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Two-degree vibration partial differential equations of large horizontal axis turbine blades were established by Kallesøe’s model and
Greenberg unsteady aerodynamic theory. By means of the finite difference discretization and cantilever beam boundary condition,
the equations of blades can be simplified as a general vibration system.Then a linear stationary state space on the system was built.
The blade tip vibration in autonomous and nonautonomous system can be simulated by MATLAB vibration toolboxes in time
domain. The convergent, flutter, and divergent vibration curves were plotted in the directions of lead-lag and flapping.

1. Introduction

Many works [1–3] had been done in dealing with the
pretwisted isotropic turbine blades; however, they did not
consider the effects of gravity, pitch action, and rotor speed
variations. The equations they provide, which are partial
differential equations, are convenient to be numerically ana-
lyzed. In fact, blades in reality are made of composite mate-
rials which are anisotropic and result in the internal elastic
coupling between different forms of blademotion,which can-
not be solved by the equations discussed above. At present,
the large wind turbine blade aeroelastic models contain
ONERA [4–6], Beddoes-Leishman [7–10], and Theodorsen
[11, 12]. This paper extends Kallesøe’s equations of blade
motion to hollow composite materials by equivalent elastic
moduli and equivalent densities. According to Greenberg
unsteady aerodynamic theory, this paper establishes a new
model which describes two-degree aeroelastic equations with
asymmetric rigidity and general viscous damping through
finite difference discretization.

The mode superposition and direct integration are two
main research methods [13, 14] of flutter on large horizontal
axis wind turbine blades. In the proportional damping or
modal damping system, the equations can be decoupled by
using a real modal method. Then the system responses are
obtained by a modal superposition method. However, there

is no orthogonality in the general damping problem; it cannot
be solved by a realmodal superpositionmethod. It can reduce
the state equations into one-order form and solve the general
eigenvalue and eigenvector. After the equations are decoupled
by complex modal analysis, we can get solutions by complex
modal superposition. The state space analysis method does
not need coordinate transformation and equation decou-
pling, making it suitable for general mechanical vibration
systems and convenient for the computer analysis in time and
frequency domains.

2. Establishment of System Equations

2.1. Structural Differential Equations. Kallesøe [15] intro-
duced coordinate conversion and differential equation in a
model of turbine blades as shown in Figure 1.The blade can be
made of solid metal materials or hollow composite materials.
Figure 1(a) shows the rotatingmotion of the blade in the plane
of the wind wheel. The coordinate system of (𝑋, 𝑌, 𝑍) is the
wind wheel coordinate system of the blade. The 𝑥-axis is the
horizontal axis, the 𝑦-axis coincides with the horizontal axis
of the blade of the wind turbine, and the 𝑧-axis is vertically
upward. Because the tower of the wind turbine and the
rotating shaft of the wind turbine are fixed, the coordinate
system is a fixed coordinate system. The coordinate system(𝑥1, 𝑦1, 𝑧1) revolves around the horizontal axis of the blade,
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Figure 1: The model of a horizontal axis turbine blade.

the 𝑦1 axis and the 𝑦-axis overlap, and the 𝑧1 axis is along the
pitch axis of the blade. The angle of two coordinate systems
indicates the angle of rotation of the blade.

Figure 1(b) represents a cross section perpendicular to the𝑧-axis and it is described in the (𝑥, 𝑦, 𝑧) coordinate system.
The coordinate system rotates the𝛽 along the𝑍1 axis, and the𝛽 = 𝛽(𝑠, 𝑡) is the pitch angle of the blade. The cross section
after the deformation is expressed by (𝜂, 𝜁). It rotates 𝜃 + 𝜑
relative to the plane of (𝑥, 𝑧), 𝜃 = 𝜃(𝑠) is the twist angle of the
blade, and 𝜑 = 𝜑(𝑠, 𝑡) refers to the twist angle of the blade.
The coordinates of the elastic center in the (𝑥, 𝑦, 𝑧) coordinate
system are (𝑢 + 𝑙𝑝𝑖, V, 𝑤). 𝑢 = 𝑢(𝑠, 𝑡) and V = V(𝑠, 𝑡) represent
the deformation in the direction of the 𝑥-axis and the 𝑦-axis,
respectively. 𝑙𝑝𝑖 = 𝑙𝑝𝑖(𝑠) is the distance between the center of
the blade and the center of the elasticity.

The forces at the 𝑥- and 𝑦-axes are
𝑚�̈� + 𝐹𝑢1 ( ̇𝜙, �̇�, V̇, 𝑢, V, 𝜃, 𝛽) + 𝐹𝑢2 (𝜙, 𝑢, V, 𝜃, 𝛽)

+ 𝐹𝑢3 (𝑢, V, 𝜃) = 𝑓𝑢,
(1a)

𝑚V̈ + 𝐹V1 ( ̇𝜙, �̇�, V̇, 𝑢, V, 𝜃, 𝛽) + 𝐹V2 (𝜙, 𝑢, V, 𝜃, 𝛽)
+ 𝐹V3 (𝑢, V, 𝜃) = 𝑓V,

(1b)

where

𝐹𝑢1 = − ̇𝜙2𝑚𝑢𝑐𝑔 cos (𝛽)
− ̇𝜙2 (𝑚𝑙𝑐𝑔𝑤0 (cos (𝜃) − 𝜃 sin (𝜃)))
− cos (𝜃) (𝑙𝑐𝑔𝑇2)
− 2 ̇𝜙𝑚𝑙𝑐𝑔 cos (𝛽) (�̇� cos (𝜃) + V̇ sin (𝜃))
− ((𝑢 + 𝑙𝑝𝑖)∫𝑅

𝑠
( ̇𝜙2𝑚𝑤0 + 𝑇2) 𝑑𝜌)

 ,

(2a)

𝐹V1 = − ̇𝜙2𝑚𝑢𝑐𝑔 cos (𝛽)
− ̇𝜙2 (𝑚𝑙𝑐𝑔𝑤0 (cos (𝜃) − 𝜃 sin (𝜃)))
− cos (𝜃) (𝑙𝑐𝑔𝑇2)
− 2 ̇𝜙𝑚𝑙𝑐𝑔 cos (𝛽) (�̇� cos (𝜃) + V̇ sin (𝜃))
− ((𝑢 + 𝑙𝑝𝑖)∫𝑅

𝑠
( ̇𝜙2𝑚𝑤0 + 𝑇2) 𝑑𝜌)

 ,

(2b)

where

𝑢𝑐𝑔 = ((𝑢 + 𝑙𝑝𝑖) cos (𝛽) − V sin (𝛽) + 𝑙𝑐𝑔 cos (𝜃 + 𝛽)
− 𝑙𝑐𝑔𝜑 sin (𝜃 + 𝛽)) ,

𝑇2 = 2𝑚 ̇𝜙 (�̇� cos (𝛽) − V̇ sin (𝛽)) .
(3)

𝑢𝑐𝑔 is the 𝑥1 axis component of the center of gravity of
the (𝑥1, 𝑦1, 𝑧1) coordinate system. 𝑇2 is a leaf in the 𝑍-axis
direction of the Coriolis force. The first term (2a) refers to
the centrifugal force of the rotating blade. The second and
third items (2a) are caused by the inconsistency of the center
of gravity and the center of the aeroelastic center. Fourth type
(2a) is the rotating blades on the𝑍1 axis produced by Coriolis
force.The last term of formula (2a) is the bending moment of
the blade position relative to the end of the blade. The effect
of blade gravity is as follows:

𝐹𝜇2 = 𝑚𝑔 sin (𝜙) cos (𝛽)
+ (𝑙𝑐𝑔 (𝑢 + 𝑙𝑝𝑖)) cos (𝜃) cos (𝛽)
+ (𝑙𝑐𝑔V) sin (𝜃) cos (𝛽)𝑚𝑔 sin (𝜙) ,

(4a)
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𝐹V2 = −𝑚𝑔 cos (𝜙) sin (𝛽)
+ (𝑙𝑐𝑔 (𝑢 + 𝑙𝑝𝑖)) sin (𝜃) cos (𝛽)
− (𝑙𝑐𝑔V) sin (𝜃) sin (𝛽)𝑚𝑔 sin (𝜙) .

(4b)

The first term (4a) refers to the weight of gravity in the𝑋-
axis. The second item (4a) is the torque produced by gravity.
The third item (4a) is themoment caused by the inconsistency
of the center of gravity and the center of the aeroelastic. The
restoring force produced by the bending stiffness is expressed
as follows:

𝐹𝑢3 = (𝐸𝜉𝐼𝜉 cos2 (𝜃) + 𝐸𝜂𝐼𝜂 sin2 (𝜃) 𝑢)
+ ((𝐸𝜉𝐼𝜉 − 𝐸𝜂𝐼𝜂) cos (𝜃) sin (𝜃) V) ,

(5a)

𝐹V3 = ((𝐸𝜉𝐼𝜉 sin2 (𝜃) + 𝐸𝜂𝐼𝜂 cos2 (𝜃)) 𝑢)
+ ((𝐸𝜉𝐼𝜉 − 𝐸𝜂𝐼𝜂) cos (𝜃) sin (𝜃) V) .

(5b)

Among them,

𝐼𝜂 = ∬
𝐴
𝜉2𝑑𝜂 𝑑𝜉,

𝐼𝜉 = ∬
𝐴
𝜂2𝑑𝜂 𝑑𝜉.

(6)

The first item (5a) is the bending stiffness in the direction
of the 𝑋-axis. The second item (5a) is the coupling bending
stiffness in the direction of the 𝑌-axis. The inertial distance
can be seen in the upper form.

If considering the effect of gravity, according to the first-
and second-order Taylor expansions, ignoring higher-order
terms and aerodynamic parameters, the motion equations
of the blade in 𝑥 and 𝑦 directions can be obtained in the
following:

𝑚�̈� − (𝑢 ∫𝑅
0
Ω2𝑚𝑠𝑑𝜌)

+ (𝐸 (𝐼𝜉 cos2 (𝜃) + 𝐼𝜂 sin2 (𝜃)) 𝑢)
+ (𝐸 (𝐼𝜉 − 𝐼𝜂) cos (𝜃) sin (𝜃) V)
− Ω2𝑚 cos (𝛽) (𝑢 cos (𝛽) − V sin (𝛽))
+ 𝑓𝑢 = −𝑚𝑔 sin (Ω𝑡) cos (𝛽) ,

(7a)

𝑚V̈ − (V ∫𝑅
0
Ω2𝑚𝑠𝑑𝜌)

+ (𝐸 (𝐼𝜉 sin2 (𝜃) + 𝐼𝜂 cos2 (𝜃)) V)
+ (𝐸 (𝐼𝜉 − 𝐼𝜂) cos (𝜃) sin (𝜃) 𝑢)
+ Ω2𝑚 sin (𝛽) (𝑢 cos (𝛽) − V sin (𝛽))
+ 𝑓V = 𝑚𝑔 sin (Ω𝑡) sin (𝛽) .

(7b)
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Figure 2: Coordinates of the blade.

2.2. Aerodynamic Equations. Aerodynamic force and torque
are caused by the relative motion of the blade and the
unsteady aerodynamic formula is given by Greenberg. The
relative velocity of the blade to the air is deduced below
and put it into the aerodynamic formula. For convenience,
the fourth coordinate systems are introduced (𝑥2, 𝑦2, 𝑧2) as
shown in Figure 2.

[[
[

𝑖2
𝑗2
𝑘2
]]
]
= 𝑇𝑎 [[

[

𝑖
𝑗
𝑘
]]
]
= [[[
[

1 0 −𝑢
0 1 −V
𝑢 V 1

]]]
]
[[
[

𝑖
𝑗
𝑘
]]
]
. (8)

The relative velocity of the blade to the air should be the
vector sum of the absolute velocity and the velocity of the air
flow. That is,

𝑉 = 𝜔 × 𝑟 + ̇𝑟 − V𝑖𝑛. (9)

The velocity of air is

V𝑖𝑛 = 𝜆Ω𝑟𝐾 = [0 𝜆Ω𝑟 0] [𝑖 𝑗 𝑘]𝑇 . (10)

And 𝜆 = V𝑖𝑛/(Ω𝑟).
After vector calculation and coordinate transformation,

the following can be obtained:

𝑉 = V𝑥2𝑖2 + V𝑦2𝑗2, (11)

where

V𝑥2 = �̇� + Ω𝑠,
V𝑦2 = V̇ + 𝜆Ω𝑟 + Ω𝑢V. (12)

The aerodynamic force of the 𝑍 direction is ignored
because it has little effect on the analysis of the vibration of
the aeroelasticity. Next, the mod of 𝑉 is

|𝑉| = 𝑉 = Ω𝑠 + (𝜆2Ω2 ) 𝑠 + �̇� + 𝜆V̇. (13)

In order to apply these speeds to the need of aerodynamic
formulas, the relative velocity is divided into static and
dynamic parts first:

𝑉0 = Ω𝑠𝑖2 + (𝜆Ω𝑠 + ΩV) 𝑢𝑗2,
𝑉𝑑 ≈ �̇�𝑖2 + V̇𝑗2. (14)
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Figure 3: Velocity vectors of the blade.

Next, with the static speed 𝑉0, normal 𝑛, and tangent
direction 𝑡 being coordinates and 𝑛 and 𝑡 being unit vectors,
the dynamic velocity is decomposed as shown in Figure 3.

1𝑉0 ≈
1

(Ω𝑠) (1 − 0.5𝜆2) ,
𝑡 = 𝑉𝑉0 = (1 − 0.5𝜆2) 𝑖2 + 𝜆𝑗2.

(15)

The unit vector 𝑛 of the normal phase is perpendicular to
the tangent unit vector 𝑡:

𝑛 = −𝜆𝑖2 + (1 − 0.5𝜆2) 𝑗2. (16)

With the tangent and normal unit vector being available,
the following can be obtained:

ℎ̇ = 𝜆�̇� − (1 − 0.5𝜆2) V̇,
ℎ̈ = 𝜆�̈� − (1 − 0.5𝜆2) V̈,
�̇� = (1 − 0.5𝜆2) �̇� + 𝜆V̇,
�̈� = (1 − 0.5𝜆2) �̈� + 𝜆V̈.

(17)

The total tangential velocity can be obtained by adding
the static velocity V0 to the dynamic velocity:

V𝑡 = V𝑡𝑥2𝑖2 + V𝑡𝑦2𝑗2
= (Ω𝑠 + �̇� + 𝜆V̇) 𝑖2 + (𝜆Ω𝑠 + ΩV) (𝑢 + 𝜆�̇�) 𝑗2. (18)

In addition to the velocity above, the angle of attack is also
given before the aerodynamic load is calculated and we also
need to find the mod and the reciprocal of V𝑡:

V𝑡 = V𝑡 ≈ Ω𝑠 + 0.5𝜆2Ω𝑠 + �̇�,
1
V𝑡

≈ 1
(Ω𝑠) [1 − 0.5𝜆2 − �̇�/ (Ω𝑠)] .

(19)

As shown in Figure 4,

V𝑡𝑥2
V𝑡

= cos (𝜃𝑖 − 𝛼) = cos 𝜃𝑖 cos𝛼 + sin 𝜃𝑖 sin𝛼,
V𝑡𝑦2
V𝑡

= sin (𝜃𝑖 − 𝛼) = sin 𝜃𝑖 cos𝛼 − cos 𝜃𝑖 sin𝛼.
(20)

ea
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Figure 4: Pitch angel of the blade.

The aerodynamic expression given by the Greenberg
aerodynamic force theory is

𝐹𝐿𝑛 = (𝜌𝑏𝑐28 ) [ℎ̈ + V𝑡�̇� + V̇𝑡𝛼 + ( 𝑐4) �̈�] ,

𝐹𝐿𝑐 = (𝜌𝑏𝑐V𝑡2 ) [V𝑡𝛼 + ( 𝑐2) �̇� + ℎ̇] ,

𝐹𝐷 = 𝜌𝑐𝑐𝑑𝑢22 .

(21)

Acyclic lift of aerodynamic force 𝐹𝐿𝑛 and circulation lift𝐹𝐿𝑐 are perpendicular to the blade string and the velocity
vector 𝑢. The resistance 𝐹𝐷 is parallel to the velocity vector𝑢, but the direction is opposite. The torque is acting on the 𝑧2
axis.

𝐹𝑥2 = −𝐹𝐷V𝑥2𝑢 − 𝐹𝐿𝑐V𝑦2𝑢 − 𝐹𝐿𝑛 sin 𝜃𝑖,
𝐹𝑦2 = −𝐹𝐷V𝑦2𝑢 + 𝐹𝐿𝑐V𝑥2𝑢 + 𝐹𝐿𝑛 cos 𝜃𝑖.

(22)

The aerodynamic lift with circulation, acyclic lift, and
drag can be gotten by using Greenberg aerodynamic theory.
The changes of inertia and stiffness as a result of aerodynamic
forces have little effect on the stability of turbine blades, so
they can be ignored. According to the coordinate conversion
and high order simplification, the aerodynamic forces can be
derived on small angle of attack wind turbine blade in 𝑥 and𝑦 directions:

𝑓𝑢 = 0.5𝜌𝑎𝑐 sin (𝜃) V𝑖𝑛 cos (𝛽) �̇�
+ 0.5𝜌𝑎𝑐V𝑖𝑛 cos (𝛽) ( V𝑖𝑛Ω𝑠) (1 − cos (𝜃)) �̇�
+ 0.125𝜌𝑎𝑐2 sin (𝜃)Ω𝛽�̇�
+ 0.5𝜌𝑎𝑐 sin (𝜃)Ω𝑠 cos (𝛽) V̇
+ 0.5𝜌𝑎𝑐 sin (𝜃) V𝑖𝑛 cos (𝛽) ( V𝑖𝑛Ω𝑠) V̇
− 0.5𝜌𝑎𝑐V𝑖𝑛 cos (𝛽) V̇ + 0.25𝜌𝑎𝑐2Ω𝛽V̇,

(23a)
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𝑓V = −𝜌𝑎𝑐 sin (𝜃)Ω𝑠 cos (𝛽) �̇� + 0.5𝜌𝑎𝑐V𝑖𝑛 cos (𝛽) �̇�
− 0.375𝜌𝑎𝑐2Ω𝛽�̇�
+ 0.5𝜌𝑎𝑐Ω𝑠 cos (𝛽) (1 − 0.5 ( V𝑖𝑛Ω𝑠)

2) V̇

− 0.5𝜌𝑎𝑐 sin (𝜃)Ω𝑠 cos (𝛽) ( V𝑖𝑛Ω𝑠) V̇,

(23b)

where𝑚 = 𝑚(𝑠), 𝜃 = 𝜃(𝑠), 𝐼𝜁 = 𝐼𝜁(𝑠), 𝐼𝜂 = 𝐼𝜂(𝑠), 𝐶 = 𝐶(𝑠).
2.3. Finite Difference Method. This paper uses the fourth-
order derivative in 𝑥-direction to show the process of finite
different method. The equations in 𝑦-direction are the same
as those in 𝑥-direction.

Before the blade model by using finite difference method
being simplified, the technical parameters of wind turbine
blades must be solved through differential solution or curve
fitting to get values of different nodes. The boundary condi-
tions are expressed as follows:

𝑢 (0, 𝑡) = 𝑢 (0, 𝑡) = V (0, 𝑡) = V (0, 𝑡) = 0,
𝑢 (𝑅, 𝑡) = V (𝑅, 𝑡) = 𝑢 (𝑅, 𝑡) = V (𝑅, 𝑡) = 0. (24)

Based on Taylor expansions, the general difference form
of each derivative can be obtained through two-order central
difference. According to the first-order central difference
formula and (24), (25) can be obtained:

𝑢0 = 12ℎ (−𝑢−1 + 𝑢1) = 0,
𝑢−1 = 𝑢1.

(25)

According to the second- and third-order difference
formulas and (24), (26) can be obtained:

𝑢𝑛 = 112ℎ2 (−𝑢𝑛−2 + 16𝑢𝑛−1 − 30𝑢𝑛 + 16𝑢𝑛+1 − 𝑢𝑛+2)
= 0,

𝑢𝑛 = 12ℎ3 (−𝑢𝑛−2 + 2𝑢𝑛−1 − 2𝑢𝑛+1 + 𝑢𝑛+2) = 0.
(26)

Equation (27) can be obtained by substituting the bound-
ary conditions into (26):

𝑢𝑛+1 = 17 (𝑢𝑛−2 − 9𝑢𝑛−1 + 15𝑢𝑛) ,
𝑢𝑛+2 = 17 (9𝑢𝑛−2 − 32𝑢𝑛−1 + 30𝑢𝑛) .

(27)

Finally, the fourth-order derivative difference equations
are as follows:

𝑢2 = 1ℎ4 (−4𝑢1 + 6𝑢2 − 4𝑢3 + 𝑢4) ,
𝑢𝑛 = 1ℎ4 (𝑢𝑛−2 − 4𝑢𝑛−1 + 6𝑢𝑛 − 4𝑢𝑛+1 + 𝑢𝑛+2) ,

𝑢𝑁−1 = 17ℎ4 (7𝑢𝑁−3 − 27𝑢𝑁−2 + 33𝑢𝑁−1 − 13𝑢𝑁) ,
𝑢𝑁 = 127ℎ4 (𝑢𝑁−2 − 2𝑢𝑁−1 + 𝑢𝑁) ,

(3 ≤ 𝑛 ≤ 𝑁 − 2) .
(28)

Similarly, the first-order derivative difference equations
are as follows:

𝑢1 = 112ℎ (𝑢1 + 8𝑢2 − 𝑢3) ,
𝑢2 = 112ℎ (−8𝑢1 + 8𝑢3 − 𝑢4) ,
𝑢𝑛 = 112ℎ (𝑢𝑛−2 − 8𝑢𝑛−1 + 8𝑢𝑛+1 − 𝑢𝑛+2) ,

𝑢𝑁−1 = 112ℎ (𝑢𝑁−3 − 577 𝑢𝑁−2 + 97𝑢𝑁−1 + 417 𝑢𝑁) ,
𝑢𝑁 = 112ℎ (67𝑢𝑁−2 − 967 𝑢𝑁−1 + 907 𝑢𝑁) ,

(3 ≤ 𝑛 ≤ 𝑁 − 2) .

(29)

The second-order derivative difference equations are as
follows:

𝑢1 = 112ℎ2 (−31𝑢1 + 16𝑢2 − 𝑢3) ,
𝑢2 = 112ℎ2 (16𝑢1 − 30𝑢2 + 16𝑢3 − 𝑢4) ,
𝑢𝑛

= 112ℎ2 (−𝑢𝑛−2 + 16𝑢𝑛−1 − 30𝑢𝑛 + 16𝑢𝑛+1 − 𝑢𝑛+2) ,
𝑢𝑁−1

= 184ℎ2 (−7𝑢𝑁−3 + 111𝑢𝑁−2 − 201𝑢𝑁−1 + 97𝑢𝑁) ,
𝑢𝑁 = 0,

(3 ≤ 𝑛 ≤ 𝑁 − 2) .

(30)

The third-order derivative difference equations are as
follows:

𝑢1 = 12ℎ3 (−𝑢1 − 2𝑢2 + 𝑢3) ,
𝑢2 = 12ℎ3 (2𝑢1 − 2𝑢3 + 𝑢4) ,
𝑢𝑛 = 12ℎ3 (−𝑢𝑛−2 + 2𝑢𝑛−1 − 2𝑢𝑛+1 + 𝑢𝑛+2) ,

𝑢𝑁−1 = 114ℎ3 (−7𝑢𝑁−3 + 15𝑢𝑁−2 − 9𝑢𝑁−1 + 𝑢𝑁) ,
𝑢𝑁 = 0,

(3 ≤ 𝑛 ≤ 𝑁 − 2) .

(31)
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Figure 5: The mode of vibration.

3. Modal Analysis

In order to easily calculate and analyze the blade model,
this paper chose the parameters provided in [16] for the
following calculations. As the taper cross-sectional blades are
general, this paper chose the blade which is made of isotropic
materials for the following simulation. The blade parameters
are as follows:

𝐸𝜁 = 𝐸𝜂 = 10 × 109 Pa,
𝐺 = 10 × 107 Pa,
𝛽 = 0.035 rad,
𝜌 = 1.237Kg/m3,
𝑅 = 60m,
𝛼 = 0.3,
𝜃 = 2𝜋 (𝑠 − 60)2 120360 ,
𝑐 = 4 − 3𝑠 × 2.8180 ,
𝑏 = 0.25𝑐,
𝑚 = 𝜌0𝑏𝑐.

(32)

The differential equations are substituted in the dif-
ferential items of (7a) and (7b). According to the chosen
node number, the relevant parameters are synthesized. The
expressions can be obtained finally in (33). 𝑀, 𝐾 are
the mass and stiffness matrices. And 𝑞 is [𝜇1, 𝜇2, 𝜇3, . . . ,𝜇𝑁, ]1, ]2, ]3, . . . , ]𝑁].

Figure 5 shows the first-order modes of vibration in
the directions of lead-lad and flapping. They can be solved
by vtb4-3 in the MATLAB vibration toolboxes. The first-
, third-, and fifth-order modal analyses are made by the
finite element method in Figure 6. The first six order natural
frequencies with variable finite difference nodes are obtained

Table 1: Natural frequencies with variable finite difference nodes.

Number 6 10 16 30 50
𝜔1 0.358907 0.378943 0.385872 0.385882 0.385887
𝜔2 1.423122 1.234436 1.229124 1.229131 1.229135
𝜔3 2.564390 2.379256 2.353636 2.353641 2.353639
𝜔4 4.563212 4.136932 4.236893 4.236887 4.236885
𝜔5 8.536790 7.315466 7.414138 7.414123 7.414121
𝜔6 12.34890 10.06764 10.98524 10.98518 10.98519

by FDM in Table 1. Table 1 also shows that the natural
frequencies become more accurate with increasing finite
difference nodes. In order to reduce the computing time,
the number of nodes 𝑁 = 16 is chosen in the following
calculations. The first six order natural frequencies of blades
are derived by FEM and FDM as shown in Table 2. A
comparison of two results shows the validity of themodel and
algorithm.

𝑀 ̈𝑞 + 𝐾𝑞 = 0. (33)

4. The Autonomous System

After the simplification by finite difference method, if
ignoring the effect of gravity, the turbine blades discussed
above can be regarded as an autonomous system. The dif-
ferential equations are substituted in the differential items
of (1a), (1b), (2a), (2b), (4a), (4b), (5a), and (5b). According
to the chosen node number, the relevant parameters are
synthesized. The expressions in the autonomous system can
be obtained finally in the following:

�̈�𝑗 = 𝑋𝑗 (𝑥1, 𝑥2, . . . , 𝑥2𝑁, �̇�1, �̇�2, . . . , �̇�2𝑁) ,
(𝑗 = 1, 2, . . . , 2𝑁) ,

𝑥 = [𝑢1, . . . , 𝑢𝑁; V1, . . . , V𝑁] .
(34)
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Figure 6: Modal analysis by FEM.

Table 2: Natural frequencies of blades.

Rotating speed
(rad/s)

0 0.8 10 30

𝜔1 (FEM) 0.3875 0.4256 1.5765 3.3946

𝜔1 (FDM) 0.3859 0.4215 1.5552 3.2976

𝜔2 (FEM) 1.2306 1.2393 2.2422 3.4022

𝜔2 (FDM) 1.2291 1.2356 2.1287 3.3486

𝜔3 (FEM) 2.4218 2.4488 4.7605 9.0082

𝜔3 (FDM) 2.3536 2.3214 4.4561 8.6540

𝜔4 (FEM) 4.3346 4.3503 5.6395 12.039

𝜔4 (FDM) 4.2369 4.5123 6.1420 11.204

𝜔5 (FEM) 7.3653 7.3922 10.498 18.218

𝜔5 (FDM) 7.4141 7.4345 10.785 17.214

𝜔6 (FEM) 10.549 10.555 11.365 20.293

𝜔6 (FDM) 10.985 11.241 11.754 22.314

Supposing𝑦𝑗 = �̇�𝑗, (34) is transformed into the following:

̇𝑦𝑗 = 𝑌𝑗 (𝑦1, 𝑦2, . . . , 𝑦4𝑁) , (𝑗 = 1, 2, . . . , 4𝑁) ,
𝑦 = [𝑢1, . . . , 𝑢𝑁; V1, . . . , V𝑁; �̇�1, . . . , �̇�𝑁; V̇1, . . . , V̇𝑁] . (35)

After wind turbine blades are simplified, they become
a linear time-invariant system. So the equations can easily
be solved by state space expressions in (36). The blade
parameters can be optimized by the linear state space. But any
real system is always working under all kinds of occasional
and continuous interference. After the system is subjected
to interference, it can return to the stable work. This is a
nonlinear stability problem and is also the focus of future
research.

�̇� = 𝐴𝑥 + 𝐵𝑢,
𝑦 = 𝐶𝑥 + 𝐷𝑢. (36)

If all poles in the state space fall on the left plane, the
system is stable or unstable. In order to study the relationship
between the variable parameters and stability, the maximal
real part of pole is introduced. If the maximal real part of
the pole is less than zero, the system is stable or unstable.
The stable regions of the variable parameters such as the wind
velocity, rotational speed, elastic modulus in lead-lag, elastic
modulus in flapping, density of the blade, and the pitch angle
are shown in Figure 7. Taking Figure 7(a) as an example,
we select the design and operating parameters of the blade
according to experience and keep wind speed as the only
variable and then choose different wind speeds to calculate
the eigenvalues of the system. According to the criterion
theorem of eigenvalues, if all the real part of eigenvalue is
less than 0, the system is stable, or the system is unstable. In
order to make it convenient for programming, we estimate
the stability of system by using the real maximum value of
the eigenvalues. The stability area of wind speed of the wind
turbine can be determined in this way to provide basis for the
design and usage of the wind turbine. The principle of (b) to
(f) in Figure 7 is the same as that in Figure 7(a).

The flutter speeds in different rotational speeds are also
derived in Figure 8. Flutter is a critical state of convergence
and divergence, that is, a demarcation point of stability or
instability.The relationship between wind speed and rotation
speed can be obtained in Figure 8. For example, when the
wind speed is 20m/s, the rotation speed of wind turbine
should be less than 0.4 rad/s. Once it is larger than this value,
the wind turbine will be unstable.This provides a basis for the
operation of wind turbine.

4.2. Numerical Simulation. Assisted by MATLAB vibration
toolboxes, the vibration on the turbine blade tip can be sim-
ulated in the nonautonomous system through time disperse.
Select the number of nodes𝑁 = 16, spin speedΩ = 0.8 rad/s,
and the initial displacements of blade tip to be 𝜇16 = −0.1885
and ]16 = 0.6986. As the displacement of a continuous
bar is continuous, the initial displacement of other nodes
should be selected according to its linear vibration mode.
Figures 9, 10, and 11 plot the displacements and phase tracks
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Figure 7: Stability of variable turbine blade parameters.
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Figure 9: The convergent displacements and phase tracks of blade tip in autonomous system.



10 Shock and Vibration

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1
�

e l
ea

d-
la

g 
di

sp
la

ce
m

en
t o

f b
la

de
 ti

p 
(m

)

10 20 30 40 500
Time (s)

(a)

−1.5

−1

−0.5

0

0.5

1

1.5

�
e l

ea
d-

la
g 

ve
lo

ci
ty

 o
f b

la
de

 ti
p 

(m
/s

)

0 0.2−0.4 −0.2−0.6
�e lead-lag displacement of blade tip (m)

(b)

−0.5

0

0.5

1

1.5

�
e fl

ap
pi

ng
 d

isp
la

ce
m

en
t o

f b
la

de
 ti

p 
(m

)

10 20 30 40 500
Time (s)

(c)

0 0.5 1 1.5−0.5
�e flapping displacement of blade tip (m)

−3

−2

−1

0

1

2

3
�

e fl
ap

pi
ng

 v
elo

ci
ty

 o
f b

la
de

 ti
p 

(m
/s

)

(d)

Figure 10: The flutter displacements and phase tracks of blade tip in autonomous system.

of the blade tip in lead-lag and flapping directions when
]𝑖𝑛 = 12m/s, 18m/s, and 22m/s, respectively. From the three
figures, what can be concluded is that when ]𝑖𝑛 = 12m/s,
18m/s, and 22m/s, the blade vibration is convergent, flutter,
and divergent, respectively.

The blade vibration will show the convergence, flutter,
and divergence characteristics with increasing wind speeds.
When the operating environment is harsh, wind turbines
must stop working. In order to improve the maximum
operating wind speed and optimize the design of blade,
dynamic adjustment of operation parameters should be
employed. As the air force also has effect on the con-
vergence, flutter, and divergence, the balance position of
turbine blade vibration is not zero. Owing to the limi-
tation of space, only the vibration simulation curves on

the tip of the blade are attached in this paper (Figures
9, 10, and 11). The blade deformation will decrease with
the decreasing length of blades. In addition, the changing
initial condition is helpful to understand the coupling vibra-
tion.

5. The Nonautonomous System

When considering the effect of gravity, the equations of
turbine blade discussed above can be regarded as a nonau-
tonomous system. The differential equations are substituted
in the differential items of (7a), (7b), (23a), and (23b). Accord-
ing to the chosen node number, the relevant parameters are
synthesized. So the expressions in nonautonomous system
can be expressed as follows.
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Figure 11: The divergent displacements and phase tracks of blade tip in autonomous system.

�̈�𝑗 = 𝑋𝑗 (𝑥1, 𝑥2, . . . , 𝑥2𝑁, �̇�1, �̇�2, . . . , �̇�2𝑁, 𝑡) ,
(𝑗 = 1, 2, . . . , 2𝑁) ,

𝑥 = [𝑢1, . . . , 𝑢𝑁; V1, . . . , V𝑁] .
(37)

Supposing 𝑦𝑗 = �̇�𝑗, (37) is transformed into the follow-
ing:

̇𝑦𝑗 = 𝑌𝑗 (𝑦1, 𝑦2, . . . , 𝑦4𝑁, 𝑡) , (𝑗 = 1, 2, . . . , 4𝑁) ,
𝑦 = [𝑢1, . . . , 𝑢𝑁; V1, . . . , V𝑁; �̇�1, . . . , �̇�𝑁; V̇1, . . . , V̇𝑁] . (38)

Assisted by MATLAB vibration toolboxes, the vibration
on the turbine blade tip can be simulated in the nonau-
tonomous system through time discretization. Select the

number of nodes 𝑁 = 16, spin speed Ω = 0.8 rad/s,
and the initial conditions to be the same as those with
autonomous system. As the displacement of a continuous
bar is continuous, the initial displacement of other nodes
should be selected according to the linear vibration mode.
Figures 12, 13, and 14 plot the displacements and phase
tracks of the blade tip in the lead-lag and flapping directions
when ]𝑖𝑛 = 12m/s, 18m/s, and 22m/s, respectively. It
can be concluded that when ]𝑖𝑛 = 12m/s and 22m/s,
the blade vibration is convergent and divergent and when
]𝑖𝑛 = 18m/s, and the blade may introduce the low-speed
flutter.

Wind speed has an important influence on the stability
of the vibration of blades. No matter how the design and
operation of the blade are optimized, there is always a



12 Shock and Vibration

20 40 60 80 1000
Time (s)

−1

−0.5

0

0.5

1
�

e l
ea

d-
la

g 
di

sp
la

ce
m

en
t o

f b
la

de
 ti

p 
(m

)

(a)

−1

−0.5

0

0.5

1

1.5

�
e l

ea
d-

la
g 

ve
lo

ci
ty

 o
f b

la
de

 ti
p 

(m
/s

)

0 0.5 1−0.5−1
�e lead-lag displacement of blade tip (m)

(b)

−1.5

−1

−0.5

0

0.5

1

1.5

2

�
e fl

ap
pi

ng
 d

isp
la

ce
m

en
t o

f b
la

de
 ti

p 
(m

)

20 40 60 80 1000
Time (s)

(c)

0 1 2−1−2
�e flapping displacement of blade tip (m)

−3

−2

−1

0

1

2

3
�

e fl
ap

pi
ng

 v
elo

ci
ty

 o
f b

la
de

 ti
p 

(m
/s

)

(d)

Figure 12: The convergent displacements and phase tracks of blade tip in nonautonomous system.

wind speed at which the wind blade vibration is diver-
gent. What we can do is to improve the critical wind
speed of stable operation. As long as the blade design
and operation are reasonable, the blade vibration can be
controlled within the stability region. Compared with the
autonomous system, the convergent vibration amplitude
under nonautonomous system is larger. The lead-lag vibra-
tion is a cosine curve. The flapping vibration is basically
a sine curve. The vibration cycle is directly related to spin
speed because of the gravity effect. Due to the limited
space, only the vibration curves on the tip of the blade
were attached in this paper (Figures 12, 13, and 14). The
blade deformation will decrease with decreasing length of
blades. In addition, the changing initial condition can also
be helpful in understanding the coupling vibration of turbine
blades.

6. Conclusions

According to Hamilton principle and Greenberg unsteady
aerodynamic theory, partial differential equations of large
horizontal axis turbine blades had been derived. This paper
had used a finite difference method and state space method
to deal with the general vibration systems which cannot
be decoupled. In contrast with FEM, modal analysis had
been studied. By the principle of stability analysis, the stable
regions of the variable parameters such as the wind velocity,
rotational speed, elastic modulus in lead-lag, elastic modulus
in flapping, density of the blade, and the pitch angle had
been obtained.The blade tip vibration in autonomous system
and nonautonomous system can be simulated by MATLAB
vibration toolboxes in time domain. The convergent, flutter,
and divergent vibration curves had been plotted in the
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Figure 13: The flutter displacements and phase tracks of blade tip in nonautonomous system.

lead-lag and flapping direction. This paper can also be a
reference to the design, manufacture, and operation control
of a wind turbine.

Nomenclature

𝑚: Mass density (Kg/m)Ω: Rotational speed (rad/s)Φ: Rotational angle (rad/s)𝐸𝜁, 𝐸𝜂: Elastic modulus in 𝜁 and 𝜂 directions (Pa)𝐺: Shear modulus (Pa)𝛽: The pitch angle (rad)𝐽: Polar moment of inertia,𝐽 = ∫∫
𝐴
(𝜂2 + 𝜁2)𝑑𝜂 𝑑𝜁 (m4)

𝐼𝜁, 𝐼𝜂: The principle moment of inertia in 𝜁 and 𝜂
directions, (m4), 𝐼𝜁 = ∫∫

𝐴
𝜂2𝑑𝜂 𝑑𝜁,

𝐼𝜂 = ∫∫
𝐴
𝜁2𝑑𝜂 𝑑𝜁

𝐼𝜂𝜂𝜁: ≡ ∫∫
𝐴
𝜂(𝜂2 + 𝜁2)𝑑𝜂 𝑑𝜁

𝐼𝜂𝜁𝜁: ≡ ∫∫
𝐴
𝜁(𝜂2 + 𝜁2)𝑑𝜂 𝑑𝜁𝜃: Pretwisted angle (rad)𝐼𝑔: Moment of inertia per unit length (Kg⋅m2)𝑙𝑐𝑔: Blade eccentricity (m)𝜇, ]: The displacement in 𝑥 and 𝑦 directions (m)𝑠: The distance from the center of rotation (m)𝑏: Blade thickness (m)

𝑐: Blade chord length (m)
𝜌: Air density (Kg/m3)
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Figure 14: The divergent displacements and phase tracks of blade tip in nonautonomous system.

𝑁: Node number of finite difference methodℎ: The length of each finite difference node𝑡: Time𝑔: Gravitational constant
]𝑖𝑛: Wind velocity (m/s)𝛼: The lift curve slope( ), (⋅): Derivative of distance and time, 𝑑( )/𝑑𝑠,𝑑( )/𝑑𝑡.
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