos motion, respectively, appearing
in the system.

Case 5 (star gears 1, 2, 3, 4, and 5 with eccentric errors). In the
case, the system response is more stable than Case 4, which
bifurcates into quasiperiod motion starting with E; 5545 =

45 ym shown in Figure 21. From the figure, we can see that the
gear pairs of sun-star 1 and sun-star 2 have the same dynamic
characteristics, so do the gear pairs of sun-star 3 and sun-
star 5. It is corresponding to discover that the system always
keeps the quasiperiod motion by calculating the system
response where Ep,; 5 3 4 5 = 45 ym, 46 yim, 48 pim, and 50 ym.
Figure 22 depicts the phase plane plots and Poincare maps
between sun gear and five star gears, where E,; 5 34 5 = 45 ym.
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5.2. The System Bifurcation Characteristics with Changing

Eccentric Errors of Nonadjacent Star Gears

Case 6 (star gears 1 and 3 with eccentric errors). In this case,
the influence of eccentric errors of star gears 1 and 3 on the

system response is significantly less than one of star gears 1
and 2 in Case 2. The system motion bifurcates into period-
doubling motion beginning with E,; 3 = 39 ym shown in
Figure 23. The gear pairs of sun-star 1 and sun-star 3 have the
same dynamic characteristics, so do the gear pairs of sun-star
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4 and sun-star 5. Figure 24 describes the phase plane plots
and Poincare maps between sun gear and five star gears where
E,1 3 = 39 ym. From Figure 24(f), it can be seen that period

5 motion develops in the system.

Case 7 (star gears 1, 2, and 4 with eccentric errors). In this
case, the system response is obviously more stable than Case
3. The system motion bifurcates into quasiperiod motion
beginning with E,; ,, = 20.5pm shown in Figure 25. The
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FIGURE 15: The system bifurcation diagram with the variation of eccentric error of star gears 1, 2, and 3.

TABLE 5: A comparison of the error values of beginning to bifurcate.

Input speed (r/min)

Error value (ym)
Beginning to bifurcate

Casel Case 5 Case 6
4251.8 9.5 23.5 15.5
7500 24 445 20.5

gear pairs of sun-star 1 and sun-star 2 have the same dynamic
characteristics, so do the gear pairs of sun-star 4 and sun-
star 5. After about E,;,, = 34um, the system shows
the complex bifurcation characteristics. Figures 26 and 27
describe the phase plane plots and Poincare maps between
sun gear and five star gears where E,;,, = 20.5pym and
37 pm. In Figure 27, there is the tendency of chaos motion
appearing in the system.

5.3. The System Bifurcation Characteristics with the Working
Frequencies Close to the Fundamental Natural Frequencies
of the System

5.3.1. Calculating Cases 1, 5, and 6 at Speed 4251.8 r/min.
When the input speed is 4251.8 r/min, the meshing frequency
is equal to the 14th and 15th order natural frequencies shown
in Tables 3 and 4. At this speed, we calculate Cases 1, 5, and 6
and plot the bifurcation diagrams shown in Figures 28, 29,

and 30. Comparing with Figures 9, 21, and 23, we can see
that the error values of beginning to bifurcate decrease in
Cases 1and 6 and the system shows more complex bifurcation
characteristics. In Case 5 the system bifurcation characteristic
changes slightly. Table 5 shows a comparison of Cases 1, 5, and
6 at speed 4251.8 r/min and 7500 r/min.

5.3.2. Calculating Case 1 at Speeds 7320 r/min and 5862 r/min.
At speed 7320 r/min, the rotation frequency of sun gear is
equal to the second- and third-order natural frequencies
under the circumstance of nonfloating shown in Tables 3 and
4. At speed 5862 r/min, that happens in a state of floating. At
the two speeds, we calculate Case 1 and plot the bifurcation
diagrams shown in Figures 31 and 32. Comparing with
Figure 9, we can see that the system bifurcation characteristic
is affected by the rotation frequency close to the system
fundamental natural frequencies, particularly one close to the
natural frequencies of floating status. At speed 5862 r/min,
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FIGURE 17: The phase plane plots and Poincare maps for five sun-star pairs, when E,; , ; = 26.5 ym. (a), (c), and (e) are the phase plane plots.
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the error values of beginning to bifurcate and showing
complex bifurcation characteristics both decrease obviously.

6. Conclusions

This paper mainly analyzes the influence of the variation
of eccentric error and working frequencies on the dynamic
response of HSGT with floating sun gear. A new and
generalized dynamic model for HSGT with floating sun
gear is established and solved by Runge-Kutta numerical
calculation method. On the basis of the different location
and number of star gears, seven cases about eccentric errors
are calculated, respectively. Three kinds of working speed are
chose to observe the effect of the working frequencies, at
which the meshing frequency or rotation frequency is close
to the system fundamental natural frequencies. The results are
expressed by the bifurcation diagrams, phase plane plots, and
Poincare maps. In every case, the system dynamic properties
are explained in detail. The main conclusions are summarized
as follows:

(1) In any case, the system motion is not always single-
period status with the changing of the eccentric errors
of star gears. The period-doubling, quasiperiod or
chaos motion will happen in the system. Further-
more, the values of the eccentric errors are different
when the bifurcations happen in different cases. To

compare the bifurcation diagrams, it can be see that
the system response of Case 5 is most stale, followed
by Cases 6 and 7; the stability of the system response
in Cases 2 and 3 is the worst one.

(2) In the premise of the same number of star gears with
the eccentric errors, the system response in the case of
nonadjacent star gears is more stable than one in the
condition of adjacent star gears. This conclusion can
be drawn by comparing Cases 2 and 6 as well as Cases
3and7.

(3) When the working frequencies (including rotation
frequency and meshing frequency) are close to the
fundamental natural frequencies the system stability
is affected; particularly the effect of meshing fre-
quency is biggest. So in the actual engineering it
should be ensured that the working frequencies stay
away from every order natural frequency.

The above analysis and conclusions can serve as a guide to
the manufacture and assembly in a project of the herringbone
star gear transmission with floating sun gear. If the machine
accuracy is low, it is necessary to take into account the
displacement and number of star gears with eccentric errors
in the process of the engineering. In addition, the system
working speed should be selected reasonably in case the
working frequencies approximate the system fundamental
natural frequencies.
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