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Vibration analysis and optimization of a rectangular plate with a flanging hyperellipse cutout is investigated in this paper,
numerically. In the analysis, finite element method (FEM) is applied to perform parametric studies on various plates in different
boundary conditions, addressing the influence of different cutout parameters (area, shape, flanging height, position, and rotation)
on the first- and second-order natural frequencies of the rectangular plate and providing references for the optimum frequency
design. *en, maximization of frequency or the difference of two consecutive frequencies of the rectangular plate is carried out
using Multi-island Genetic Algorithm, aiming to achieve the best dynamic characteristics. *e results show that different cutout
parameters have great influence on vibration performance of the plate, the existing of the flanging increases the out-of-plane
stiffness of the plate. Additionally, the nature frequency of the plate has been improved obviously for different models with the
optimal design of the cutout.

1. Introduction

In the actual engineering structure, such as aerospace, ship,
and marine, plate structures are considered as major en-
gineering substructures, especially wherever the weight is
a main issue. It is often necessary to fix up an appropriate
number of cutouts based on experience for structural
maintenance, weight reduction, or performance optimiza-
tion. On one hand, stress concentration occurs around the
cutouts, and the static strength of the component is reduced;
on the other hand, the quality and stiffness distribution of
the structure will change for the existing cutouts, which have
a great influence on the mechanical properties such as
natural frequency and structural load-bearing performance
of the structure. *erefore, analysis of the mechanical
properties of the structure with cutouts has been a hot issue
in the research, which is of great significance in the engi-
neering structure design.

Many studies [1–3] have been conducted on the
stress, deformation, vibration, and buckling characteristics

of structures with different type of cutouts (square, circular,
elliptic, and triangular shapes). In some engineering
structures, the plate structure may be subjected to in-plane
compressive loading, in which case the buckling phenom-
enon becomes a critical design criterion. For a rectangular
plate with cutout, Komur et al. [4] presented a buckling
analysis of a woven-glass-polyester laminated composite
plate with a circular/elliptical cutout. *e results show that
buckling loads are decreased by increasing both c/a and b/a
ratios. *e increase of cutout positioned angle causes de-
crease of buckling loads. Ovesy and Fazilati [5] investigated
the effects of cutouts on the buckling critical stresses as well
as natural frequencies of a plate with central cutout. A
numerical study was conducted using the finite element
method to determine the effects of square and rectangular
cutouts on the buckling behavior of a 16-ply quasi-isotropic
graphite/epoxy symmetrically laminated rectangular com-
posite plate [6]. Also, the natural frequencies of every
structural element are of great significance in order to
avoid the so-called resonance conditions. *e influences of
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a super-ellipse cutout on the frequency of a rectangular plate
or composite laminate plate were examined by Wang et al.
[7, 8]. Numerical results show that the plate frequencies are
highly dependent upon the shape, size, position, and ori-
entation of the cutout. Moreover, the effect is also highly
related to the boundary conditions of the plate. Frequency
optimization of the plate with cutout is also a concerned
research topic. Wang and Wu [9] presented an effective
numerical technique for determining the optimal location of
a cutout in rectangular plates for maximum fundamental
frequency of vibration. *e Ritz method was employed for
the vibration analysis, and generalized reduced gradient
(GRG) method is used to determine the optimal values of
location coordinates of the cutout. Pedersen [10] studied the
optimization of a cutout of given area which is placed in the
interior of a plate with an arbitrary external boundary.
Optimal designs were obtained iteratively using mathe-
matical programming, where each of the redesigns is based
on finite element (FE) analysis and sensitivity analysis. Wang
and Yu [11, 12] carried out maximization of eigenfrequency
of a rectangular plate with a parameterization ellipse cutout,
and the cutout shape optimization is performed by using
Genetic Algorithm and a combined mathematical pro-
gramming algorithm, respectively.

When punching cutouts on the structure in practice,
there will be a certain height of flanging around the cutouts
simultaneously. Few studies about the influence of flanging
cutouts on structural dynamic performance have been
reported, and the author of this paper has firstly studied
the influence of different parameters of circular [13] and
circle-rectangular [14] cutout on the vibration frequency
of a rectangular plate since 2015. Considering an effective
weight loss of structure and combining with shape opti-
mization of cutout, this paper focuses on the influence
analysis and optimization of structural dynamic perfor-
mance of a rectangular plate with flanging hyperellipse
cutout, and the boundary of the cutout is described with
several parameterization parameters, including the pos-
sibility of going from an ellipse to a rectangle or even to
a triangle. In this paper, the influence of different cutout
parameters (area, shape, flanging height, position, and
rotation) on the first and second order natural frequencies
of the rectangular plate in different boundary constraints
will be studied firstly, providing references for the opti-
mum frequency design of the structure. *en, the optimal
design of the rectangular plate is carried out under the
constraint condition of cutout area unchanged. *e first
and the second natural frequency or the difference between
the first two natural frequencies is maximized through
optimization process, aiming to achieve the best dynamic
characteristics.

2. Model of Rectangular Plate with Flanging
Hyperellipse Cutout

As shown in Figure 1, a flanging ellipse cutout is opened in
the center of a rectangular thin plate. In order to reduce the
stress concentration, the cutout boundary must be smooth
enough, which is described by hyperelliptic equation:
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where a and b are half axle length of the ellipse along x, y

axis directions, respectively, and η is an exponential of
hyperelliptic equations, for example, ellipse (η � 2) or
rectangular (η � 5). In order to describe the location and
rotation at the same time, the cutout boundary is described
in parameter form:

x � x0 + a cos(θ)cos(t)2/η − b sin(θ)sin(t)2/η,

y � y0 + a sin(θ)cos(t)2/η + b cos(θ)sin(t)2/η,
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where (x0, y0) represents the center coordinates of the ellipse
and t ∈ (0, 2π) is auxiliary parameter. Area of the cutout is
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where B(1/η, 1/η) is a beta function, when η � 2,
B(1/2, 1/2) � π. *en, the cutout rate of the plate is defined
as
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Considering that the boundaries of the rectangular plate
can be clamped (C), simple support (S), or free (F), we use 4
letters to describe the boundary support situation, beginning
from the left edge (x � −L/2) and according to the order of
counterclockwise. Suppose the size of the rectangular plate is
450 (L) × 300 (W) × 2mm, elastic modulus of the material is
70GPa, Poisson’s ratio is 0.3, and mass density is
2700 kg/m3.

3. Frequency Analysis

Influence of different cutout parameters (area, shape,
flanging height, position, and rotation) on the first (f1) and
second (f2) order natural frequencies of the rectangular plate
in different boundary constraints are analyzed in this sec-
tion. During the analysis, ANSYS, which is known as general
purpose finite element software, was preferred as numerical
tool, and SHELL181 element type was used to produce for
mesh structure.

In this paper, the first-order vibration frequency (f1) and
the second-order vibration frequency (f2) are the first two
frequencies of the structural vibration, respectively, in the
order of frequency values from small to large. Figures 2 and
3, respectively, show the oscillatory process of the first two
modes of the plate with a central flanging ellipse cutout
under the CFFF constraint, with 10 frames in 0.5 seconds,
and the initial situation is not displayed. As can be seen from
the figures, the first-order frequency is a bending vibration
around the y-axis, and the second-order frequency is
a torsional vibration about the x-axis.*e blue to red color in
the figures indicates the amplitude of different points on the
board during the corresponding vibration, with blue being
zero and red being the largest value. Moreover, it is found
that the first two-order vibration modes have not changed
with the variations of structural parameters, which is
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also applicable to the vibration of the structure under the
remaining boundary constraints.

3.1. Influence of Cutout Area on the Frequency. Influence
of a central flanging ellipse cutout area on the frequency is
studied firstly.*e half axle length a of the ellipse is constant,
and b changes with different cutout area.*e flanging height
h is 6mm. Table 1 shows the first two natural frequencies of
the rectangular plate in CFFF. For comparison, the natural
frequency of the plate without cutout in CFFF is also
simulated. From Table 1, the results show that the natural
frequency of the plate has changed with various cutout areas.
Comparing with the natural frequency of the rectangular
plate without cutout, the first-order frequency increases
continuously with the increase of the cutout area until ϕ �

0.14 and then decreases; however, the value is still greater
than the case of without cutout. For the second-order fre-
quency, the frequency increases with a small cutout area,
then continues to decrease with the increase of the cutout
area, and there will be cases that the frequency will be lower
than the case of without cutout.*e corresponding vibration
mode remains unchanged with the increase of the cutout
area.

Figure 4 shows the variation of the first two natural
frequencies of the plate with the increase of cutout rate
under other different boundaries. With the increase of the
cutout rate, it can be seen that the first two frequencies
increase continuously under different boundary con-
straints and are all larger than the corresponding natural
frequencies without cutout. *e influence of flange cutout
on the frequency of the plate is also related to the boundary
conditions, and the influence of CCCC constraint is the
highest.

3.2. Influence of Ellipse Shape on the Frequency. Assuming
that the central ellipse cutout has the same cutout rate (eg.,
a � 100mm, b � 50mm, ϕ � 0.116), the influence of ellipse
shape on the frequency is investigated. *e two half axle
length a and b can take different values, which are not
independent and must satisfy Equation (4). And the flange
height h � 6mm.

Table 2 lists the variation of the first- and second-order
natural frequency results of the clamped-free plate. With the
increase of a and decrease of b gradually, the first-order
frequency increases continuously, and the second-order
frequency decreases firstly, and then significantly in-
creases when a � 125mm and b � 40mm.

Figure 5 plots variations of the natural frequencies with
a central ellipse cutout of different shape under different
boundary constraints. With the increase of a and decrease of
b gradually, it can be found that the first-order frequency
decreases and the second-order frequency increases for most
boundary constraints, in addition to CFCF boundary, the
results of which are contrary. When a � 125mm and b �

50mm, the second frequency under CSCS suddenly drop-
ped, which is needed for further consideration.

3.3. Influence of Flanging Height on the Frequency. To study
the influence of different flange height on the frequency of
the plate, the cutout area is kept unchanged (a � 100mm, b �

50mm), and the cutout location is still located in the center.
Table 3 shows the variations of the first two frequencies

with the change of the flanging height. From Table 3, it can
be seen that the changes of the flanging height have a large
influence on the frequency of the CFFF rectangular plate. As
the flanging height increases, the first two frequencies of the
rectangular plate are continuously increasing. Comparing
with the corresponding frequency of the plate without
cutout (see the first row of Table 1), it can be found that when
the flanging height is small, the frequency value of the plate is
smaller than that of the plate without cutout. When the
flange height increases to a certain extent, the frequency
value of the plate is larger than that of the plate without
cutout. As shown in Table 3, the first-order frequency value
is greater than the corresponding noncutout condition when
h ≥ 2mm. For the second-order frequency, the flange height
h ≥ 10mm is required.

*e vibration frequency results under different con-
straints are shown in Figure 6. As can be seen from
Figure 6, with the increase of the flange height, the first
two-order frequency of the rectangular plate shows an
overall trend of increasing. Comparing with the non-
flanged plate (h � 0mm), the first two-order vibration

Top view

Front view
Flanging height

Ellipse cutout

Rectangular plate

L

W

X

y

Isometric view

Figure 1: A rectangular plate with a central flanging ellipse cutout.
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frequency of the �anged plate is larger than that of the
non�anged plate. Similar to the ribbed sti�eners, the out-
of-plane sti�ness of the rectangular plate is increased by
the presence of �anging, whereas the �rst two-order vi-
brations of the rectangular plate mainly show out-of-
plane vibrations. At the same time, it is noted that
when the height of the �ange reaches a certain value, the
frequency of the rectangular plate is not obviously

changed, indicating that the in�uence of the �ange height
on the frequency is decreasing.

3.4. In�uence of Cutout Location on the Frequency. �e in-
�uence of cutout location on the frequency of the rectan-
gular plate is studied, assuming that the position of the
cutout center moves in the positive direction of x-axis. �e
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Figure 2: Oscillatory process of the plate for the �rst frequency in CFFF. (a) Time � 0.05. (b) Time � 0.1. (c) Time � 0.15. (d) Time � 0.2.
(e) Time � 0.25. (f ) Time � 0.3. (g) Time � 0.35. (h) Time � 0.4. (i) Time � 0.45.
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cutout area is also kept unchanged (a � 100mm, b � 50mm),
and the �ange height h � 6mm.

For the CFFF plate, changes of the �rst two-order
natural frequencies with the position of the cutout cen-
ter are shown in Table 4. As the central position of the
cutout moves along the positive direction of the x-axis, the
mass distribution of the clamped end increases, and the

frequency of the rectangular plate should continue to in-
crease for a cantilever structure, which is consistent with
the data listed in Table 4.

It can be seen from Figure 7 that the �rst-order fre-
quency shows a decreasing trend as the position of the
opening moves in the positive direction of the x-axis, and the
second-order frequency shows a trend of increasing. For the
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Figure 3: Oscillatory process of the plate for the second frequency in CFFF. (a) Time � 0.05. (b) Time � 0.1. (c) Time � 0.15. (d) Time � 0.2.
(e) Time � 0.25. (f ) Time � 0.3. (g) Time � 0.35. (h) Time � 0.4. (i) Time � 0.45.
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CFCF and FCFC constraints, the change of the first two
natural frequencies is insignificant.

3.5. Influence of Cutout Rotation on the Frequency. *e
rectangular plate with a central ellipse cutout (a � 100mm,
b � 50mm, h � 6mm) is used to study the influence of
counterclockwise turning of the cutout on the frequency.

*e influence of the rotation angle θ on the natural
frequency of the rectangular plate in CFFF is shown in
Table 5. *e change of the rotation angle θ has a distinctly
different effect on the first two-order frequencies. *e first
order natural frequency reaches maximum at θ � 0° and then
decreases gradually, while the second-order natural fre-
quency shows the trend of increasing first, then decreasing,
and then increasing again.

*e first-order vibration frequency shows an increasing
trend with the angle increasing for most boundary con-
straints; however, the result in CFCF constraints is decreasing,
as shown in Figure 8. *e second-order frequency decreases
with the increase of the angle under the constraints of CCCC,
SSSS, CSCS, and SCSC. *e other two types of boundary
conditions have little influence on the frequency variations.

3.6. Influence ofCutout Shape on theFrequency. It is assumed
that there are different shapes of hyperellipses cutout in the
center of the rectangular plate, considering the hyperelliptic
equations exponential η � 1.5–5.0, respectively, and taking
a � 100mm, b � 50mm, and h � 6mm.

Table 1: Influence of central cutout area on the first two frequencies of clamped-free plate.

a (mm) b (mm) ϕ
Natural frequency (Hz)

f1 f2
0 0 0 8.364 28.204
100 20 0.047 8.840 28.408
100 30 0.070 8.882 28.130
100 40 0.093 8.909 27.873
100 50 0.116 8.923 27.399
100 60 0.140 8.925 27.478
100 70 0.163 8.911 27.325
100 80 0.186 8.879 27.200
100 90 0.209 8.826 27.101

0.00 0.05 0.10 0.15 0.20
ϕ

60

80

100

120

140

160

180

200

220

240

260

f 1 
(H

z)

CCCC

SSSS
SCSC CSCS

CFCF

FCFC

(a)

0.00 0.05 0.10 0.15 0.20
ϕ

80

100

120

140

160

180

200

220

240

260

f 2 
(H

z)

CCCC

SSSS
SCSC CSCS

CFCF

FCFC

(b)

Figure 4: Variations of the natural frequencies of the plate supposed differently with various cutout areas.

Table 2: Influence of ellipse shape on the first two frequencies of
clamped-free plate.

a (mm) b (mm)
Natural frequency (Hz)
f1 f2

50 100 8.2109 27.831
55.6 90 8.3417 27.765
62.5 80 8.4665 27.709
71.4 70 8.5948 27.666
83.3 60 8.7387 27.647
100 50 8.8815 27.399
125 40 9.2156 27.718
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Table 6 lists the changes of the �rst two natural fre-
quencies with exponential variation of the hyperelliptic
equation for the CFFF-supported rectangular plate. As the
shape of the cutout changes from an ellipse to a rectangle, the
opening rate gradually increases. �e �rst natural frequency
gradually increases, and the second natural frequency
gradually decreases.

Variations of the natural frequencies of the rectan-
gular plate with various η are shown in Figure 9. �e �rst-
order natural frequency is gradually increased with the
increase of exponential. �e second-order natural fre-
quency is also gradually increased with the increase of
exponential under CCCC, SSSS, and SCSC constraints.
For the CSCS boundary, the second-order frequency
increases when value of η is small (η≤ 2.5) and then de-
creases when η becomes large. �e other two types of
boundary CFCF and FCFC have little in�uence on the
frequency variations.

4. Frequency Optimization

In this paper, optimal frequency design of the rectangular
plate with cutout is processed by using Multi-island Ge-
netic Algorithm in ISIGHT software, keeping constant

cutout area. From Equation (3), the size of the cutout area is
related to parameters of a, b, and η. �e location, rotation of
the cutout, and �anging height are also taking into account
in optimization process for the impact of frequency,
expanding the optimization range. Parameters con�gura-
tion of Multi-island Genetic Algorithm adopt the default
mode in ISIGHT.

�e natural frequency of the rectangular plate with
cutout is maximized through the optimization process,
with design variables of parameters a, b, η, x0, y0, θ in
Equation (2) and �anging height h. Under the constant
cutout area condition, the design variable b is calculated by
Equation (3). If the design variables a, b, and η appear in the
code string at the same time, it is not guaranteed that the
constraint of the cutout area can be satis�ed after the
crossover and mutation operation. �e optimization
mathematical model is expressed as

max f,

s.t. A � A0,

x0
∣∣∣∣
∣∣∣∣<
L

2
−dx − δ,

y0
∣∣∣∣
∣∣∣∣<
W

2
−dy − δ.

(5)

In Equation (5), f represents the �rst-order natural
frequency f1, the second-order frequency f2, or the dif-
ference between the �rst- and second-order frequencies
(f2 −f1), respectively; A0 is a given cutout area; dx and dy
are the largest dimensions of the cutout boundary along the
x-axis and y-axis, respectively; and δ is the minimum
allowed distance between the cutout boundary and the plate
edge, preventing the cutout if it is too close to the edge of the
plate and a�ecting the accuracy of frequency calculation.
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Figure 5: Variations of the natural frequencies with a central ellipse cutout of di�erent shapes.

Table 3: In�uence of �anging height on the �rst two frequencies of
clamped-free plate.

h (mm)
Natural frequency (Hz)

f1 f2
0 8.1411 25.851
2 8.3991 26.528
4 8.7273 27.153
6 8.8815 27.399
8 9.0155 28.044
10 9.0552 28.379
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Frequency optimization of the rectangular plate in
CCCC boundaries is investigated in this paper, requiring
a �anging cutout design in the interior of the plate. As-
suming δ � 25mm and A0 � 752πmm2, the �rst-order
frequency f1 is maximized (Model 1). When there is no
cutout in the plate, the �rst natural frequency is 147.16Hz. A
�anging circular cutout with 75mm radius (as indicated
by the dashed line in Figure 10) and 6mm �anging height
is opened in the center of the plate �rstly as the initial
optimization condition; the �rst-order natural frequency
reaches 206.49Hz. After the optimization design (shown
by the solid line in Figure 10), the �rst-order frequency
reached 210.53Hz, which is 4.04Hz higher than that before
optimization.

Sometimes it is desirable to control the second-order
natural frequency of the rectangular plate. For this pur-
pose, the parameters of the cutout of the rectangular plate
are reoptimized, aiming to maximize the second-order
natural frequency (Model 2). Keeping δ � 25mm and
A0� 752πmm2 unchanged, the natural frequency of the plate
with a central circular cutout with a 75mm radius (shown in
dashed line in Figure 11) and 6mm �anging height is
241.49Hz. After optimization (as shown by the solid line in

Figure 11), the second-order natural frequency of the plate
can reach 313.79Hz, increased by 72.3Hz; the optimization
e�ect is obvious. �e optimization process is shown in
Figure 12.

In addition, the di�erence of the �rst and second natural
frequencies of the plate is also maximized (Model 3).
Keeping all parameters same as Model 1 and Model 2, the
di�erence between the two natural frequencies is 35Hz.
After optimization, the di�erence between the two natural
frequencies reached 147.53Hz, increased by 112. 53Hz.
Shapes of Model 3 before and after optimization are given in
Figure 13.

If the cutout area of Model 1 is increased to A0 �
1002πmm2, the other parameters keep unchanged (Model
4). A central �anging circular cutout is opened in the plate,
with 100mm radius and 6mm �anging height. �e second
natural frequency is 267.2Hz, which can reach 364.86Hz
after the optimization, and the optimization e�ect is quite
obvious. From the optimization results of Model 2 and
Model 4, it can be seen that the second-order natural fre-
quency of the plate increases with the cutout area. At the
same time, the optimization design of the cutout is more
obvious. Figure 14 gives the shapes of Model 4 before and
after optimization.

�e optimal parameters of di�erent models are given in
Table 7.

5. Conclusions

�e in�uence of a �anging ellipse cutout on the vibration
performance of a rectangular plate is studied �rstly in this
paper. �e results show that the cutout area, shape, position,
rotation, �anging height, and the boundary conditions have
great in�uence on vibration performance of the plate, the
existing of the �anging increases the out-of-plane sti�ness
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Figure 6: Variations of the natural frequencies of a rectangular plate supposed di�erently with various h.

Table 4: In�uence of cutout location on the �rst two frequencies of
clamped-free plate.

x (mm)
Natural frequency (Hz)

f1 f2
0 8.8815 27.399
15 8.9030 27.687
30 8.9002 27.721
45 8.9146 27.758
60 8.9456 27.799
75 8.9933 27.840
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Figure 7: Variations of the natural frequencies of a rectangular plate supposed di�erently with various x.

Table 5: In�uence of cutout rotation on the �rst two frequencies of clamped-free plate.

θ (°)
Natural frequency (Hz)

f1 f2
0 8.8815 27.399
15 8.876 27.609
30 8.7464 27.507
45 8.5695 27.466
60 8.3915 27.560
75 8.2598 27.738
90 8.2109 27.831
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Figure 8: Variations of the natural frequencies of a rectangular plate supposed di�erently with various θ.
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Table 6: In�uence of η on the �rst two frequencies of clamped-free plate.

η Cutout shape ϕ
Natural frequency (Hz)

f1 f2

1.5 0.101 8.8301 27.842

2.0 0.116 8.8815 27.399

2.5 0.125 8.9092 27.134

3.0 0.131 8.9252 26.949

3.5 0.135 8.9357 26.815

4.0 0.137 8.9425 26.713

4.5 0.139 8.9474 26.634

5.0 0.141 8.9507 26.567
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Figure 9: Variations of the natural frequencies of a rectangular plate supposed di�erently with various η.

Figure 10: Shapes of Model 1 before and after optimization.
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of the plate. �en, the frequency of the plate is optimized
by using Multi-island Genetic Algorithm in ISIGHT
software, and the natural frequency of the plate has been
improved obviously for di�erent models, and increasing

of cutout area can also improve the e�ect of optimal
design.
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