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In order to diagnose bearing faults under different operating state and limited sample condition, a fault diagnosis method based on
adjusted spectrum image of vibration signal is proposed in this paper. Firstly, the Davies–Bouldin index (DBI) is employed to
select a proper capture focus (CF) and image size, and the spectrum of vibration signal is computed via fast Fourier transformation
(FFT) and adjusted according to the average rotating speed..en, the spectrum is plotted and captured as a two-dimensional (2D)
image with the optimized CF and image size. Two-dimensional principal component analysis (2DPCA) is used to reduce the
dimension of images, and finally a nearest neighbour method is applied to classify the faults of bearings. Two experiments are
carried out to validate the effectiveness of the proposed method. Besides, a further investigation on the effect of spectrum
frequency resolution is conducted and a recommended selection method of frequency resolution is given based on the ex-
perimental performances. In our method, the training samples could be from only one operating condition, while the testing
samples are from all possible operation conditions. All experiment results have demonstrated that the proposed method could
achieve high classification accuracy even with very limited training samples.

1. Introduction

As the key element of rotating machinery, the faults of
rolling bearing could lead to mechanical breakdown and
great economic loss. In general, the operating speed of
rolling bearing is slightly fluctuant due to the influences
from the load, controller, and other components; therefore,
its vibration signals are commonly considered approxi-
mately stationary. However, rolling bearing may operate
in different speeds, which results in great challenges for
its accurate fault diagnosis, especially when the number
of fault samples is small. Most fault diagnosis methods
are based on vibration signals [1–3], and the diagnostic
procedure mainly includes two steps: (1) extracting fea-
tures from the vibration signal; and (2) classifying features
with a classifier. In last decades, many methods were
proposed to improve the diagnosis accuracy in two dif-
ferent ways. One is to find proper features in order to
represent the characteristics of faulty vibration signals;

and the other one is to find proper classifiers with strong
classification capability.

.e features could be extracted in time domain, fre-
quency domain, or time-frequency domain [4], such as peak
amplitude, skewness, kurtosis, fractal dimension, Fourier
spectrum, cepstrum, and envelope spectrum. Images were
also utilized as features for machine fault diagnosis in recent
years. For example, Li et al. [5] proposed a method of feature
extraction with spectrum image for bearing fault diagnosis.
Amar et al. [6] proposed to use vibration spectrum imaging
feature for denoising and fault classification. Klein et al. [7]
utilized time-frequency image of vibration signal to detect
fault signatures with an object detection method. Griffaton
et al. [8] realized bearing damage detection of aircraft en-
gines through enhanced visual analysis with the help of
image processing method. .is feature expression of image
for one-dimensional (1D) vector seems to be a very
promising way to dig the intrinsic information contained in
the vibration signal.
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Once the fault features are extracted, the last step is to
perform the fault classification to recognize the corre-
sponding health state. Fault classification can be realized
with minimum distance classifier, k-nearest neighbour
(kNN) classifier, artificial neural network (ANN), support
vector machine (SVM), and so on [4]. With proper features,
those classifiers may achieve acceptable accuracy of di-
agnosis. When noise is heavy or the number of fault samples
is small, the accuracy may decrease significantly. Recently,
deep neural networks (DNNs) were applied for fault di-
agnosis of rotating machine [9–11]. Such DNNs can extract
useful features from some raw information and achieve high
classification accuracy. Nevertheless, DNNs usually require a
high number of training samples and high computation
efforts. When the operating conditions are different, the
training samples under all operating conditions may be
required, and the training effort could be extremely high.
.erefore, a robust method of feature extraction or pattern
classification needs to be further investigated to improve the
performance on fault diagnosis.

Focusing on extracting a more effective feature, we
proposed to conduct bearing fault diagnosis with adjusted
vibration spectrum images. .is work is an extension of the
spectrum images proposed in our previous publication [5],
where spectrum images are first proposed as features for
bearing fault diagnosis and preferable diagnostic effects are
reached especially in the case of acquiring samples under the
same working condition. However, it exhibits a poor per-
formance when the training and testing samples are derived
from different operating conditions (see the results marked
with ★ in [5]) due to the operating-condition difference and
the nonoptimized parameters such as frequency resolution,
image size, and capture focus of the spectrum images. Driven
by the desire to extract a more robust feature for different
operating conditions, an improved fault diagnosis method
with adjusted spectrum images is proposed in this paper. We
consider a more difficult situation: (1) the operating con-
dition could be different, i.e., the rotating speed and/or load
is different; (2) the number of training samples is very
limited, and the training samples could be from only one
operating condition. Firstly, a validity metric is introduced
to optimally select the parameters for generating images, and
the spectrum of vibration signal is computed with the help of
the fast Fourier transformation (FFT). Secondly, the fre-
quency lines of the spectrum are adjusted according to the
rotating speed frequency to reduce its influence on the
spectrum image..irdly, such adjusted spectrum is captured
as a two-dimensional (2D) image with the optimized pa-
rameters and then processed through two-dimensional
principal component analysis (2DPCA) to reduce its di-
mension. Finally, fault classification is achieved with a
simple nearest neighbour classifier (NNC). Experimental
examples are applied to demonstrate the effectiveness of the
proposed method. And it is shown that classification ac-
curacy using such features is higher than that obtained by
directly using the FFT spectrum.

.emain contributions of this paper can be concluded as
follows: (1) the influence of operating conditions (especially
for the rotating speed) on vibration spectrum is reduced

through rotating-speed-adjusting manipulation; (2) the
adjusted vibration spectrum with optimized parameters is
captured as image feature to perform bearing fault diagnosis;
(3) higher classification accuracy can be achieved by serving
such adjusted spectrum images as features even in the case
where simple classifier and very limited samples are
employed especially under different operating conditions.

.e paper is organized in the following way. Section 2
presents the generation of adjusted spectrum images, and the
parameter determination for generating images is depicted
in Section 3. Section 4 is dedicated to illustrating 2DPCA
and classification measure, including feature processing with
2DPCA and fault classification based on NNC. Section 5
provides the experimental analysis and discussion is given in
Section 6. Finally, Section 7 presents the conclusions.

2. Generation of Adjusted Spectrum Images

.e spectrum of vibration signal can be computed through
FFT. Such a spectrum contains lots of useful information
of bearing, and the vector of spectrum coefficients is
widely used as features for fault diagnosis [4, 9]. As we know,
the bearing characteristic frequencies are associated with
the rotating speed. As a result, the frequency lines corre-
sponding to those characteristic frequencies and their
harmonics could be dominant components of the spectrum.
When the rotating speed is different, those dominant fre-
quency components are also changing with the speed. In this
case, bearing diagnosis becomes difficult. Hence, we propose
to use the adjusted spectrum image as feature for fault di-
agnosis instead of the spectrum coefficient vector.

Firstly, the spectrum of vibration signal is computed via
FFT. We plot the spectrum as a diagram, where the x-axis is
the frequency and the y-axis is the amplitude. As discussed
before when the speed of bearing is changing, the structure
of the diagram is also changing. It is reasonable to adjust all
frequency lines of the spectrum according to the rotating
speed such that the change of diagram structure can be
reduced, i.e.,

Fa(k) �
F(k)

fr
, (1)

where fr is the average rotating speed in Hz, F(k) is the kth
frequency line of the original spectrum, and Fa(k) is the kth
frequency line of the adjusted spectrum.

After adjusting, the spectrum diagram can be captured as
an image with a given size. Two parameters of the image are
selectable, i.e., the coordinate range and image size when
storing..e coordinate range includes the range of the x-axis
(Rx) and the range of the y-axis (Ry). Rx determines the
frequency range shown in the image, and Ry determines the
amplitude range shown in the image. We call Rx and Ry

together as the capture focus (CF). Later, we will show the
selection method of CF and image size.

.e spectrum is actually a 1D vector of FFT coefficients,
while the spectrum image is a 2D representation of the 1D
vector. Such images can keep the geometric information of
frequency lines and provide richer information for fault
diagnosis than the 1D vector of spectrum. By adjusting the
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spectrum according to the rotation speed, the obtained
images are robust against speed variations. In order to
demonstrate the effectiveness of the proposed adjusted
spectrum images in suppressing the interference of rotating
speed and reducing the changes of diagram structure, a
comparison is conducted between before and after spectrum
adjusting using vibration signals collected from the drive
end bearing with inner-race fault size being 0.021 inches
under two speed conditions [12]. .e analyzed signals both
have a length of 1024 data points in time domain. Moreover,
they are both transformed into frequency domain through
N-point discrete Fourier transform (DFT), where N is de-
rived as the next power of two from the length of the time
series, and N � 1024 as well. For simplicity, the coordinate
system are not hid to present the role of the spectrum image
adjusting, and the CF of the original and adjusted spectrum
are set as Rx � [0 6000], Ry � [0 0.2] and Rx � [0 210], Ry �

[0 0.2], respectively.
To be clear, the spectra’s places may influence diagnostic

performance when the spectrum plot, in fact a 2D matrix, is
captured as feature for fault diagnosis. Hence, we construct
an index to evaluate the performance of adjusted spectrum
as follows:

H �
S

f1{ } − S
f2{ }

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

sr
, (2)

where | · | stands for calculating absolute value, S f1{ } and
S f2{ } denote the area between the Fourier transform curve
and the horizontal axis (frequency axis) under rotating speed
frequency f1 and f2, respectively, and sr is the spectrum
scaling factor for horizontal axis, i.e., sr � 6000 for the
original spectrum and sr � 210 for the adjusted one here.
Obviously, a smaller value of H indicates a better similarity
between two curves from the view of image.

As shown in Figure 1(a), the frequency spectrum may
mismatch due to the variation of rotating speed. However,
the adjusted frequency is employed to plot the spectrum in
Figure 1(b). In this process, the spectrum line under the
same order of different rotating frequencies is placed in the
same position of the adjusted spectrum plot. Obviously, a
smaller H represents a better case for fault diagnosis, for the
original spectrum, H � 0.0013, and for the adjusted spec-
trum, H � 3.8236 × 10−6. It is clear that the adjusted images
could decouple the rotating speed for the similar health
condition of machines. .is adjusted spectrum obtained as
image shows its stronger robustness to speed variations
thanks to the adjusting manipulation. It will be demon-
strated by the subsequent experiments.

3. Determination of CF and Image Size

.e main concept of our approach is to catch the structural
information of spectrum to perform bearing fault diagnosis.
A vibration spectrum image with different sizes may contain
different information of the spectrum structure. Generally,
the larger a spectrum image is, the more abundant in-
formation it carries within a certain range. However, a larger
image could consume more storage space and increase the

influence of noise. Moreover, different CFs can mostly
capture different levels of information in the adjusted
spectrum images, and a CF specifies the window for cap-
turing images to define the feature contents. .erefore, it is
crucial to determine these two parameters when applying to
bearing fault diagnosis.

In this research, a validity indicator, Davies–Bouldin
index (DBI) proposed in [13], is employed to evaluate the
image size and the CF for capturing adjusted spectrum
images. .e DBI is defined as the ratio of within-class scatter
to between-class scatter and its calculating process can be
concluded as follows:

Firstly, the within-class scatter for each cluster (i.e., the
fault category in this research) is calculated as

Si �
1
Ti

􏽘

Ti

j�1
Xj −Ai

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
p

⎛⎝ ⎞⎠

1/p

, (3)

where Ai is the centroid of the ith cluster, Ti is the number of
data samples in ith cluster, Xj represents the jth data sample
in ith cluster, and p is generally set as 2 in real applications.

Secondly, the between-class scatter for two different
clusters is computed as

Mij � Ai −Aj

�����

�����
p

� 􏽘
n

k�1
aki − akj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
p

⎛⎝ ⎞⎠

1/p

, (4)

where aki and akj are the column vector of Ai and Aj,
respectively.

Finally, the so-called DBI is denoted as

DBI �
1

Nb
􏽘

Nb

i�1
Di, (5)

where Nb is the number of clusters, and Di � maxj≠i
(Si + Sj/Mij).

From the calculation process of the DBI, it is not hard to
find that a image size or CF for capturing adjusted spectrum
images with a smaller DBI could be beneficial to achieving
better classification.

4. Feature Processing and Classification

Since the size of adjusted spectrum images is large, the
computation effort could be considerably high if we carry out
diagnosis by directly using those images. Hence, the adjusted
spectrum images are firstly processed by 2DPCA in order to
reduce their dimension and then classified with the NNC.

4.1. Feature Processing with 2DPCA. Two-dimensional
principal component analysis (2DPCA) is a dimension re-
duction method for image representation. In 2DPCA, the
image covariance matrix is constructed directly using the
original image matrices, and its eigenvectors are derived for
image feature extraction. .e principle of 2DPCA can be
found in [14].

As illustrated in Figure 2, M adjusted spectrum images
are firstly obtained with the size of w × h pixels. .en, the
global image scatter matrix G is evaluated according to
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G �
1

M
􏽘

M

j�1
Aj −A􏼐 􏼑

T
Aj −A􏼐 􏼑 ∈ R

h×h
, (6)

where Aj(j � 1, 2, . . . , M) is the jth image, and A is the
averaged image of all the M images, i.e., A � (1/M)􏽐

​M
j�1Aj.

Secondly, the eigenvalue λk and the corresponding
eigenvector uk of G are calculated. .en uk is normalized
and sorted in descending order by λk. .at is, u �

(umax 1, umax 2, . . . , umax h), and the corresponding eigenvalue
is λ � (λmax 1, λmax 2, . . . , λmax h), where

λmax 1 > λmax 2 > . . . > λmax h. (7)

.e first d (d≤ h) largest eigenvalues are selected
according to Equation (8):

d � min
d

􏽐
d
j�1λmax j

􏽐
h
i�1λmax i

≥ c⎛⎝ ⎞⎠, (8)

where c is called eigenvalue contribution and 0< c≤ 1..en,
the projection basis is constructed as

U � umax 1 umax 2 · · · umaxd􏼂 􏼃. (9)

Finally, all theM samples are projected into the so-called
eigenspace, and the corresponding eigenimages are ob-
tained. Given an adjusted spectrum image B, it can be
projected according to

Yk � BUk, k � 1, 2, . . . , d, (10)

where Uk � umax k. .en the eigenimage of B is obtained as
E � [Y1, Y2, . . . , Yd].

4.2. Classification Based on NNC. .e projected eigenimage
with reduced dimension will be obtained after an adjusted
image is processed with 2DPCA. .en the following NNC
[15] is applied for fault classification.

Suppose that there are M training images being catego-
rized intoNc classes and the classification labels are defined as

s1, s2, . . . , sNc
. (11)

Denote E as the eigenimage of a testing image F, and Ei is
the eigenimage of the ith training image. .e distance
function Di(F) of F is defined as

Di(F) � D E,Ei( 􏼁 � 􏽘
d

r�1
Y

(F)
r −Y

(i)
r

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌2
, i � 1, 2, . . . , M,

(12)

where ||Y(F)
r −Y(i)

r ||2 denotes the Euclidean distance between
Y(F)

r and Y(i)
r , and Y(F)

r represents the rth vector of matrix E,
and Y(i)

r represents the rth vector of matrix Ei.
.en the decision-making process is carried out

according to

Dj(F) � min
i

Di(F), (13)

where j means the jth training image. If the jth training
image belongs to the sqth class (q ∈ 1, 2, . . . , Nc􏼈 􏼉), then the
classification label of the testing image F is determined as sq.
In fact, the testing image is classified according to the nearest
training image, where the Euclidean distance is used.

Other classifiers, such as ANN and SVM, can also be
applied to classify the dimension-reduced features, but the
model parameters are hard to optimize with limited training
samples during the training process. However, the NNC is
without training procedure for model-parameter determina-
tion during fault classification. Hence, selecting NNC as the
classifier for fault diagnosis in this workmainly takes account of
the computational efficiency and the limited sample condition.

.erefore, the main procedure of the proposed fault
diagnosis scheme can be described as follows:
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Figure 1: A comparison of spectrum image of before and after adjusting: (a) the original spectrum, (b) the adjusted spectrum.

Image acquisition to
obtain M adjusted images

(w × h pixels)

Calculate the averaged
image, i.e., A.

Calculate the global scatter
matrix G

Calculate the eigenvalue λ
and eigenvector u of G

Build the projection basis U
using the first d largest

eigenvectors (d ≤ h)

Project the M images with U
to obtain feature image E

Normalize and sort u in
descending order by λ

Figure 2: Flowchart of feature processing with 2DPCA.
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(i) .e vibration signals are first converted into ad-
justed spectrum images via FFT according to Sec-
tions 2 and 3

(ii) .en the training images are used to calculate the
projection basis with 2DPCA according to Equa-
tions (6), (8), and (9), and all images are processed
with the derived projection basis to obtain the
eigenimages according to Equation (10)

(iii) Finally, the testing images are classified through
NNC according to Equations (12) and (13)

5. Experimental Analysis

.e proposed adjusted spectrum image can be widely used
in diagnosis of bearing, including fault type classification
and fault severity detection. Two experiments are carried
out to demonstrate the effectiveness of the proposed
method. In the first one, different types of bearing faults are
classified. In the second one, single-fault and multifault
severity diagnosis of bearings are conducted, where the
rotating speed and the load are different. .e results of the
second experiment are also comprehensively compared
with that in previous publications.

5.1. Experiment I: Fault Type Classification of Bearings

5.1.1. Experimental Setup. .e first experiment is per-
formed on a machinery fault simulator manufactured
by Spectra Quest, Inc. shown in Figure 3. .e simulator is
a simplified version of complex rotating machines, which
consists of motor, bearing, shaft, rotor disc, gearbox,
and belt. In this experiment, a normal bearing was installed
in the inboard bearing seat and the testing bearings were
mounted on the outboard bearing seat in turn, which
simulate following health conditions: (i) normal (NO), (ii)
inner-race fault (IF), (iii) outer-race fault (OF), and (iv) ball
fault (BF). Figure 4 presents the bearing fault conditions.
All the bearings are the same type ER-12k with 8 rolling
elements. Vibration signals were collected under three
operating conditions, i.e., 600 rpm, 900 rpm, and 1200 rpm.
And the sampling frequency was set to 20 kHz.

.e vibration signals are organized as three datasets
according to the operating conditions, i.e., A-600 rpm,
B-900 rpm, and C-1200 rpm as described in Table 1. Every
dataset contains 300 vibration signal samples from each
health condition. Hence, every dataset consists of 1200
samples. .e length of each sample is 1024 points in time
domain, and each time series is converted into frequency
domain via N-point DFT (N is derived as the next power
of two from the length of the time series, so N � 1024 as
well) to generate its adjusted spectrum image. .e
number of classification labels is four, where each label is
corresponding to a health condition of bearings.

5.1.2. Parameters Determination. .e CF selection is
first considered with the DBI evaluation approach. In
this study, the Rx in CF is manually designated to guarantee
that the derived images could contain all the adjusted

frequency components, i.e., Rx ≥ (10000/10) � 1000 for
dataset A, Rx ≥ (10000/15) � 666.67 for dataset B, and
Rx ≥ (10000/20) � 500 for dataset C according to the sam-
pling rate (Fs � 20000Hz). .erefore, the Rx of dataset A is
set as Rx � [0 1000], the Rx of dataset B is set as Rx � [0 670],
and the Rx of dataset C is set as Rx � [0 500].

In order to optimize a proper Ry � [0ycf ] in CF to
generate the final adjusted spectrum images, data samples
from dataset A are utilized to calculate the DBI for four
bearing health conditions. Here, the image size with 400 ×

400 pixels is preassigned empirically according to our ex-
perimental experiences. In view of the enormous computing
effort for DBI evaluations, a scope of ycf from 0.0005 to 0.2
(this range is determined with experience) covering 12 CFs
are considered to select an appropriate CF with the assis-
tance of DBI evaluations, i.e.,

ycf ∈ {0.2, 0.17, 0.14, 0.1, 0.08, 0.06, 0.05, 0.04, 0.02,

0.01, 0.001, 0.0005},
(14)

and different training sizes of each health state (ndbi) are
employed for the DBI assessment. .e DBI values for dif-
ferent CFs are presented in Figure 5. It can be found that the
DBI reaches a minimum at the 9th ycf , i.e., ycf � 0.02. In this
experiment, the Ry of CF is set to Ry � 0 0.02􏼂 􏼃 for datasets
A, B, and C.

As what considered above, a scope of image size from
[120 × 120] to [700 × 700] pixels are taken into account with
experimental experience and 12 image sizes are applied to
test on dataset A with the derived CF to select an appropriate
one, i.e., rs × [100 × 100] pixels, where

rs ∈ 1.2, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 7{ }. (15)

Also considering different kinds of image samples, the
DBI values are depicted in Figure 6. It can be shown that an
optimized image size is achieved at the 6th testing size,
i.e., [350 × 350] pixels.

.ereafter, the spectrum is obtained for each sample
through FFT and adjusted according to Equation (1).
.e CF of dataset A is set as Rx � [0 1000], Ry � [0 0.02],
the CF of dataset B is set as Rx � [0 670], Ry � [0 0.02], and

2 3 6 7

111

5 8 9 104

Figure 3: Machinery fault simulator: 1, frequency converter; 2,
motor; 3, coupling; 4, inboard bearing seat; 5, normal bearing; 6,
shaft; 7, rotor disc; 8, testing bearing; 9, acceleration sensor; 10,
outboard bearing seat; 11, gearbox.
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the CF of dataset C is set as Rx � [0 500], Ry � [0 0.02].
Finally, all the adjusted spectrum images are captured
with the size being 350 × 350 pixels. Figures 7–9 show
the adjusted spectrum images of dataset A, B, and C,
respectively.

5.1.3. Experimental Results. After obtaining the adjusted
spectrum images using the optimally selected parameters,
feature extraction is carried out with 2DPCA to derive the
eigenimages of the adjusted spectrum images. Herein, the
dataset A is employed to demonstrate the eigenimages in the
phase of feature processing, where the training size of each
class is set as 20 and the reduced dimension in Equation (8)
is set as d � 50 manually. Figure 10 shows an example of the
eigenimages of dataset A.

With c � 0.9 defined in Equation (8) for dimension
reduction, the diagnosis performance using the proposed
method is tested and shown in Table 2, where different
number of samples are used for training the NNC and the
average accuracies are presented for 20 randomized trials.
Obviously, the classification accuracy reaches 100% with 20
images per class for training, which means that all the health
conditions can be correctly classified in these cases. Even
when only one sample is used for training, high classification
accuracies are still achieved.

5.2. Experiment II: Fault Severity Detection of Bearings

5.2.1. Data Description. In order to further verify the ef-
fectiveness of the proposed method, vibration data collected
from the bearing data centre of Case Western Reserve
University (CWRU) [12] are also applied. .e bearing vi-
bration signals under four health conditions are used for
evaluation, i.e., NO, IF, BF, and OF, which are the same with
experiment I. .e sampling rate is 12 kHz. IF, BF, and OF of
bearings are with four different fault severities, i.e., 0, 0.007,
0.014, and 0.021 inches. Four load conditions with different
rotating speeds are considered, i.e., Load 0 � 0 hp/1797 rpm,
Load 1 � 1 hp/1772 rpm, Load 2 � 2 hp/1750 rpm, and Load
3 � 3 hp/1730 rpm, which indicate that the operating
condition of this experiment is different in speed and load.
.e collected vibration signals are organized as dataset D, E,
F, and G as shown in Tables 3 and 4.

(a) (b) (c)

Figure 4: Pictures of the bearing faults: (a) IF; (b) OF; (c) BF.

Table 1: Description of bearing datasets for fault classification.

Dataset Speed
(rpm)

No. of
samples

Health
condition

Classification
label

A/B/C 600/900/
1200

300/300/
300 NO 1

300/300/
300 IF 2

300/300/
300 OF 3

300/300/
300 BF 4

1 2 3 4 5 6 7 8 9 10 11 12
0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

Number of ycf

D
BI

 v
al

ue

ndbi = 5
ndbi = 10

ndbi = 20
ndbi = 40

Figure 5: Experiment I: the DBI values for Rx � [0 1000] and
Ry � 0 ycf􏼂 􏼃.
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Dataset D, E, and F are vibration signal samples with
IF, BF, and OF, respectively, and they are used for single-
fault severity detection. Each dataset consists of four

subsets, and each subset is corresponding to a load
condition. For instance, D1 is the subset with IF, and its
training samples are from Load 0 and its testing samples

0 500 1000
0

0.01

0.02

R y

Rx

(a)

Rx

R y

0 500 1000
0

0.01

0.02

(b)

Rx

R y

0 500 1000
0

0.01

0.02

(c)

Rx

R y

0 500 1000
0

0.01

0.02

(d)

Figure 7: .e adjusted spectrum images of dataset A: (a) NO; (b) IF; (c) OF; (d) BF.
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are from all the four load conditions. Subset D1 contains
50 samples of each fault severity, and totally there are 200
samples in D1. .e number of classification labels of
dataset D, E, and F is four, where each label is corre-
sponding to a fault severity.

Dataset G includes all fault types, and it is used for
multifault severity detection. It consists of five subsets.
G1–G4 are the subsets whose training and testing samples
are not exactly from the same load condition. For instance,
the training samples of G1 are from Load 0, and the testing
samples are from all the four load conditions. Subset G1
contains 50 samples of each fault severity and type..ere are
10 different combinations of fault severities and fault types,
and therefore there are totally 500 samples in G1. Subset G5
contains 200 samples under each fault severity and type,
whose training and testing samples are from all the four load
conditions, so a total of 2000 data samples are comprised in
G5. Ten classification labels are designated to mark each
bearing health condition for this dataset.

5.2.2. Parameters Determination. Taking the above-
mentioned tests into consideration, we chose the dataset
G5 to evaluate the optimized image size and CF for gen-
erating the adjusted spectrum images. As for the CF

selection, Rx is manually set as Rx � [0 210] to cover the four
operating conditions (i.e., 1797, 1772, 1750, and 1730 rpm)
as considered in previous experiment. Similarly, the image
size is preset as 400 × 400 pixels, then 12 CFs (Ry � [0ycf ])
and four kinds of training size for each class (ndbi) are
considered to calculate the DBI values, i.e.,

ycf ∈ {0.2, 0.17, 0.14, 0.1, 0.08, 0.07, 0.06, 0.05, 0.04, 0.03,

0.01, 0.0005},

(16)

then the DBI values for different CFs are shown in Figure 11.
It can be found that the DBI reaches a minimum at the 10th
ycf , i.e., ycf � 0.03.

With the optimized CF for capturing the adjusted
spectra, 12 image sizes are utilized to derive an appropriate
one with the similar considerations before, i.e., rs × [100×

100] pixels, where

rs ∈ 1.5, 2, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5{ }. (17)

As presented in Figure 12, it can be shown that a min-
imum DBI is reached at the 3rd testing size, i.e., [300 × 300]

pixels.
.us, the parameters for generating images are opti-

mally obtained by DBI evaluations. In this experiment,
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Figure 8: .e adjusted spectrum images of dataset B: (a) NO; (b) IF; (c) OF; (d) BF.
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each signal segment has a length of 1024 data points in time
domain and is also converted to frequency domain using
N-point DFT to obtain the corresponding adjusted spec-
trum image, where N is computed in the same manner as
before (in Section 5.1). .e adjusted spectrum images are
obtained with the size being 300 × 300 pixels. Figure 13
gives the adjusted image examples of dataset D1 with the
optimized CF (Rx � [0 210], Ry � [0 0.03]).

5.2.3. Experimental Results. Likewise, we first present an
example of the eigenimages using the adjusted spectrum
images of dataset D1 shown in Table 3. In this example, 10 and
50 are set for the training size of each class and the reduced
dimension, i.e., d in Equation (8), respectively..e example of
the eigenimages of dataset D1 is demonstrated in Figure 14.

With c � 0.9 defined in Equation (8) for dimension
reduction, datasets D1–D4 are applied for IF severity de-
tection and the results are shown in Table 5; datasets E1–E4
are used to carry out BF severity detection and the results are
shown in Table 6; datasets F1–F4 are employed to conduct
OF severity detection and the results are shown in Table 7;
and datasets G1–G5 are utilized to evaluate the performance
of multifault severity detection and the results are shown in
Table 8. Every mentioned test routine is performed for 20

times to obtain the average classification accuracy, where
training samples are randomly selected.

As demonstrated in Tables 5–8, acceptable classification
accuracies could be achieved with the presented method, es-
pecially in case of IF and OF severity detection. From Tables 5
and 7, we can see that the classification accuracies achieve 100%
with only 5 training samples per class. As illustrated in Table 6,
the classification accuracy is still over 90% in most tests, but
around 75% in individual cases. In the experiments with dataset
G1-G5, the proposedmethod also shows its robust capability in
handling multiple classification problems.

5.3. Effect of Different Spectrum Resolution for Fault
Classification. As presented above, the proposed method
exhibits a desirable performance in bearing fault diagnosis.
However, there is still one thing to be noted that the
spectrum resolution may influence its robustness for ap-
plications. .erefore, apart from the selections of CF and
image size, it is worthwhile to investigate what frequency
resolution is required to generate the original spectrum by
specifying an appropriate sampling length as well as an
appropriate sampling frequency.

In order to explore the effect of different spectrum reso-
lution for fault classification, the datasets used for determining
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Figure 9: .e adjusted spectrum images of dataset C: (a) NO; (b) IF; (c) OF; (d) BF.
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the parameters of CF and image size, i.e., the dataset A of
experiment I and the dataset G5 of experiment II are also
employed to make a further investigation. In this research,
considered the computational efficiency of FFTalgorithm with
Matlab software, different signal lengths of power of two,
i.e., 2m (m is a positive integer), are applied to calculate the
original spectrum via N-point DFT algorithm (here N � 2m).
.us, the frequency resolution of the original spectrum can be
expressed as Δf � Fs/2m. Herein, the value of m ∈
5, 6, 7, 8, 9, 10, 11, 12, 13, 14{ } is considered in increasing order.

For dataset A of experiment I (sampling rate: Fs �

20000Hz), the frequency resolution series is

Δf ∈ {625.00, 312.50, 156.25, 78.13, 39.06, 19.53, 9.77,

4.88, 2.44, 1.22}Hz.
(18)

For dataset G5 of experiment II (sampling rate:
Fs � 12000Hz), the frequency resolution series is

Δf ∈ {375.00, 187.50, 93.75, 46.88, 23.44, 11.72, 5.86,

2.93, 1.46, 0.73}Hz.
(19)

With the above spectrum resolution series, the classifi-
cation performance is tested on dataset A and dataset G5
separately. In this investigation, the performance tests are
evaluated with different training size of each health state
under each operating condition (i.e., ntrain) as before. .at is,
ntrain � 1, 3, 5, 10, 20{ } for dataset A and ntrain � 1, 3, 5, 10{ }

for dataset G5. Figures 15 and 16 demonstrate the corre-
sponding classification results in detailed.

Examining the classification accuracies in Figures 15 and
16, it is noticed that when the training size ntrain ≥ 3, a de-
sirable classification rate can be reached at the spectrum
resolution of 19.53Hz for experiment I and at the spectrum
resolution of 23.44Hz for experiment II, respectively.
.erefore, we designate the corresponding thresholds of Δf
for the two experiments, i.e.,Δfth1 � 19.6Hz for experiment I
and Δfth2 � 23.5Hz for experiment II. In other words, when
the frequency resolution satisfies that Δf<Δfth1 for ex-
periment I and Δf<Δfth2 for experiment II, the proposed
methodology could deliver satisfactory performances, re-
spectively. Hence, a recommendation of the selection of
frequency resolution for applying this approach is given as

Δf<min Δfth1,Δfth2􏼈 􏼉 � 19.6Hz. (20)

To further take the computational efficiency of FFT al-
gorithm into consideration, we also recommend that the
frequency resolution is not smaller than 1Hz. As a result, the
selection method of spectrum frequency resolution can be
determined as

1Hz≤Δf< 19.6Hz. (21)

Table 2: Classification results of bearing datasets.

Dataset .e number of
training samples/class Classification accuracy (%)

A 1/3/5/10/20 94.80/97.94/99.51/99.82/100
B 1/3/5/10/20 100/100/100/100/100
C 1/3/5/10/20 99.95/100/100/100/100
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Figure 10: An example of the eigenimages of dataset A: (a) NO; (b) IF; (c) OF; (d) BF.
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As for the validation experiments presented in Sections
5.1 and 5.2, the frequency resolutions are Δf � 20000/
1024 � 19.53Hz in experiment I and Δf � 12000/1024 �

11.72Hz in experiment II, which satisfy the requirement of
limiting condition on spectrum resolution.

5.4. Comparisons of Classification Performance on CWRU
Datasets. In order to evaluate the performance of the
proposed method using the adjusted spectrum images
for bearing diagnosis, a comparative study is carried out
between current work and some recent publications,

Table 3: Description of bearing datasets for single-fault severity detection.

Dataset Training data Testing data .e number of samples Fault severity∗ Classification label

D1/D2/
D3/D4

Load 0/Load 1/
Load 2/Load 3 Load 0–3

50/50/50/50 Normal 1
50/50/50/50 0.007 in 2
50/50/50/50 0.014 in 3
50/50/50/50 0.021 in 4

E1/E2/
E3/E4

Load 0/Load 1/
Load 2/Load 3 Load 0–3

50/50/50/50 Normal 1
50/50/50/50 0.007 ball 2
50/50/50/50 0.014 ball 3
50/50/50/50 0.021 ball 4

F1/F2/
F3/F4

Load 0/Load 1/
Load 2/Load 3 Load 0–3

50/50/50/50 Normal 1
50/50/50/50 0.007 out 2
50/50/50/50 0.014 out 3
50/50/50/50 0.021 out 4

∗Among the labels of fault severities, the so-called normal means the testing bearing is normal. 0.007 in means inner-race fault diameter of 0.007 inches; 0.007
ball means ball fault diameter of 0.007 inches; and 0.007 out means outer-race fault diameter of 0.007 inches, etc.

Table 4: Description of bearing datasets for multifault severity detection.

Dataset Training data Testing data .e number of samples Fault type and severity Classification label

G1/G2/G3/G4/G5 Load 0/Load 1/Load 2/
Load 3/Load 0-3 Load 0–3

50/50/50/50/200 Normal 1
50/50/50/50/200 0.007 in 2
50/50/50/50/200 0.014 in 3
50/50/50/50/200 0.021 in 4
50/50/50/50/200 0.007 ball 5
50/50/50/50/200 0.014 ball 6
50/50/50/50/200 0.021 ball 7
50/50/50/50/200 0.007 out 8
50/50/50/50/200 0.014 out 9
50/50/50/50/200 0.021 out 10

Normal means the testing bearing is normal. 0.007 in means inner-race fault diameter of 0.007 inches; 0.007 ball means ball fault diameter of 0.007 inches; and
0.007 out means outer-race fault diameter of 0.007 inches, etc.
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Figure 11: Experiment II: the DBI values for Rx � 0 210􏼂 􏼃 and Ry � 0 ycf􏼂 􏼃.
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Figure 13: .e adjusted spectrum images of D1 with the optimized CF: (a) normal; (b) 0.007 in; (c) 0.014 in; (d) 0.021 in.
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where the authors adopted the same CWRU bearing
datasets.

In [16, 17], different methods for extracting features
and detecting single-fault severity of bearings are proposed
and tested with the datasets in Table 3. In [16], manifold
regularization-based semisupervised learning (SSL) is in-
troduced into fault diagnosis of bearings. In [17], bearing
diagnosis is performed by applying SVMs and fractal

dimension. .e comparisons are presented in Table 9. .e
proposed method achieves similar classification accuracy
with the results in [16, 17] for IF and OF severity detection,
but better performance is obtained for BF severity detection
with the proposed method.

Similar comparisons for multifault severity detection are
also carried out based on the results in some published
literatures. DNN is utilized to diagnose the faults of bearings
in [9], which deeply exploits the characteristics of vibration
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Figure 14: An example of the eigenimages of dataset D1: (a) normal; (b) 0.007 in; (c) 0.014 in; (d) 0.021 in.

Table 5: .e classification accuracy for inner-race fault severity
detection.

Dataset n∗
Testing accuracy (%)

Load 0 Load 1 Load 2 Load 3

D1

1 100 100 100 99.65
3 100 100 100 99.60
5 100 100 100 99.85
10 100 100 100 100

D2

1 99.92 100 100 100
3 99.97 100 100 100
5 100 100 100 100
10 100 100 100 100

D3

1 98.42 100 100 100
3 99.28 100 100 100
5 99.45 100 100 100
10 100 100 100 100

D4

1 99.78 100 100 100
3 99.88 100 100 100
5 100 100 100 100
10 100 100 100 100

∗n is the training samples per class under each of the specified load
conditions.

Table 6: .e classification accuracy for ball fault severity detection.

Dataset n
Testing accuracy (%)

Load 0 Load 1 Load 2 Load 3

E1

1 97.83 95.50 97.72 89.92
3 100 99.28 98.65 96.58
5 100 99.63 99.38 97.47
10 100 100 99.58 98.20

E2

1 99.65 100 99.97 99.95
3 100 100 100 100
5 100 100 100 100
10 100 100 100 100

E3

1 69.40 99.15 100 100
3 74.25 99.70 100 100
5 76.50 99.78 100 100
10 76.83 100 100 100

E4

1 76.83 98.58 100 100
3 74.40 98.88 100 100
5 74.80 98.25 100 100
10 74.97 97.33 100 100

n is the training samples per class under each of the specified load
conditions.
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signals. In [18], reconstructed phase space (RPS) and
Gaussian mixture model (GMM) are applied for fault di-
agnosis of bearings. In [19], lifting wavelet packet transform
(LWPT) and binary tree system are employed to realize
bearing fault diagnosis. In [20], the authors utilized mul-
tiscale feature extraction (MFE) and multiclass support
vector machine (MSVM) for bearing fault feature extrac-
tion and classification, respectively. In [21], trace ratio
criterion LDA (TR-LDA) and kNN classifier are used for

feature reduction and fault classification to realize multifault
severity detection of bearings. In [22], the authors applied
multiple adaptive neurofuzzy inference system (ANFIS) and
genetic algorithm (GA) for the fault diagnosis of bearings.
Also in [23], modifed kernel marginal Fisher analysis
(MKMFA) is used for feature extraction, and kNN is applied
to classify the bearing fault pattern. As shown in Table 10, the
classification accuracy of the proposed method could
achieve 100% with 10 training samples per class under the
same operating conditions, where its classification results are
even not inferior to that obtained with DNN.

In addition, aiming at the complicated ten-class classifi-
cation problem, nonadjusted spectrum images are also uti-
lized to make a comparison, so as to illustrate the effectiveness
of spectrum adjusting. In these tests with nonadjusted
spectrum images, the CF for capturing nonadjusted spectra is
set to Rx � [0 6000] and Ry � [0 0.03] and c � 0.9 defined in

Table 7: .e classification accuracy for outer-race fault severity
detection.

Dataset n
Testing accuracy (%)

Load 0 Load 1 Load 2 Load 3

F1

1 100 100 100 100
3 100 100 100 100
5 100 100 100 100
10 100 100 100 100

F2

1 100 100 100 100
3 100 100 100 100
5 100 100 100 100
10 100 100 100 100

F3

1 100 100 100 100
3 100 100 100 100
5 100 100 100 100
10 100 100 100 100

F4

1 100 100 100 100
3 100 100 100 100
5 100 100 100 100
10 100 100 100 100

n is the training samples per class under each of the specified load
conditions.

Table 8: .e classification accuracy for multiclass fault severity
detection.

Dataset n
Testing accuracy (%)

Load 0 Load 1 Load 2 Load 3

G1

1 98.54 93.97 91.17 89.48
3 99.87 98.04 96.58 94.33
5 100 98.79 97.81 95.56
10 100 99.24 99.48 97.98

G2

1 98.44 100 99.92 99.92
3 99.61 100 99.97 100
5 99.63 100 100 100
10 99.98 100 100 100

G3

1 80.48 99.69 99.96 100
3 86.11 99.78 100 100
5 88.97 99.89 100 100
10 92.72 99.95 100 100

G4

1 84.21 98.14 99.76 100
3 83.24 99.00 100 100
5 84.19 99.45 100 100
10 84.08 99.70 100 100

G5

1 99.56 100 99.98 100
3 100 100 100 100
5 100 100 100 100
10 100 100 100 100

n is the training samples per class under each of the specified load
conditions.
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Table 9: Comparisons for single-fault severity detection between current work and some published work.

Objective Method in refs. Training data Testing data Classification accuracy∗ (%)

IF severity
detection

SSL in [16]

Load 0 (40) Load 0–3 (1560) 100
Load 1 (40) Load 0–3 (1560) 100
Load 2 (40) Load 0–3 (1560) 100
Load 3 (40) Load 0–3 (1560) 100

Dataset D1 in present work Load 0 (40) Load 0–3 (760) 100
Dataset D2 in present work Load 1 (20) Load 0–3 (780) 100
Dataset D3 in present work Load 2 (40) Load 0–3 (760) 100
Dataset D4 in present work Load 3 (20) Load 0–3 (780) 100

SVMs and fractal dimension in [17] Load 3 (472) Load 3 (472) 100
Dataset D4 in present work Load 3 (12) Load 3 (188) 100

BF severity
detection

SSL in [16]

Load 0 (40) Load 0–3 (1560) 85.26
Load 1 (40) Load 0–3 (1560) 96.19
Load 2 (40) Load 0–3 (1560) 96.59
Load 3 (40) Load 0–3 (1560) 79.49

SVMs and fractal dimension in [17] Load 3 (472) Load 3 (472) 96.31
Dataset E1 in present work Load 0 (40) Load 0–3 (760) 99.42
Dataset E2 in present work Load 1 (12) Load 0–3 (788) 100
Dataset E3 in present work Load 2 (20) Load 0–3 (780) 91.49
Dataset E4 in present work Load 3 (20) Load 0–3 (780) 90.53

OF severity
detection

SSL in [16]

Load 0 (40) Load 0–3 (1560) 100
Load 1 (40) Load 0–3 (1560) 100
Load 2 (40) Load 0–3 (1560) 100
Load 3 (40) Load 0–3 (1560) 100

SVMs and fractal dimension in [17] Load 3 (472) Load 3 (472) 99.89
Dataset F1 in present work Load 0 (12) Load 0–3 (788) 100
Dataset F2 in present work Load 1 (12) Load 0–3 (788) 100
Dataset F3 in present work Load 2 (12) Load 0–3 (788) 100
Dataset F4 in present work Load 3 (12) Load 0–3 (788) 100
Dataset F4 in present work Load 3 (12) Load 3 (188) 100

∗.e classification accuracy is determined by no. of successfully classified samples/No. of total testing samples × 100% under specified load condition.

Table 10: Comparisons for multiclass fault detection between current work and some published work.

Method in refs. Training data Testing data Classification accuracy∗ (%)
RPS and GMM in [18] Load 1 (3840) Load 1 (3840) 99.95a

DNN-based method in [9]

Load 1 (1000) Load 1 (1000) 99.95
Load 2 (1000) Load 2 (1000) 99.61
Load 3 (1000) Load 3 (1000) 99.74

Load 1–3 (3000) Load 1–3 (3000) 99.68
LWPT and binary tree system in [19] Load 0 (400) Load 0 (200) 99.53
MFE and MSVM in [20] Load 0 (840) Load 0 (360) 94.50
TR-LDA2 and kNN classifier in [21] Load 1 (200) Load 1 (600) 98.00

Load 2 (150) Load 2 (650) 97.65
Multiple ANFIS combination in [22] Load 0–3 (300) Load 0–3 (300) 91.33
MKMFA and kNN in [23] Load 0–3 (500) Load 0–3 (500) 97.45
Dataset G2 in present work Load 1 (100) Load 1 (400) 100
Dataset G3 in present work Load 2 (100) Load 2 (400) 100
Dataset G4 in present work Load 3 (100) Load 3 (400) 100
Dataset G1 in present work Load 0 (100) Load 0–3 (1900) 99.13
Dataset G2 in present work Load 1 (100) Load 0–3 (1900) 99.99
Dataset G3 in present work Load 2 (100) Load 0–3 (1900) 98.07
Dataset G4 in present work Load 3 (100) Load 0–3 (1900) 95.72
Dataset G5 in present work Load 0–3 (400) Load 0–3 (1600) 100
Dataset G1 with nonadjusted spectrumb Load 0 (100) Load 0–3 (1900) 84.97
Dataset G2 with nonadjusted spectrumb Load 1 (100) Load 0–3 (1900) 92.30
Dataset G3 with nonadjusted spectrumb Load 2 (100) Load 0–3 (1900) 89.66
Dataset G4 with nonadjusted spectrumb Load 3 (100) Load 0–3 (1900) 90.72
Dataset G5 with nonadjusted spectrumb Load 0–3 (400) Load 0–3 (1600) 100
a.is classification accuracy is computed based on Table 2 in [18], which is the average of the ten classes. b.e test settings are same with that in G1–G5 using
the adjusted spectrum images.
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(8). Each experiment (10 samples/class/load for training) is
repeated 20 times to acquire the average accuracy. As depicted
in Table 10, for dataset G1-G5, classification rates with
84.97%, 92.30%, 89.66%, 90.72%, and 100% are achieved,
respectively, with nonadjusted spectrum images. But with the
proposedmethod for spectrum adjusting, higher classification
rates with 99.13%, 99.99%, 98.07%, 95.72%, and 100% could
be reached for datasets G1–G5, respectively.

It is clear that the proposed spectrum adjusting scheme
could suppress the interference of rotating speed and reduce
the changes of diagram structure, which facilitates that this
approach could obtain excellent classification accuracies
under different operating conditions. .e robustness of fault
diagnosis could also be highlighted using the adjusted image
as feature.

6. Discussion

.e adjusted spectrum image is indeed a 2D representation of
the 1D vector of FFT coefficients. In [9], the vector of FFT
coefficients is utilized as the inputs of DNNs, and the achieved
classification accuracy is 99.68% with a large number of
training samples. By using the proposed 2D adjusted spec-
trum images together with a simple NNC classifier, the
classification accuracy is 100% and the number of required
training samples is much smaller (Table 10). From this point
of view, such a 2D representation in the form of image
contains more useful information for bearing fault diagnosis.

.e experimental results also demonstrate that the pro-
posed method could diagnose bearing faults effectively under
different operating conditions, even with very limited training
samples. .e training samples in dataset D, E, F, G1, G2, G3,
and G4 are only from one operating condition, while the
testing samples are from four different operating conditions
(Tables 3 and 4). In these cases, high classification accuracies
are still achieved with the proposed method as shown in
Tables 5–7. It can also be observed that, a relatively high
classification accuracy is also obtained even with one single
training sample (Table 8). For the fault pattern classification
with limited training samples, artificial intelligence classifiers
(e.g., ANN, SVM) may demonstrate worse performance than
NNC because there commonly are needed large amounts of
samples to obtain the model parameters. Here, taking datasets
G1–G4 for example, Table 11 presents their classification
performance with NNC and SVM (using polynomial kernel
function) under limited training sample condition. According
to the comparison results, when there only exist 10 training
samples for single-fault type, SVM is inferior to NNC due to
lacking of enough training samples to optimize SVM pa-
rameters. .is is the main reason why NNC is selected as the
classifier for fault classification in this work.

It is worth mentioning that the proposed method be-
longs to the scope of fault classification of bearings; there-
fore, the training samples must be obtained in advance.
However, thanks to the spectrum adjusted by the rotating
speed frequency, the geometrical structure of the spectrum
image is not significantly influenced by the speed. .erefore,
the training data need not contain samples of all operating
conditions, but contain those of all fault types. When the

geometrical structures of bearing spectra are similar for a
same failure type, those bearings could be diagnosed with the
proposed method. Furthermore, the proposed feature is
easier to compute and postprocess compared with Refer-
ences [6, 7] because the presented spectrum image is a binary
image which avoids performing binary conversion. All these
characteristics promote it become a robust feature for
bearing fault diagnosis.

7. Conclusions

In this paper, the adjusted spectrum image is proposed as
feature for bearing fault diagnosis under different operation
conditions. First, the validity indicator, DBI, is introduced to
optimize the CF and image size for capturing spectrum
images. .en with the optimized CF and image-size, the
adjusted spectrum images are generated via FFT according
to the rotating speed and 2DPCA is applied to reduce the
image dimension for facilitating classification with an NNC.
Two data examples are employed to verify the effectiveness
of the proposed approach. On the base of these bearing data,
the effect of spectrum frequency resolution is further in-
vestigated and a recommended selection method is pre-
sented to determine the frequency resolution. In the
proposed method, the training samples could be from one
operating condition, while the testing samples could be from
different operating conditions. Experimental results illus-
trate that this methodology could achieve high classification
accuracy with very limited training samples.
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