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.e vibration signals of rotatingmachinery are frequently disturbed by background noise and external disturbances because of the
equipment’s particular working environment..us, robustness has become one of the most important problems in identifying the
unbalance of rotor systems. Based on the observation that external disturbance of the unbalance response often displays sparsity
compared with measured vibration data, we present a new robust method for identifying the unbalance of rotor systems based on
model residual sparsity control. .e residual model is composed of two parts: one part takes regular measurements of noise, while
the other part evaluates the impact of external disturbances. With the help of the sparsity of external disturbances, the unbalance
identification is converted into a convex optimization problem and solved by a sparse signal reconstruction algorithm. Ex-
periment results have shown that the proposed method is robust and effective in identifying the unbalance of rotor systems in
a complex environment, improving the precision of unbalance estimation and simplifying the balancing process.

1. Introduction

Rotor unbalance, one of the most frequently seen faults in
rotating machinery, needs to be modified at regular intervals
to ensure safe and stable operation of the equipment. Ap-
plications that can be commonly seen are steam turbines,
compressors, wind turbines, and aeroengines. Balancing
theory has been thoroughly studied, and several useful
balancing methods have been developed in the last decades
[1–6].

.e most popular balancing techniques, including in-
fluence coefficient method and modal-based balancing
method, have obtained balancing masses by least squares or
improved least-squares methods. .e main drawback of
least squares or improved least squares is that they are
sensitive to noise present in the vibration response. Un-
fortunately, the vibration response is frequently disturbed by
background noise and external disturbances because of the
equipment’s particular working environment. Conse-
quently, robustness has become one of the most important

problems in estimating the unbalance of rotor systems.
Furthermore, the equipment can rarely run steadily when
unbalance faults exist. .erefore, components that have no
relationship with unbalance faults could be included in the
modified vibration response, a phenomenon that also re-
quires enhancing the robustness of unbalance estimation.

Researchers have developed several approaches to im-
prove the performance of unbalance estimation in noise
environment. Sinha et al. [7] has proposed a robust method
for unbalance estimation using measured pedestal vibration
along withan a priori model of both the rotor and the fluid
bearings. Pennacchi et al. [8–10] has introduced an auto-
matic procedure for unbalance estimation based on robust
regression methods, which mainly focuses on high break-
down point and bounded-influence estimators. .e primary
principle of the methods in [8–10] is to reduce the influence
of the external disturbance on unbalance estimation using
a selected penalty function, aiming to address the problem
that traditional balancing methods require substantial
practical experience in field balancing. However, the
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distribution of the external disturbance should be consid-
ered in the selection of the penalty function, and limitations
could exist in the application of more complicated nonlinear
models. .e most recent study by Nauclér and Söderström
[11] present a novel method that reformulates unbalance
estimation problem as a linear estimation procedure, taking
disturbances into account.

Sparsity, an important characteristic of vibration signals,
has been successfully applied in signal processing, signal
compression, and pattern recognition [12, 13]. Recent re-
search and experimental results have proved the effective-
ness of sparsity in reducing the influence of outliers [14–16].
Either being sparse naturally or being represented sparsely
on a selected basis, superior signal modeling or re-
construction performance could be obtained by controlling
the sparsity of model residuals and with the application of
a sparse signal reconstruction algorithm.

.e practical operation of field balancing has proved the
explicit sparsity of the external disturbance and background
noise that affect the unbalance estimation of a rotor system
compared with the collected vibration response. A new
robust method for estimating the unbalance of rotor systems
based on model residual sparsity control is presented in this
paper. .e residual model is composed of two parts. One
part takes regular measurements of noise, while the other
part evaluates the impact of external disturbances. With the
help of the sparsity of external disturbances, rotor unbalance
identification is converted into a convex optimization
problem and solved by a sparse signal reconstruction al-
gorithm. Experimental results have shown that the proposed
method is robust and can effectively identify the unbalance
of rotor systems in a complex environment.

In this paper, the main principle of rotor balancing is
briefly introduced, and the improved regression model and
sparsity signal reconstruction algorithm are presented,
followed by experimental demonstration of the effectiveness
and robustness of the proposed unbalance estimation ap-
proach, which leads to a positive and promising conclusion.

2. Influence Coefficient Balancing Method

.e influence coefficient method, the most popular and
widely used approach for rotor balancing because of its
experimental characteristic, was developed based on linear
vibration theory, which assumes a linear correlation between
vibration and unbalance mass [10, 17, 18]. In practice, the
balancing rotating speed, the number of measuring planes,
and the number of balancing planes are selected according to
the structure of the machine. Supposing there are nr rotating
speeds, nm measuring planes, and nb balancing planes, the
balancing masses can be obtained from the following
overdetermined system:

y + Xθ � e, (1)

where y is the measured vibration response and is 2nmnr × 1
complex vector that shall be expressed as follows:

y � ξ Ω1( 􏼁􏼈 􏼉
T

· · · ξ Ωj􏼐 􏼑􏽮 􏽯
T

· · · ξ Ωnr
􏼐 􏼑􏽮 􏽯

T
􏼚 􏼛

T

, (2)

where ξ(Ωj) is a 2nm × 1 complex vector representing the
vibration response at the jth rotating speed, and

ξ Ωj􏼐 􏼑 � 􏼨 ξ(1)
v Ωj􏼐 􏼑 ξ(1)

h Ωj􏼐 􏼑􏽮 􏽯 · · · ξ(k)
v Ωj􏼐 􏼑 ξ(k)

h Ωj􏼐 􏼑􏽮 􏽯

· · · ξ nm( )
v Ωj􏼐 􏼑 ξ nm( )

h Ωj􏼐 􏼑􏼚 􏼛􏼩

T

,

(3)

where ξ(k)
v (Ωj) and ξ(k)

h (Ωj) are the vibration responses
along the vertical direction and the horizontal direction,
respectively, in the kth measuring plane, at the jth rotating
speed.

(i) X is the 2nmnr × 1 influence matrix for all nr rotating
speeds:

X � C Ω1( 􏼁􏼂 􏼃
T

· · · C Ωj􏼐 􏼑􏽨 􏽩
T

· · · C Ωnr
􏼐 􏼑􏽨 􏽩

T
􏼔 􏼕

T

, (4)

and C(Ωj) is the influence matrix at the jth rotating speed:

C Ωj􏼐 􏼑 �

α11 · · · α1w · · · α1nb

⋮ ⋱ ⋮

αk1 αkw αknb

⋮ ⋱ ⋮

αnm1
· · · αnmw · · · αnmnb

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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, (5)

where αkw is the 2 × 1 complex influence vector of the wth
balancing plane on the kth measuring plane.

(ii) θ � [θ1 · · · θk · · · θnb
]T is an nb × 1 balancing masses

vector.
(iii) e is a 2nmnr × 1 complex vector that represent the

model errors.

3. The Improved Regression Model

Generally, (1) can be seen as a multiple linear regression
problem:

yi � xi,1θ1 + · · · + xi,kθk + ei � X
T
i θ + ei,

i � 1, 2, . . . , 2nmnr,
(6)

where i � 1, 2, . . . , 2nmnr is the number of vibration re-
sponses collected from the rotor system. In regression
analysis, yi is usually named as the response variable, xi,j(j �

1, 2, . . . , k) is the explanatory variable, θi is the regression
coefficient, and ei is the model residual. Generally, the re-
gression coefficients are obtained by least squares, which
minimizes 􏽐ie

2
i . Unfortunately, the least squares method is

sensitive to outliers and often gives unsatisfactory results.
Given the above limitations of least squares, robust

estimators have been developed to enhance the robustness.
.e M-Huber estimator, GM estimator, and least trimmed
squares (LTS) estimator, the three most common robust
estimators, are used widely. In general, robust estimators
reduce the impact of contaminated data by using different
penalty functions to obtain robustness, which is useful in
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unbalance estimation because these penalty functions can
automatically determine weight coefficients, while weight
coefficients should be manually given by experts, as in
traditional methods like weighted least squares. A more
detailed and comprehensive description of using these ro-
bust estimators to identify unbalance can be found in [10].
However, the proper penalty function is still necessary in the
investigation of the vibration data.

Rotor balancing requires that the equipment should run
steadily in the whole run-up process. .erefore, the vibra-
tion response is usually collected from different rotating
speeds and on several balancing planes. In the normal case,
only a small part of the vibration response is contaminated,
and hence, the external disturbance or outliers explicitly
display sparsity. Instead of de-emphasizing the contami-
nated data in vibration response like robust estimators, an
alternative approach is to measure the contaminated data in
the regression model (6), which is useful as the distribution
of the contaminated data can be used to instruct the selection
of balancing planes and balancing speeds, both of which
have significant influence on the efficiency and precision of
dynamic balancing.

To take advantage of the observation that the contam-
inated data are sparse compared with the collected vibration
response, an alternative model is proposed as follows:

yi � xi,1θ1 + · · · + xi,kθk + εi + oi � X
T
i θ + εi + oi,

i � 1, 2, . . . , 2nmnr,
(7)

where εi􏼈 􏼉
2nmnr
i�1 are zero-mean i.i.d. random variables typi-

cally representing model residuals and oi􏼈 􏼉
2nmnr
i�1 are variables

representing external disturbance and outliers. If the vi-
bration response is contaminated, oi ≠ 0, and otherwise
oi � 0..erefore, oi􏼈 􏼉

2nmnr
i�1 is a sparse vector..ematrix form

of (7) is

y � Xθ + o + ε � [X, I]
θ

o
􏼢 􏼣 + ε. (8)

4. Robust Estimation of the Unbalance of Rotor
System Based on Sparse Signal
Recovery Algorithms

With both the regression coefficients θ and vector o un-
known, (8) is an underdetermined problem. Taking ad-
vantage of the sparsity of vector o, (8) can be converted to the
optimization problem:

min
θ,o

‖y−Xθ− o‖
2
2 + λ‖o‖0􏽨 􏽩, (9)

where ‖o‖0 denotes the ℓ0-norm and λ is a regularization
parameter that controls the sparsity of vector o. Recent
research on sparse representation and compressive sensing
has used the fact that the ℓ1-norm is a convex approximation
of ℓ0-norm. .us, optimization problem (9) can be ap-
proximated by the convex optimization problem:

min
θ,o

‖y−Xθ− o‖
2
2 + λ‖o‖1􏽨 􏽩, (10)

where ‖o‖1 is the ℓ1-norm of vector o. Since o is a sparse
vector, (9) is a sparse signal recovery problem. Accordingly,
both the regression coefficients and vector o can be obtained
by sparse signal recovery algorithms like interior point al-
gorithms or infeasible path-following algorithms. .e re-
gression coefficients represent the unbalance mass of the
rotor system, while vector o determines how each vibration
response is contaminated. Hence, vector o has useful in-
formation that directly demonstrates the distribution law of
external disturbances and guides the application of dynamic
balancing.

.e regularization parameter λ has a critical influence on
the performance of the unbalance estimation, and both
underregularizing and overregularization can result in loss
of precision of unbalance estimation. Generally, the larger λ,
the sparser the vector o. .erefore, a large λ will cause the
vector o to become a zero vector, while a small λ is not
sufficient to extract the external disturbance and outliers.
.e selection of the regularization parameter is more
a matter of engineering art and can be determined by the
following empirical formula [19, 20]:

λ �
􏽢σ

�����������
2 log 2nmnr( 􏼁

􏽱

3
, (11)

where 􏽢σ is a robust estimation of the scale of residuals.
A simulation is presented to evaluate the robustness of

the proposed method under noise and external disturbances.
As shown in (8), the external disturbance has constant
amplitude and random position, and the noise range from
0 dB to 40 dB. .e relative errors of both the proposed
method and least square are analyzed. It can be seen from
Figure 1 that the relative error of both the proposed method
and least square declines with the decrease of the noise level.
Generally, the proposed method has a superior performance
than least square at each noise level. When the noise level
range from 0 dB to 10 dB, which can be treated as a strong
background noise environment, the relative error of the
proposedmethod stabilizes around 5%∼10%..e simulation
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Figure 1: .e relative error under different noise levels.
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results indicated that the proposed method has a satisfactory
robustness under noise environment.

5. Experiments and Discussion

In this section, the proposed robust unbalance estimation
method is verified in the identification of the balancing mass
of a test rig. .e structure sketch of the test rig and the
configuration of transducer are illustrated in Figure 2, where
transducers #1–#4 measure the vibration of the cross sec-
tions A and B, while transducer #5 is a key phase sensor that
collects key phase pulses to compute the rotating speed of the
rotor, and P1 and P2 are two balancing planes. .e first-
order critical speed of the rotor system is about 1880 rpm. In
order to solve problem (10), the widely used optimization
MATLAB toolbox CVX is adopted [21, 22].

5.1. Case of One Unbalance. In order to eliminate the in-
fluence of other faults and concentrate on investigating the

performance of the method to estimate unbalance mass, the
vibration response due to unbalance mass is obtained by two
run-up processes. .e original vibration response of several
different rotating speeds is collected by one run-up process,
and one known unbalance mass is applied in balancing plane
P1 to simulate the unbalance fault. .en, the rotor system is
started up again, and the vibration signals of the rotor are
measured with applied unbalance mass. With the vibration
response of the above two run-up processes, the experi-
mental vibration response due to applied unbalance mass is
obtained in the speed range of 1000 rpm∼2500 rpm and
shown in Figure 3.

.e influence matrix is usually obtained by applied trial
weights or analytical models. Here, the influence matrix is
estimated by experimental tests, as analytical models are
complicated and often not sufficiently accurate enough.
Since the vibration response is complex data, the perfor-
mance of the proposed method is evaluated by the global
relative error, which can be derived by the Euclidean norm
and stated as

ω
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Figure 2: .e structure of the test rig.
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Figure 3: .e vibration response of measuring planes A and B. X and Y correspond to the horizontal and vertical direction, respectively.
(a) Vibration response of measuring plane A. (b) Vibration response of measuring plane B.
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ηG �

��������������

[􏽢θ − θ]∗T[􏽢θ − θ]

θ∗Tθ

􏽳

, (12)

where θ is the true value of unbalance mass and 􏽢θ is the
estimated unbalance mass.

.e unbalance mass estimation results generated by
means of least squares (LS), M-Huber estimator, GM esti-
mator, and the proposed method are shown in Table 1.
Similar results are obtained by robust estimators, and these
robust estimators can improve the precision of unbalance
estimation in some way compared with the LS method.
However, the relative errors are still unsatisfactory, espe-
cially the estimated phase. .e proposed robust estimation
method based on sparse signal recovery algorithms shows
better performance with a global relative error of 11.6%
(λ � 2.478). .e different estimation results of LS, robust
estimators, and the proposed method suggest that the col-
lected vibration response of the rotor system is contami-
nated by outliers or external disturbances, and the proposed
method based on sparse signal recovery algorithms is more
robust than the robust estimators.

.e estimated residual vibration response of both
measuring planes A and B is demonstrated in Figure 4. As
shown, compared with the original vibration, the amplitude
of vibration signals before and after the first-order critical
speed has been reduced significantly after balancing. Because
of the resonance vibration phenomenon, the vibration
amplitude around the first-order critical speed still exists,
but has been reduced to an acceptable level.

In order to study the distribution of the external dis-
turbance and outliers in the unbalance response, motivated
by the idea of signal-to-noise ratio, the useful information
ratio is introduced to evaluate the quality of collected vi-
bration response. Considering the bivariate characteristic of
complex data, the useful information ratio is given by

χu �

�����
v∗Tr vr

v∗To vo

􏽳

, (13)

where vr is the residual vibration response and vo is the
original vibration response. .e useful information ratios
in the speed range of 1000 rpm–2500 rpm are shown in
Figure 5. .e useful information ratio varies with rotating
speed and has reduced to less than 0.5 around the first-order
critical speed, which is consistent with the phenomenon that
accurate amplitude and phase information is difficult to
obtain because of the violent vibration near the critical
speed. Furthermore, the variation of useful information ratio
suggests that the external disturbance is mainly distributed
near the first-order critical speed. .erefore, the balancing
speeds must be selected away from critical speeds.

5.2. Case of Two Unbalances. In this case, two known un-
balance masses are applied in balancing planes P1 and P2
separately to simulate multiplane unbalance fault..e goal is
to identify precisely the applied unbalance in terms of
masses and phases. .e experimental vibration response by
applied unbalance masses is generated in the same way as in

the one-unbalance case, which is shown in Figure 6. Due to
the difference between the horizontal stiffness and vertical
stiffness of the rotor system, the resonance peaks appear at
different rotating speeds, about 1800 rpm in horizontal di-
rection and 1900 rpm in the vertical direction.

.e influence matrix is generated by experimental tests
in the same way as in the one-unbalance case. .e estimated
results in terms of balancing masses and phases of LS,

Table 1: .e results of estimated unbalance mass.

Mass (g) Phase (°) Relative error (%)
Actual 0.4 0
LS 0.42 33.53 59.57
M-Huber 0.39 28.0 48.18
GM 0.39 334.8 43.44
.e proposed method 0.38 5.98 11.6
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Figure 4: Estimated residual vibration response of measuring
planes A and B. #1–#4 correspond to the four measuring directions.
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Figure 5:.e useful information ratio curve of measuring planes A
and B. #1–#4 correspond to the four measuring directions.
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M-Huber estimator, GM estimator, and the proposed ap-
proach are demonstrated in Table 2. .e comparison of the
estimated results in Table 2 with the known applied un-
balance masses and phases proves that robust estimators
gain a better performance than the results generated by the
LS method.

.e relative error is reduced from 66.40% to about 50%
in balancing plane P1, and it changes smoothly in balancing
plane P2. Similar results are obtained by the proposed ap-
proach compared with the robust estimators, suggesting that
the proposed method can reduce the impact of external
disturbance and improve the precision of unbalance esti-
mation. .e estimated results of robust estimators and the
proposed approach indicate that a robust method should be
adopted when the vibration response is corrupted.

To evaluate the quality of measured vibration response,
the useful information ratio curves are calculated and shown
in Figure 7. Consistent with the one-unbalance case, it can be
observed that the useful information ratio is reduced to less
than 0.5 near the first-order critical speed and is stabilized
above 0.8 in most rotating speeds away from the first-order
critical speed. .e change of the useful information ratio
curves also shows that the vibration response around the

first-order critical speed has been corrupted. On the other
hand, comparison of the useful information ratio curves of
the two-unbalance case with those of the one-unbalance case
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Figure 6: .e vibration response of measuring planes A and B. X and Y correspond to the horizontal and vertical direction, respectively.
(a) Vibration response of measuring plane A. (b) Vibration response of measuring plane B.

Table 2: .e results of estimated unbalance masses.

Balancing plane P1 Balancing plane P2
Mass (g) Phase (°) Relative error (%) Mass (g) Phase (°) Relative error (%)

Actual 0.2 0 0.2 0
LS 0.13 40.73 66.40 0.26 11.76 36.06
M-Huber 0.17 29.16 48.78 0.23 342.89 34.63
GM 0.17 29.34 49.00 0.23 341.50 37.51
.e proposed method 0.17 25.24 42.8 0.22 344.26 31.55
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Figure 7:.e useful information ratio curve of measuring planes A
and B. #1–#4 correspond to the four measuring directions.
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indicates that the quality of measured vibration response of
the two-unbalance case is worse than the quality of the one-
unbalance case, which is the reason why the performance of
the proposed method in the one-unbalance case is better
than that in the two-unbalance case. .erefore, the useful
information ratio curves can be adopted as an indication of
the precision of unbalance estimation.

.e estimated residual vibration responses of both
measuring planes A and B are demonstrated in Figure 8. As
for the one-unbalance case, the amplitude of vibration
signals before and after the first-order critical speed has been
reduced efficiently after balancing. As shown in Figures 7
and 8, at one rotating speed, the higher the quality of vi-
bration response, the smaller the vibration residual. .us,
special attention should be paid to the collection process of
vibration response.

6. Conclusions

A new robust method for estimating the unbalance of rotor
systems based on sparsity control of the residual model is
presented. .e performance of the proposed method has
been compared with several robust estimators in one-
unbalance and two-unbalance cases. .e experimental
studies suggest that the proposed method functions more
smoothly compared with LS and robust estimators like
M-Huber estimator and GM estimator. .e external dis-
turbance and outliers are mainly distributed near the first-
order critical speed of the rotor system. .e information
obtained from the useful information ratio curves could be
used to guide the selection of balancing speed and the
identification of the critical resonance zone of the rotor
system.

Considering a real application condition, the proposed
method can be used to improve the precision of unbalance
estimation and give some information to simplify the bal-
ancing process by analyzing the estimation results and the
useful information ratio curves.
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