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Based on the finite element method (FEM), the parametric variational principle (PVP) is combined with a numerical time-domain
integralmethod to simulate the dynamic behavior of the pantograph-catenary system. Based on PVP, formulations for the nonlinear
droppers in the catenary and for the contact between the pantograph and the contact wire are proposed. The formulations can
accurately determine the tension state or compression state of the nonlinear droppers and the contact state between the pantograph
and the contact wire. Based on the periodicity of the catenary and the precise integration method (PIM), a numerical time-
integration method is developed for the dynamic responses of the catenary. For this method, the matrix exponential of only one
unit cell of the catenary is computed, which greatly improves the computational efficiency. Moreover, the validation shows that
the formulations can compute the contact force accurately and represent the nonlinearity of the droppers, which demonstrates the
accuracy and reliability of the proposed method. Finally, the dynamic behaviors of the pantograph-catenary system with different
types of catenaries are simulated.

1. Introduction

High-speed railway is an inexpensive, secure, comfortable,
and efficient mode of transportation, even more time-saving
and cheaper than airlines for relatively short journeys. Thus,
it is becoming an increasingly popular method of travel.
With the rapid development of high-speed railway tech-
nology, train speeds are becoming increasingly high. To
guarantee that trains run safely and stably after speed-up,
the current collection performance directly influenced by
the dynamic performance of the pantograph-catenary system
must be improved. The catenary consists of a messenger
wire, a contact wire, periodically placed droppers, supporting
brackets, and registration arms, as shown in Figure 1. The
messenger wire is supported by the supporting brackets, and
the registration arms are installed on the contact wire. The
messenger wire and the contact wire are connected by the
droppers. The pantograph, which consists of a pan-head, an
upper frame, and a lower frame acts as a current collector
between the catenary and the electric train.

A large number of studies have examined the dynamic
behavior of the pantograph-catenary system. An overview of
the methods used to describe the dynamic behavior of the
pantograph-catenary system was introduced by Poetsch et al.
[1].Wu [2, 3] established a finite elementmodel for determin-
ing the initial state of the simple stitched catenary and carried
out numerical evaluations of the system’s current collection
by using Newmark’s method, developing a model through
the finite element method (FEM). Wu and Brennan [4, 5]
developed a single-degree-of-freedom (SDOF) model of a
combined pantograph-catenary system to study its dynamics
behavior and presented an analytical approach to the solution
of the system. Based on the penalty method, Collina and
Bruni [6] developed a procedure for simulating the contact
between the contact wire and the pantograph. Arnold and
Simeon [7, 8] established a realistic and detailed pantograph-
catenary systemmodel and coupledDAEs and PDEs to simu-
late the interaction of the pantograph and the catenary. A sim-
plified catenarymodel and linear spring-mass-dampermodel
of the pantograph were used to perform a sensitivity analysis
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Figure 1: A simple stitched catenary system.

of the pantograph [9, 10]. Because of the intrinsic nonlinear
behavior of the catenary, Lopez-Garcia et al. [11] used the
Newton-Raphson method to obtain the initial equilibrium
state of the catenary, which is the premise and foundation for
simulating the dynamic behavior of the pantograph-catenary
system. Lopez-Garcia et al. [12] proposed an improvement of
the simplified models by considering the effects of stiffness
and contact modeling. Rauter et al. [13] established a mixed
model of the pantograph-catenary system by using the FEM
and multibody dynamics; they then used a constant-time-
step Newmark-type of integration algorithm for dynamic
analysis of the catenary model and used a variable order and
variable-time-step Gear integration algorithm for dynamic
analysis of a multibody pantograph model. Dahlberg [14]
provided a closed-form solution for the deflection of a contact
wire caused by a moving force. Metrikine and Bosch [15]
proposed an analytical method for calculating the steady-
state response of a two-level catenary to a uniformly mov-
ing pantograph based on the Fourier transformation. Zhou
and Zhang [16] established a pantograph-catenary model
including a support wire, an assistant wire, a contact wire,
droppers, and a spring-stiffness-mass pantograph; they then
studied the dynamic behavior of the system based on a
direct integrationmethod involving the contact element. Cho
[17] proposed a formulation for a nonlinear dropper and
the proper implementation of a time-integration method for
the FEM of the pantograph-catenary system and validated
the formulation experimentally. Lopez-Garcia et al. [18]
compared the cable slackening model and cable-only taut
model and demonstrated the importance of cable slackening
in stiffness computation. Commercial software was used to
establish the finite elementmodel of the pantograph-catenary
system and to simulate its dynamic behavior [19, 20]. Cho et
al. [21] presented a modified SDOF dynamic system with a
time-varying stiffness to include the pre-sag’s effect on the
dynamic interaction of the pantograph-catenary. To obtain
more realistic simulation results, an advanced 3D model for
studying and simulating the pantograph-catenary systemwas
established by Benet et al. [22]. Van et al. [23] introduced
catenary geometry irregularity, catenary wear, and transient
aerodynamic forces into pantograph-catenary dynamic sim-
ulations. A moving mesh method was presented by Jimenez-
Octavio et al. [24] to analyze the dynamic interaction of the

pantograph-catenary system. Gregori et al. [25] presented a
highly computational-cost-saving approach (Offline/Online
approach) to simulate the pantograph-catenary dynamic
interaction. Bruni et al. [26] described the results of a
voluntary benchmark initiative concerning the simulation
of pantograph-catenary interaction, which can be used to
demonstrate the accuracy of numerical methodologies and
simulationmodels.These studies suggest that wave reflection
and the variation of the stiffness are themain causes of contact
force variation when a pantograph moves at a constant
speed. Both the variation of the stiffness and wave reflection
are directly affected by droppers. To simulate the dynamic
behavior of the pantograph-catenary system accurately, the
nonlinear dropper must be considered.

Thedynamic behavior of the pantograph-catenary system
consists of two main parts, the vibration of the pantograph
and the vibration of the catenary caused by the moving
pantograph. First, the pantograph and the contact wire will
be in one of two states: contact or separation. The contact
state and the value of the contact force directly affect the
dynamic behavior of the pantograph-catenary system.There-
fore, determining the contact state between the pantograph
and the contact wire is one of the key problems that must
be addressed in simulating the dynamic behavior of the
pantograph-catenary system. Second, the dropper may be
slack during the passage of the pantograph and then return
to the tension state after the pantograph passes. The dropper
will experience no force when it is slack, whereas when it
is under tension, the force will be positive. The slackening
of a dropper reflects a strong nonlinear characteristic. Thus,
another important problem associated with the dynamic
simulation of the pantograph-catenary system is determining
the tension state or compression state of every dropper at
every time step. Finally, the significant wave effect of the
contact wire subjected to a moving pantograph at high speed
makes precise simulation more difficult, particularly when
contact problems and nonlinear droppers are involved. The
FEM is typically combinedwith a time-integrationmethod to
analyze the response of the catenary to a moving pantograph.
In the case of high velocity, both the discrete elements and
the time step for integration must be small, which leads to
enormous computational requirements and poor efficiency.
Thus, an efficient time-integrationmethod for computing the
response of the catenary subjected to a moving pantograph
must be developed.

Determining the contact state between the pantograph
and the contact wire and the tension or compression state
of a nonlinear dropper are both essentially contact problems.
Both the formulations of nonlinear droppers in the catenary
and the contact between the pantograph and the contact
wire will be proposed based on the parametric variational
principle (PVP) [27], which provides a distinct advantage in
achieving good convergence for certain strongly nonlinear
numerical analyses. By using the proposed method, the
contact force can be accurately computed, and the tension
or compression state of nonlinear droppers can be accurately
determined. Based on the periodicity of the catenary and
the precise integration method (PIM) [28], an efficient time-
integration algorithm for computing its responses will thus
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Figure 2: The model of the pantograph-catenary system: (a) the pantograph-catenary system, (b) a unit cell of the catenary, and (c) the
pantograph.

be established. In this method, thematrix exponential of only
one unit cell of the catenary need be computed, which greatly
improves the computational efficiency.

This paper is organized as follows. In Section 2,
the dynamic model of the pantograph-catenary system is
described. Section 3 provides formulations for the nonlinear
dropper and the contact between the pantograph and the
contact wire. A numerical time-domain integral method
for determining the dynamic responses of the pantograph-
catenary system is developed in Section 4. In Section 5, the
nonlinear problems associated with contact and the nonlin-
ear droppers are converted to a standard complementarity
problem. Section 6 presents 3 validations. The first is for
the contact model between a pantograph and a contact wire,
the second is for the nonlinear dropper model, and the last
one is for the proposed procedure. The dynamic behaviors
of the pantograph-catenary system are then discussed in
Section 7, including the variation of the contact forces and
the elongation of the nonlinear droppers. Finally, Section 8
presents the main conclusions.

2. The Model of
the Pantograph-Catenary System

The model of the pantograph-catenary system is shown in
Figure 2(a), which consists of a catenary and a pantograph.
The catenary consists of a messenger wire, a contact wire,

periodically placed droppers, supporting brackets, and reg-
istration arms (see Figure 2(b)). Any part of the catenary
that corresponds to the subsection between two successive
registration arms can be regarded as a unit cell, as shown
in Figure 2(b). The span length and the structure height
of the catenary are 𝐿 and 𝐻, respectively. The pretension,
linear mass, and flexural rigidity of the messenger wire
are 𝑇𝑚, 𝜌𝑚, and 𝐸𝐼𝑚, respectively. The pretension, linear
mass, and flexural rigidity of the contact wire are 𝑇𝑐, 𝜌𝑐,
and 𝐸𝐼𝑐, respectively. There are 𝑛𝑑 droppers at positions𝐿 𝑖 (𝑖 = 1, 2, . . . , 𝑛𝑑) in a unit cell, and the linear mass, tensile
modulus, and sectional area of a dropper are 𝜌𝑑, 𝐸𝑑, and𝐴𝑑, respectively. The mass and stiffness of the supporting
bracket and the registration arm are 𝑚sb, 𝑘sb, 𝑚ra, and 𝑘ra,
respectively. The pantograph can be modeled as a three-level
mass-spring-damper system [17], as shown in Figure 2(c).The
mass, stiffness, and damping of the pan-head, upper frame,
and lower frame are 𝑚1, 𝑚2, 𝑚3, 𝑘1, 𝑘2, 𝑘3, 𝑐1, 𝑐2, and 𝑐3,
respectively. The static uplift force is 𝑃0, and the contact force
is denoted by 𝜆𝑝.

Theoretically, the catenary is infinitely extended. How-
ever, the wave in the catenary caused by the contact due to
a moving pantograph can be transferred to a finite distance
for a period of time. Thus, a catenary including sufficient
number of unit cells is used for simulation. Assuming that
the catenary includes𝑁 unit cells, there are𝑁×𝑛𝑑 droppers,𝑁 + 1 supporting brackets, and𝑁 + 1 registration arms.
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Because of negligible displacements in the lateral direc-
tion, considering only vertical displacements, a plane model
of the pantograph-catenary system can be obtained. The
messenger wire can be modeled as an Euler-Bernoulli beam.
Assuming that the pretension applied to the messenger wire
is constant and the slope of the messenger wire is small, the
equilibrium equation of the messenger wire can be derived
from the literature [17] as

𝜌𝑚 𝜕2𝑦𝑚 (𝑥, 𝑡)𝜕𝑡2 + 𝑐𝑚 𝜕𝑦𝑚 (𝑥, 𝑡)𝜕𝑡
+ 𝜕2𝜕𝑥2 (𝐸𝐼𝑚 𝜕

2𝑦𝑚 (𝑥, 𝑡)𝜕𝑥2 ) − 𝑇𝑚 𝜕2𝑦𝑚 (𝑥, 𝑡)𝜕𝑥2
= −𝜌𝑚𝑔 −

𝑁×𝑛𝑑∑
𝑘=1

𝛿 (𝑥 − 𝑥𝑘) 𝑓𝑚,𝑘
+ 𝑁+1∑
𝑖=1

𝛿 (𝑥 − (𝑖 − 1) 𝐿) 𝑓sb,𝑖,
𝑦𝑚 (𝑥, 0) = 𝑦𝑚,0 (𝑥) , 𝜕𝑦𝑚𝜕𝑡 (𝑥, 0) = 0,

(1)

where subscript 𝑚 denotes the messenger wire, 𝑦𝑚 denotes
vertical displacement, 𝑔 denotes gravitational acceleration,𝛿(𝑥) denotes a Dirac delta function, 𝑓𝑚,𝑘 denotes an external
force caused by a dropper, 𝑓sb,𝑖 denotes an external force
caused by a supporting bracket, and 𝑦𝑚,0(𝑥) denotes the
initial displacement of the messenger.

The droppers serve as connectors between the messenger
wire and contact wire when they are under tension. The
equilibrium equation of the 𝑘th dropper can be described as

𝜌𝑑 𝜕
2𝑦𝑑,𝑘 (𝑦, 𝑡)𝜕𝑡2 + 𝑐𝑑 𝜕𝑦𝑑,𝑘 (𝑦, 𝑡)𝜕𝑡 + 𝐸𝐴𝑑,𝑘 𝜕

2𝑦𝑑,𝑘 (𝑦, 𝑡)𝜕𝑦2
= −𝜌𝑑𝑔 + 𝛿 (𝑦 − 𝑙𝑘) 𝑓𝑚,𝑘 − 𝛿 (𝑦) 𝑓𝑐,𝑘,

(2)

𝑦𝑑,𝑘 (𝑦, 0) = 𝑦𝑑,𝑘,0 (𝑦) ,
𝜕𝑦𝑑,𝑘𝜕𝑡 (𝑦, 0) = 0, 𝑘 = 1, 2, . . . , 𝑁 × 𝑛𝑑, (3)

where subscript 𝑑 denotes the dropper, 𝑦𝑑,𝑘 denotes vertical
displacement of the 𝑘th dropper from the equilibriumprofile,𝐸𝐴𝑑,𝑘 denotes the axial stiffness of the 𝑘th dropper, 𝑙𝑘 denotes
the length of the 𝑘th dropper, 𝑓𝑚,𝑘 denotes an external force
caused by the messenger wire, 𝑓𝑐,𝑘 denotes an external force
caused by the contact wire, and 𝑦𝑑,𝑘,0(𝑦) denotes the initial
displacement of the 𝑘th dropper.

If a dropper is regarded as a bar with the same tensile
and compressive modulus, the axial stiffness 𝐸𝐴𝑑,𝑘 will be
a positive constant regardless of whether the dropper is
under tension or compression. However, the dropper cannot
operate under compression in engineering practice. During
the passage of a pantograph, the dropper may slacken (see
Figure 3) and then return to tension. The slackening of the
dropper reflects a strong nonlinear characteristic. There will
be no force on the dropper when it is slack, while when it is
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Figure 3: Slackening of a dropper.

under tension, the force will be positive. Therefore, the axial
stiffness 𝐸𝐴𝑑,𝑘 will be positive when the dropper is under
tension and will be zero when the dropper is slack; that is,

𝐸𝐴𝑑,𝑘 = {𝐸𝑑𝐴𝑑, 𝑙𝑘 > 𝑙0,𝑘,0, 𝑙𝑘 ≤ 𝑙0,𝑘, (4)

where 𝑙0,𝑘 is the original length of the 𝑘th dropper. Eq.
(4) indicates that the stiffness is associated with the state
of tension or compression of the dropper. To reflect the
nonlinear characteristic of the dropper, the tension state or
compression state must be determined accurately.

The contact wire can be modeled as an Euler-Bernoulli
beam. Assuming that the pretension applied to the contact
wire is constant and the slope of the contact wire is small, the
equilibrium equation of the contact wire can be derived from
the literature [17] as

𝜌𝑐 𝜕2𝑦𝑐 (𝑥, 𝑡)𝜕𝑡2 + 𝑐𝑐 𝜕𝑦𝑐 (𝑥, 𝑡)𝜕𝑡 + 𝜕2𝜕𝑥2 (𝐸𝐼𝑐 𝜕
2𝑦𝑐 (𝑥, 𝑡)𝜕𝑥2 )

− 𝑇𝑐 𝜕2𝑦𝑐 (𝑥, 𝑡)𝜕𝑥2 = −𝜌𝑐𝑔 +
𝑁×𝑛𝑑∑
𝑘=1

𝛿 (𝑥 − 𝑥𝑘) 𝑓𝑐,𝑘
+ 𝑁+1∑
𝑗=1

𝛿 (𝑥 − (𝑗 − 1) 𝐿) 𝑓ra,𝑗 + 𝜆𝑝𝛿 (𝑥 − (𝑥0 + 𝑉𝑡)) ,
(5)

𝑦𝑐 (𝑥, 0) = 𝑦𝑐,0 (𝑥) , 𝜕𝑦𝑐𝜕𝑡 (𝑥, 0) = 0, (6)

where subscript 𝑐 denotes the contact wire, 𝑦𝑐 denotes
vertical displacement, 𝑓𝑐,𝑘 denotes an external force caused
by a dropper, 𝑓ra,𝑗 denotes an external force caused by a
registration arm, 𝜆𝑝 denotes a contact force caused by a
pantograph, 𝑉 denotes the speed of a moving pantograph,
and 𝑦𝑐,0(𝑥) denotes the initial displacement of the contact
wire.

Modeling the pantograph as a three-level mass-spring-
damper system (see Figure 2(c)), the equation of motion for
the pantograph can be derived from the literature [17] as

M𝑝ÿ𝑝 + C𝑝ẏ𝑝 + K𝑝y𝑝 = {{{{{
0
0
𝑃0
}}}}}
+ G𝑝 − {{{{{

𝜆𝑝0
0
}}}}}
,

y𝑝 (0) = y𝑝,0, ẏ𝑝 (0) = 0,
(7)
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where

M𝑝 = [[
[
𝑚1 𝑚2 𝑚3

]]
]
,

K𝑝 = [[
[
𝑘1 −𝑘1−𝑘1 𝑘1 + 𝑘2 −𝑘2−𝑘2 𝑘2 + 𝑘3

]]
]
,

C𝑝 = [[
[
𝑐1 −𝑐1−𝑐1 𝑐1 + 𝑐2 −𝑐2−𝑐2 𝑐2 + 𝑐3

]]
]
,

y𝑝 =
{{{{{{{

𝑦𝑝,1𝑦𝑝,2𝑦𝑝,3
}}}}}}}
,

G𝑝 = −{{{{{
𝑚1𝑔𝑚2𝑔𝑚3𝑔

}}}}}
,

(8)

where subscript 𝑝 denotes the pantograph; 𝑦𝑝,1, 𝑦𝑝,2, and 𝑦𝑝,3
denote vertical displacements of the pan-head, upper frame,
and lower frame, respectively; and y𝑝,0 denotes the initial
displacement of the pantograph.

If the pantograph contacts the contact wire, the contact
force should be positive; that is, 𝜆𝑝 > 0; otherwise, 𝜆𝑝 = 0.
Determining the contact state between the pantograph and
the contact wire is a key problem in simulating the dynamic
behavior of the pantograph-catenary system, which consists
in determining whether the pantograph contacts the contact
wire and computing the value of the contact force.

In addition, to obtain precise simulation results for the
catenary with a pantograph moving at high speed, the
number of unit cells must be large; therefore, a highly
computationally efficient time-domain integration method
should be developed for numerical simulation.

By analyzing the model of the pantograph-catenary sys-
tem, simulating its dynamic behavior at high-speed can be
summarized as involving the following three key problems:
accurately simulating the nonlinear behavior of the droppers;
determining the contact state between the pantograph and
the contact wire and computing the value of the contact force;
and developing an efficient time-integration method for
simulating the dynamic behavior of the pantograph-catenary
system. In this paper, the formulations for the nonlinear
droppers and for the contact between the pantograph and the
contact wire will be proposed based on PVP, and a numerical
time-integration algorithm for computing the response of the
catenary will be developed based on PIM.

3. PVP for the Pantograph-Catenary System

3.1. PVP for the Nonlinear Dropper. The droppers connect
the messenger wire and contact wire when they are under

tension.The dropper may be slack when a pantograph passes
it and return to tension after the pantograph leaves. The
dropper cannot operate if it is slack; that is, if a dropper
slackens, it no longer serves as a connector between the
messenger wire and the contact wire.Therefore, at every time
step, the tension or compression state of every dropper must
be determined. PVP proposed by Zhong and Zhang [27] has
been proved to be advantageous for convergence for certain
strong nonlinear numerical analyses, such as contact and
piecewise linear analyses [29–31].Therefore, in this paper, the
nonlinear droppers are described by PVP, which converts the
nonlinear problem to a linear complementarity problem.The
tension or compression state of the nonlinear dropper can be
accurately determined by the proposed method.

A dropper is modeled as a bilinear mass-spring-damper
with a bilinear stiffness 𝑘𝑑, a damper 𝑐𝑑, and two lumped
masses attached to the ends to represent the mass summed
for half of the dropper𝑚𝑑/2 and its clamp𝑚𝑠, respectively, as
shown in Figure 4(a). The constitutive relation of the bilinear
spring (see Figure 4(b)) can be described as

𝑓𝑑 = 𝑘𝑑Δ𝑢, (9)

where𝑓𝑑 is the axial force,Δ𝑢 is the elongation of the dropper,
and 𝑘𝑑 is the stiffness determined by the signs of Δ𝑢; that is,

𝑘𝑑 = {{{
𝑘(+)
𝑑
, Δ𝑢 ≥ 0,

𝑘(−)
𝑑
, Δ𝑢 < 0. (10)

If 𝑘(+)
𝑑

= 𝑘(−)
𝑑

= 𝐸𝑑𝐴𝑑/𝑙0, the dropper is linear. In this paper,
the dropper is modeled as a bilinear mass-spring-damper
with zero tension in slackening; therefore 𝑘(+)

𝑑
= 𝐸𝑑𝐴𝑑/𝑙0 and𝑘(−)

𝑑
= 0.
The stiffness 𝑘𝑑 should typically be updated by determin-

ing the tension or compression state of the dropper for the
dynamic simulation at every time step. To avoid updating the
stiffness 𝑘𝑑, the dropper is described by PVP.The constitutive
Eqs. (9) and (10) can be written in a unified form as

𝑓𝑑 = 𝑘(+)𝑑 (Δ𝑢 + 𝜆𝑑) , (11)

where 𝜆𝑑 is a parametric variable, which can be written as

𝜆𝑑 =
{{{{{{{

0, Δ𝑢 ≥ 0,
(𝑘(−)
𝑑

− 𝑘(+)
𝑑
)

𝑘(+)
𝑑

Δ𝑢, Δ𝑢 < 0. (12)

As indicated, 𝜆𝑑 is nonnegative. Using a nonnegative slack
variable ]𝑑, (12) can be transformed into the following
equivalent equation:

(𝑘(−)𝑑 − 𝑘(+)𝑑 ) Δ𝑢 − 𝑘(+)𝑑 𝜆𝑑 + ]𝑑 = 0,
𝜆𝑑 ≥ 0, ]𝑑 ≥ 0, 𝜆𝑑]𝑑 = 0. (13)

At this point, the nonlinear problem is transformed
into a standard linear complementarity problem, which can
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Figure 4: A model of a dropper: (a) a bilinear mass-spring-damper and (b) the constitutive relation of the dropper.

be solved easily by Lemke’s scheme [32]. In the unified
constitutive Eqs. (11) and (13), the stress state of the dropper
can be indicated by the value of 𝜆𝑑; that is, 𝜆𝑑 > 0 indicates
that the dropper is under compression, while 𝜆𝑑 = 0 indicates
that the dropper is under tension.Thus, updating the stiffness𝑘𝑑 can be avoided during the solution process.

The potential energy of a dropper with the parametric
variable 𝜆𝑑 can be expressed as

𝑈𝑑 = 12𝑘(+)𝑑 (Δ𝑢 + 𝜆𝑑)2 − Δ𝑢𝑓𝑑. (14)

Therefore, PVP of the nonlinear dropper can be presented as

𝑈𝑑 = 12𝑘(+)𝑑 (Δ𝑢 + 𝜆𝑑)2 − Δ𝑢𝑓𝑑, 𝛿Δ𝑢𝑈𝑑 = 0,
(𝑘(−)𝑑 − 𝑘(+)𝑑 ) Δ𝑢 − 𝑘(+)𝑑 𝜆𝑑 + ]𝑑 = 0,

𝜆𝑑 ≥ 0, ]𝑑 ≥ 0, 𝜆𝑑]𝑑 = 0,
(15)

where the subscript Δ𝑢 denotes that the variational calcu-
lation is only performed for the elongation Δ𝑢, while the
parametric variable 𝜆𝑑 does not take part in the variational
calculation.

Because only vertical displacements are considered for
the dropper, the elongation of the dropper can be expressed
as

Δ𝑢 = 𝑦1 − 𝑦2, (16)

where 𝑦1 and 𝑦2 are the node displacements. Therefore, PVP
for the 𝑘th dropper can be written as

𝑈𝑑,𝑘 = 12y𝑇𝑑,𝑘K𝑑,𝑘y𝑑,𝑘 − y𝑇𝑑,𝑘F𝑑,𝑘𝜆𝑑,𝑘 − y𝑇𝑑,𝑘f𝑑,𝑘,
𝛿y𝑑,𝑘𝑈𝑑,𝑘 = 0,

(17)

]𝑑,𝑘 − 𝑘(+)𝑑,𝑘𝜆𝑑,𝑘 − B𝑑,𝑘y𝑑,𝑘 = 0,
𝜆𝑑,𝑘]𝑑,𝑘 = 0, ]𝑑,𝑘 ≥ 0, 𝜆𝑑,𝑘 ≥ 0, (18)

where y𝑑,𝑘 denotes the displacement vector of the 𝑘th drop-
per, and

K𝑑,𝑘 = 𝑘(+)𝑑,𝑘 [ 1 −1
−1 1 ] ,

F𝑑,𝑘 = 𝑘(+)𝑑,𝑘 { 1
−1} ,

f𝑑,𝑘 = {𝑓𝑚,𝑘−𝑓𝑐,𝑘} −
{{{{{{{{{

𝜌𝑑𝑙0,𝑘2 + 𝑚𝑠
𝜌𝑑𝑙0,𝑘2 + 𝑚𝑠

}}}}}}}}}
𝑔,

B𝑑,𝑘 = (𝑘(+)𝑑,𝑘 − 𝑘(−)𝑑,𝑘) {−1 1} .

(19)

Thus, the equation of motion for the 𝑘th dropper can be
written as

M𝑑,𝑘ÿ𝑑,𝑘 + C𝑑,𝑘ẏ𝑑,𝑘 + K𝑑,𝑘y𝑑,𝑘 = F𝑑,𝑘𝜆𝑑,𝑘 + f𝑑,𝑘,
y𝑑,𝑘 (0) = y𝑑,𝑘,0, ẏ𝑑,𝑘 (0) = 0, (20)

where

M𝑑,𝑘 = 𝜌𝑑𝑙0,𝑘2 [1 1] + [
𝑚𝑠 𝑚𝑠] ,

C𝑑,𝑘 = 𝑐𝑑 [ 1 −1
−1 1 ] ,

(21)

where y𝑑,𝑘,0 denotes the initial displacement vector of the
dropper. Of course, the dynamic equation must be con-
strained by a complementarity condition (18).

In (20), the displacements y𝑑,𝑘 of the nonlinear droppers
can be represented by the parametric variable 𝜆𝑑,𝑘.Therefore,
a linear complementarity problem can be established by sub-
stituting the displacements y𝑑,𝑘 into (18) and the parametric
variable 𝜆𝑑,𝑘 can be solved by Lemke’s scheme [32].

3.2. PVP for the Contact between the Pantograph and the
Contact Wire. The pantograph can collect current from the
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contact wire only when the contact strip of the pantograph
is in contact with the contact wire. When the pantograph
moves, the pantograph and contact wire will be in either
contact or separation because of their mutual independence.
The contact state and the value of the contact force directly
affect the dynamic behavior of the pantograph-catenary
system. Therefore, determining the contact state between
the pantograph and the contact wire is one of the key
problems involved in simulating the dynamic behavior of
the pantograph-catenary system, which consists in determin-
ing whether the pantograph contacts the contact wire and
computing the value of the contact force. In this subsection,
the formulation of the contact is proposed based on PVP
to compute the contact force by transforming the nonlinear
contact problem into a complementarity problem, which can
overcome the convergence difficulty caused by the nondiffer-
ential characteristics of dynamic contact problems.

At time 𝑡𝑝, the location of the moving pantograph is 𝑥𝑝 =𝑥0 + 𝑉𝑡𝑝, the displacement of the pan-head is 𝑦𝐶𝑝 , and the
displacement of the contact wire at 𝑥𝑝 is 𝑦𝑝𝐶 (see Figure 5).
If the pantograph contacts the contact wire, the contact force
will be nonnegative. Otherwise, the contact force should be
0; that is,

𝜆𝑝 {≥ 0, 𝑦𝑝𝐶 − 𝑦𝐶𝑝 = 0,= 0, 𝑦𝑝𝐶 − 𝑦𝐶𝑝 > 0. (22)

By introducing a nonnegative slack variable ]𝑝, (22) can be
described as follows:

𝑦𝑝𝐶 − 𝑦𝐶𝑝 − ]𝑝 = 0, 𝜆𝑝 ≥ 0, ]𝑝 ≥ 0, 𝜆𝑝]𝑝 = 0. (23)

The displacement 𝑦𝐶𝑝 of the pan-head can be represented
by the contact force 𝜆𝑝 by solving (7) and the displacement𝑦𝑝𝐶 of the contact wire at 𝑥𝑝 can be can be represented by
the contact force 𝜆𝑝 from (5).The nonlinear contact problem
is transformed into a linear complementarity problem by
substituting the displacements 𝑦𝐶𝑝 and 𝑦𝑝𝐶 into (23). The
contact force 𝜆𝑝 can therefore be solved easily by Lemke’s
scheme [32].The contact state or the separation state between
the pantograph and the contact wire can be indicated by the
value of the contact force 𝜆𝑝; that is, 𝜆𝑝 > 0 indicates that
pantograph contacts the contact wire, while 𝜆𝑝 = 0 indicates
that the pantograph does not contact the contact wire.

3.3. Formulation for the Pantograph-Catenary System Based
on PVP. In this subsection, the FEM formulation for the
pantograph-catenary system is presented based on PVP. The
equation of motion for the pantograph is given by (7).
For the catenary, both the messenger wire and the contact
wire are modeled as 2-node Euler-Bernoulli beam elements,
every dropper is modeled as a bilinear mass-spring-damper,
and both the supporting brackets and registration arms are
modeled as mass-springs.

The potential energy of the nonlinear droppers can be
given by (17), and the potential energy of the messenger wire,
contact wire, supporting brackets, and registration arms can

roof of train

y
p
C

yC
p

· · ·· · · · · · · · · · · ·

Figure 5:The contact between the pantograph and the contact wire.

be obtained easily. Therefore, for a catenary with nonlinear
droppers, the potential energy can be written as

𝑈𝐶 = 12 (y𝐶)𝑇K𝐶y𝐶 + (y𝑑)𝑇 F𝑑𝜆𝑑 − (y𝐶)𝑇 f , (24)

whereK𝐶 and y𝐶 are the global stiffness matrix and displace-
ment vector of the catenary, respectively; y𝑑 and 𝜆𝑑 are the
displacement vector and parametric variable vector of the
droppers, respectively; f is a vector of external forces; and

F𝑑 =
[[[[[
[

F𝑑,1
F𝑑,2

d

F𝑑,𝑁×𝑛𝑑

]]]]]
]
, (25)

where F𝑑,𝑘 is given by (19). Therefore, based on the principle
of minimum potential energy, PVP of the catenary with
nonlinear droppers can be presented as

𝑈𝐶 = 12 (y𝐶)𝑇K𝐶y𝐶 + (y𝐶)𝑇 L𝑑F𝑑𝜆𝑑
− (y𝐶)𝑇 f , 𝛿y𝐶𝑈𝐶 = 0,

(26)

^𝑑 − A𝑑𝜆𝑑 − B𝑑y𝑑 = 0,
𝜆𝑑,𝑘]𝑘 = 0, ]𝑑,𝑘 ≥ 0, 𝜆𝑑,𝑘 ≥ 0, (27)

where

L𝑑 =

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

0
e𝑑,1
0
e𝑑,2...
0

e𝑑,𝑁×𝑛𝑑
0

}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}

,

e𝑑,𝑖 = [ 0⏟⏟⏟⏟⏟⏟⏟
𝑖−1

I2 0⏟⏟⏟⏟⏟⏟⏟
𝑁×𝑛𝑑−𝑖

] ,
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A𝑑 =
[[[[[[
[

𝑘(+)
𝑑,1

𝑘(+)
𝑑,2

d

𝑘(+)
𝑑,𝑁×𝑛𝑑

]]]]]]
]
,

B𝑑 =
[[[[[
[

B𝑑,1
B𝑑,2

d

B𝑑,𝑁×𝑛𝑑

]]]]]
]
,

(28)

where I2 is a 2×2 identity matrix and B𝑑,𝑘 is obtained by (19).
The external force vector f in (26) consists of the gravity

force vector of the catenary and the contact force from the
pantograph. Assuming that the element length of the contact
wire is 𝑙𝑐, the pantograph moves by one element in 𝜂 = 𝑙𝑐/𝑉,
and the equivalent load of the contact force can be expressed
as reported in the literature [33] (see Figure 6):

𝜆𝑝,𝑖 = (1 − 𝑡𝜂) 𝜆𝑝,
𝜆𝑝,𝑖+1 = 𝑡𝜂𝜆𝑝

(29)

and the external force vector f can be written as

f = G𝐶 + (r0 + r1𝑡) 𝜆𝑝, (30)

where G𝐶 is the gravity vector of the catenary, and

r0 = {0 ⋅ ⋅ ⋅ 0 1 0 ⋅ ⋅ ⋅ 0}𝑇 ,
r1 = 𝑉𝑙𝑐 {0 ⋅ ⋅ ⋅ 0 −1 0 1 0 ⋅ ⋅ ⋅ 0}𝑇 . (31)

Thus, the equation ofmotion for the catenary under amoving
force considering nonlinear droppers can be written as

M𝐶ÿ𝐶 + C𝐶ẏ𝐶 + K𝐶y𝐶

= L𝑑F𝑑𝜆𝑑 + G𝐶 + (r0 + r1𝑡) 𝜆𝑝,
y𝐶 (0) = y𝐶,0, ẏ𝐶 (0) = 0,

(32)

where M𝐶 and C𝐶 are the global mass matrix and global
damping matrix of the catenary, respectively. Of course, the
system must be constrained by complementarity condition
(27).

The formulations for the pantograph and the catenary
with nonlinear droppers are presented in (7), (32), and (27);
and the formulation of the contact between the pantograph
and the contact wire is presented in (23). Thus, the response
of the pantograph can be represented by the contact force𝜆𝑝 by solving (7) and the response of the catenary can
be represented by the parametric variable vector 𝜆𝑑 of the



i
t

i + 1

p,i
p,i+1

p

Figure 6: The equivalent load of a moving force.

nonlinear droppers and the contact force 𝜆𝑝 by solving (32).
A standard linear complementarity problem can therefore be
established by substituting the displacements 𝑦𝐶𝑝 and 𝑦𝑝𝐶 into
(23) and substituting the displacements y𝑑 of the droppers
into (27). The parametric variables 𝜆𝑑 of the nonlinear
droppers and the contact force 𝜆𝑝 can be solved by Lemke’s
scheme [32].

4. An Efficient PIM for
the Pantograph-Catenary System

The significant wave effect of the contact wire subjected to a
pantograph moving at high speed makes it more difficult to
accurately simulate the dynamic behavior of the pantograph-
catenary system, particularly with contact problem and
nonlinear droppers. The FEM is typically combined with a
time-integrationmethod to simulate the dynamic behavior of
the pantograph-catenary system. For linear elastic structures,
the most commonly used time-domain integral methods are
the Runge-Kutta, Newmark, andWilson-𝜃methods. Because
of stability and precision requirements, the time step for
integration in thesemethodsmust be very small such that the
required calculation is quite large. PIM proposed by Zhong
andWilliams [28] allows for a longer time step for integration
and offers the advantages of high accuracy and good stability
[34]. Although the responses of a small-scale system can be
solved exactly and efficiently by PIM, it is a great challenge to
solve a systemwith an enormous number of DOFs efficiently.
Because of few DOFs, the equation of motion (7) for the
pantograph can be solved directly by PIM. For the catenary,
the number of DOFs is quite large. Thus, a time-domain
integral method for computing the accurate response of the
catenary is herein established.

4.1. PIM for the Pantograph. For the pantograph, by using
PIM, the equation of motion can be solved to obtain the
displacement represented in terms of the contact force 𝜆𝑝. In
the state space, (7) can also be rewritten as

v̇𝑝 = H𝑝v𝑝 + f𝑝 (33)

with the state vector of the pantograph expressed as

k𝑝 = {y𝑝ẏ𝑝} , (34)
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Figure 7: Periodicity of the catenary: (a) an infinite long catenary and (b) the interaction forces for unit cells of the catenary.

where

H𝑝 = [ 0 I𝑝
−M−1𝑝 K𝑝 −M−1𝑝 C𝑝] ,

f𝑝 = {{{
0

M−1𝑝 (G̃𝑝 − {𝜆𝑝 0 0}𝑇)
}}}

(35)

in which I𝑝 is an identity matrix, and G̃𝑝 = G𝑝 + {0 0 𝑃0}𝑇.
To seek a numerical solution to (33) from an initial state,

the entire duration is divided into the following uniform
intervals 𝑡0 = 0, 𝑡1 = 𝜂, . . . , 𝑡𝑛 = 𝑛𝜂, . . ., and 𝜂 is the time step.
If the state k𝑝,𝑛 = v𝑝(𝑡𝑛) of the pantograph at time 𝑡 = 𝑡𝑛 is
determined, the state v𝑝,𝑛+1 of the pantograph at time 𝑡 = 𝑡𝑛+1
can be given as

v𝑝,𝑛+1 = T𝑝v𝑝,𝑛 + ∫𝜂
0
exp [H𝑝 (𝜂 − 𝜉)] f𝑝 (𝑡𝑛 + 𝜉) d𝜉, (36)

where T𝑝 is a matrix exponential defined as

T𝑝 = exp (H𝑝𝜂) . (37)

Assuming that the contact force 𝜆𝑝 is constant in a time step,
(36) can be solved analytically as

v𝑝,𝑛+1 = v𝑝,𝑛+1 + 𝛼𝑝,1𝜆𝑝, (38)

where

v𝑝,𝑛+1 = T𝑝v𝑝,𝑛 +Ψ𝑝,0G̃𝑝,
𝛼𝑝,1 = −Ψ1𝑝,0,
Ψ𝑝,0 = H−1𝑝 [ T𝑝,12

T𝑝,22 − I
]M−1𝑝

(39)

in which Ψ1𝑝,0 is the first column of matrix Ψ𝑝,0 and T𝑝,12
and T𝑝,22 are the block matrices corresponding to the matrix
exponential T𝑝; that is,

T𝑝 = [T𝑝,11 T𝑝,12
T𝑝,21 T𝑝,22

] . (40)

The response of the pantograph can thus be represented
by the contact force 𝜆𝑝 in (38).

4.2. An Efficient PIM for the Catenary Based on Its Periodicity.
To obtain the response of the catenary subjected to a moving
force at high velocity, the catenary used for simulation
must be long enough and must be divided into many FEM
elements; the number of DOFs is thus very large, leading
to an enormous calculation and poor efficiency. Therefore,
it is necessary to develop an efficient time-domain integral
method for computing the accurate response of the catenary
subjected to a moving force.

The catenary, composed of a series of unit cells, can
be regarded as a periodic structure (see Figure 7). In this
paper, based on the periodicity of the catenary and PIM,
an efficient time-integration algorithm for computing the
response of the catenary is established. For this method, the
matrix exponential of only one unit cell of the catenary must
be computed, greatly improving the computational efficiency.

Because of the periodicity of the catenary, themassmatrix
M𝑢, the damping matrix C𝑢, the stiffness matrix K𝑢, and
the gravity vector G𝑢 for each unit cell of the catenary
are the same. By introducing interaction forces P𝑢,𝑗 =
{𝑝𝐿𝑚,𝑗 𝑝𝐿𝑐,𝑗 𝑝𝑅𝑚,𝑗 𝑝𝑅𝑐,𝑗}𝑇 for the 𝑗th unit cell of the catenary
(see Figure 7(b)), the equation of motion for the 𝑗th unit cell
of the catenary can be written as

M𝑢ÿ𝑢,𝑗 + C𝑢ẏ𝑢,𝑗 + K𝑢y𝑢,𝑗

= L𝑑,𝑢F𝑑,𝑢𝜆
𝑢
𝑑,𝑗 + G𝑢 +Q𝑢,𝑗𝜆𝑝 + L𝑃P𝑢,𝑗,

y𝑢,𝑗 (0) = y𝑢,𝑗,0, ẏ𝑢,𝑗 (0) = 0,
(41)

where ÿ𝑢,𝑗, ẏ𝑢,𝑗, and y𝑢,𝑗 are the acceleration vector, velocity
vector, and displacement vector for the 𝑗th unit cell of the
catenary, respectively, 𝜆𝑢𝑑,𝑗 is a parametric variable vector of
droppers in the 𝑗th unit cell, and

L𝑑,𝑢 =

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

0
e𝑑,𝑢,1
0

e𝑑,𝑢,2...
0

e𝑑,𝑢,𝑛𝑑
0

}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}

,
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F𝑑,𝑢 =
[[[[[
[

F𝑑,1
F𝑑,2

d

F𝑑,𝑛𝑑

]]]]]
]
,

L𝑃 =

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

0
e𝑃,1
0
e𝑃,2...
0
e𝑃,4
0

}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}

,

e𝑑,𝑢,𝑖 = [ 0⏟⏟⏟⏟⏟⏟⏟
𝑖−1

I2 0⏟⏟⏟⏟⏟⏟⏟
𝑛𝑑−𝑖

] ,
e𝑃,𝑖 = { 0⏟⏟⏟⏟⏟⏟⏟

𝑖−1

1 0⏟⏟⏟⏟⏟⏟⏟
4−𝑖

} ,
(42)

where F𝑑,𝑘 can be obtained by (19). When the pantograph
moves, the contact force moves along the contact wire.
Assuming that 𝜅𝑝(𝑡) denotes the sequence number of the unit
cell of the catenary corresponding to the pantograph at time𝑡,Q𝑢,𝑗 can be written as

Q𝑢,𝑗 = {{{
r𝑢,0 + r𝑢,1𝑡, 𝑗 = 𝜅𝑝 (𝑡) ,
0, other. (43)

For the column vector r𝑢,0, the elements are 0, except for the
element corresponding to the pan-head at 𝑡 = 𝑡𝑛, which is 1;
for the column vector r𝑢,1 the elements are 0, except for the
element corresponding to the pan-head at 𝑡 = 𝑡𝑛, which is−𝑉/𝑙𝑐; the element corresponding to the pan-head at 𝑡 = 𝑡𝑛+1
is 𝑉/𝑙𝑐; that is,

r𝑢,0 = {0 ⋅ ⋅ ⋅ 0 1 0 ⋅ ⋅ ⋅ 0}𝑇 ,
r𝑢,1 = 𝑉𝑙𝑐 {0 ⋅ ⋅ ⋅ 0 −1 0 1 0 ⋅ ⋅ ⋅ 0}𝑇 . (44)

In the state space, (41) can be rewritten as

v̇𝑢,𝑗 = H𝑢v𝑢,𝑗 + f𝑢,𝑗 (45)

with the state vector of the unit cell expressed as

v𝑢,𝑗 = {y𝑢,𝑗ẏ𝑢,𝑗
} , (46)

where

H𝑢 = [ 0 I𝑢
−M−1𝑢 K𝑢 −M−1𝑢 C𝑢] ,

f𝑢,𝑗 = [ 0

M−1𝑢 (L𝑑,𝑢F𝑑,𝑢𝜆𝑢𝑑,𝑗 + G𝑢 +Q𝑢,𝑗𝜆𝑝 + L𝑃P𝑢,𝑗)]
(47)

in which I𝑢 is an identity matrix.
If the state v𝑢,𝑗,𝑛 = v𝑢,𝑗(𝑡𝑛) of the catenary at 𝑡 = 𝑡𝑛 is

determined, the state v𝑢,𝑗,𝑛+1 of the catenary at 𝑡 = 𝑡𝑛+1 can be
given as

v𝑢,𝑗,𝑛+1 = T𝑢v𝑢,𝑗,𝑛

+ ∫𝜂
0
exp [H𝑢 (𝜂 − 𝜉)] f𝑢,𝑗 (𝑡𝑛 + 𝜉) d𝜉, (48)

where T𝑢 is a matrix exponential defined as

T𝑢 = exp (H𝑢𝜂) . (49)

In this paper, we assume that the interaction forces
P𝑢,𝑗(𝑡) are constant in a time step and that the parametric
variables 𝜆𝑢𝑑,𝑗(𝑡) of the droppers are replaced by their linear
approximation within 𝑡 ∈ [𝑡𝑛, 𝑡𝑛+1] as follows:

𝜆
𝑢
𝑑,𝑗 (𝑡) = (1 − 𝑡𝜂)𝜆𝑢𝑑,𝑗,𝑛 + 𝑡𝜂𝜆𝑢𝑑,𝑗,𝑛+1. (50)

Eq. (48) can be therefore solved analytically as

v𝑢,𝑗,𝑛+1 = v𝑢,𝑗,𝑛+1 + 𝛼𝑢,1𝜆𝑢𝑑,𝑗,𝑛+1 + 𝛼𝑢,2P𝑢,𝑗,𝑛+1
+ 𝛾𝑢,𝑗,𝑛+1𝜆𝑝, (51)

where
v𝑢,𝑗,𝑛+1

= T𝑢v𝑢,𝑗,𝑛 +Ψ𝑢,0 (G𝑢 + L𝑑,𝑢F𝑑,𝑢𝜆
𝑢
𝑑,𝑗,𝑛) − 𝛼𝑢,1𝜆𝑢𝑑,𝑗,𝑛,

𝛼𝑢,2 = Ψ𝑢,0L𝑃,
𝛼𝑢,1 = 1𝜂Ψ𝑢,1L𝑑,𝑢F𝑑,𝑢,

𝛾𝑢,𝑗,𝑛+1 = {{{
Ψ𝑢,0r𝑢,0 +Ψ𝑢,1r𝑢,1, 𝑗 = 𝜅𝑝 (𝑡) ,
0, other,

Ψ𝑢,0 = H−1𝑢 ([T𝑢,12T𝑢,22
] − [0

I
])M−1𝑢 ,

Ψ𝑢,1 = 1𝜂 (H−2𝑢 ([
T𝑢,12
T𝑢,22

] − [0
I
]) −H−1𝑢 [0I] 𝜂)M−1𝑢

(52)

in whichT𝑢,12 andT𝑢,22 are the blockmatrices corresponding
to the matrix exponential T𝑢; that is,

T𝑢 = [T𝑢,11 T𝑢,12
T𝑢,21 T𝑢,22

] . (53)
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Eq. (51) can be rewritten as

v𝑢,𝑗,𝑛+1 = v𝑢,𝑗,𝑛+1 + 𝛼𝑢,1𝜆𝑢𝑑,𝑗,𝑛+1 + 𝛼𝐿𝑢,2P𝐿𝑢,𝑗,𝑛+1
+ 𝛼𝑅𝑢,2P𝑅𝑢,𝑗,𝑛+1 + 𝛾𝑢,𝑗,𝑛+1𝜆𝑝, (54)

where 𝛼𝐿𝑢,2 and 𝛼
𝑅
𝑢,2 are the block matrices corresponding to

thematrix𝛼𝑢,2,P𝐿𝑢,𝑗,𝑛+1 is the interaction force vector from the
(𝑗 − 1)th unit cell, and P𝑅𝑢,𝑗,𝑛+1 is the interaction force vector
from the (𝑗 + 1)th unit cell, that is,

𝛼𝑢,2 = [𝛼𝐿𝑢,2 𝛼𝑅𝑢,2] ,
P𝑢,𝑗,𝑛+1 = {P

𝐿
𝑢,𝑗,𝑛+1

P𝑅𝑢,𝑗,𝑛+1
} . (55)

For each unit cell, the displacements of the left and right
interfaces can be written by extracting the rows of (54),
respectively, as

y𝐿𝑢,𝑗,𝑛+1 = y𝐿𝑢,𝑗,𝑛+1 + 𝛼𝐿𝑢,1𝜆𝑢𝑑,𝑗,𝑛+1 + 𝛼𝐿𝐿𝑢,2P𝐿𝑢,𝑗,𝑛+1
+ 𝛼𝐿𝑅𝑢,2P𝑅𝑢,𝑗,𝑛+1 + 𝛾𝐿𝑢,𝑗,𝑛+1𝜆𝑝,

y𝑅𝑢,𝑗,𝑛+1 = y𝑅𝑢,𝑗,𝑛+1 + 𝛼𝑅𝑢,1𝜆𝑢𝑑,𝑗,𝑛+1 + 𝛼𝑅𝐿𝑢,2P𝐿𝑢,𝑗,𝑛+1
+ 𝛼𝑅𝑅𝑢,2P𝑅𝑢,𝑗,𝑛+1 + 𝛾𝑅𝑢,𝑗,𝑛+1𝜆𝑝,

(56)

where y𝐿𝑢,𝑗,𝑛+1 and 𝛾
𝐿
𝑢,𝑗,𝑛+1 denote vectors corresponding to the

left interface in the vectors v𝑢,𝑗,𝑛+1 and 𝛾𝑢,𝑗,𝑛+1, respectively;
𝛼𝐿𝑢,1, 𝛼

𝐿𝐿
𝑢,2, and 𝛼

𝐿𝑅
𝑢,2 denote matrices consisting of the rows

corresponding to the left interface in the matrices 𝛼𝑢,1, 𝛼
𝐿
𝑢,2,

and 𝛼𝑅𝑢,2, respectively; y
𝑅
𝑢,𝑗,𝑛+1 and 𝛾

𝑅
𝑢,𝑗,𝑛+1 denote vectors

corresponding to the right interface in the vectors v𝑢,𝑗,𝑛+1 and
𝛾𝑢,𝑗,𝑛+1, respectively; and 𝛼

𝑅
𝑢,1, 𝛼
𝑅𝐿
𝑢,2, and 𝛼

𝑅𝑅
𝑢,2 denote matrices

consisting of the rows corresponding to the right interface in
the matrices 𝛼𝑢,1, 𝛼

𝐿
𝑢,2, and 𝛼

𝑅
𝑢,2, respectively. Regarding the

infinite length of the catenary, the boundary conditions of
both ends can be considered to be free; that is,

P𝐿𝑢,1,𝑛+1 = P𝑅𝑢,𝑁,𝑛+1 = 0. (57)

The combination of the displacements of the left interface
from the second unit cell to the 𝑁th unit cell in (56) can be
written as

y𝐿𝐶,𝑛+1 = y𝐿𝐶,𝑛+1 + 𝜓𝐿𝐶,1𝜆𝑑,𝑛+1 + 𝜓𝐿𝐿𝐶,2P𝐿𝐶,𝑛+1
+ 𝜓𝐿𝑅𝐶,2P𝑅𝐶,𝑛+1 + 𝜓𝐿𝐶,3,𝑛+1𝜆𝑝, (58)

where

y𝐿𝐶,𝑛+1 =
{{{{{{{{{{{{{{{

y𝐿𝑢,2,𝑛+1
y𝐿𝑢,3,𝑛+1...
y𝐿𝑢,𝑁,𝑛+1

}}}}}}}}}}}}}}}
,

𝜆𝑑,𝑛+1 =
{{{{{{{{{{{{{

𝜆𝑢𝑑,1,𝑛+1

𝜆𝑢𝑑,2,𝑛+1...
𝜆𝑢𝑑,𝑁,𝑛+1

}}}}}}}}}}}}}
,

P𝐿𝐶,𝑛+1 =
{{{{{{{{{{{{{{{

P𝐿𝑢,2,𝑛+1
P𝐿𝑢,3,𝑛+1...
P𝐿𝑢,𝑁,𝑛+1

}}}}}}}}}}}}}}}
,

P𝑅𝐶,𝑛+1 =
{{{{{{{{{{{{{{{

P𝑅𝑢,1,𝑛+1
P𝑅𝑢,2,𝑛+1...

P𝑅𝑢,𝑁−1,𝑛+1

}}}}}}}}}}}}}}}
,

y𝐿𝐶,𝑛+1 =
{{{{{{{{{{{{{{{

y𝐿𝑢,2,𝑛+1
y𝐿𝑢,3,𝑛+1...
y𝐿𝑢,𝑁,𝑛+1

}}}}}}}}}}}}}}}
,

𝜓
𝐿
𝐶,1 =

[[[[[[
[

0 𝛼𝐿𝑢,1
0 𝛼𝐿𝑢,1

d d

0 𝛼𝐿𝑢,1

]]]]]]
]
,

𝜓
𝐿
𝐶,2,𝑛+1 =

{{{{{{{{{{{{{{{{{{{

0𝜅𝑝(𝑡𝑛+1)−2
𝛾𝐿𝑢,𝜅𝑝(𝑡𝑛+1),𝑛+1

0
...
0

}}}}}}}}}}}}}}}}}}}

,

𝜓
𝐿𝐿
𝐶,2 =

[[[[[[
[

𝛼𝐿𝐿𝑢,2

𝛼𝐿𝐿𝑢,2

d

𝛼𝐿𝐿𝑢,2

]]]]]]
]
,
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𝜓
𝐿𝑅
𝐶,2 =

[[[[[[[[[
[

0 𝛼𝐿𝑅𝑢,2
0 𝛼𝐿𝑅𝑢,2

d d

0 𝛼𝐿𝑅𝑢,2
0

]]]]]]]]]
]

.

(59)

The combination of the displacements of the right interface
from the first unit cell to the (𝑁−1)th unit cell in (56) can be
written as

y𝑅𝐶,𝑛+1 = y𝑅𝐶,𝑛+1 + 𝜓𝑅𝐶,1𝜆𝑑,𝑛+1 + 𝜓𝑅𝐿𝐶,2P𝐿𝐶,𝑛+1
+ 𝜓𝑅𝑅𝐶,2P𝑅𝐶,𝑛+1 + 𝜓𝑅𝐶,3,𝑛+1𝜆𝑝, (60)

where

y𝑅𝐶,𝑛+1 =
{{{{{{{{{{{{{{{

y𝑅𝑢,1,𝑛+1
y𝑅𝑢,2,𝑛+1...

y𝑅𝑢,𝑁−1,𝑛+1

}}}}}}}}}}}}}}}
,

𝜓
𝑅
𝐶,1 =

[[[[[[
[

𝛼𝑅𝑢,1 0

𝛼𝑅𝑢,1 0
d d

𝛼𝑅𝑢,1 0

]]]]]]
]
,

𝜓
𝑅
𝐶,3,𝑛+1 =

{{{{{{{{{{{{{{{{{{{

0𝜅𝑝(𝑡𝑛+1)−1
𝛾𝐿𝑢,𝜅𝑝(𝑡𝑛+1),𝑛+1

0
...
0

}}}}}}}}}}}}}}}}}}}

,

𝜓
𝑅𝐿
𝐶,2 =

[[[[[[[[[
[

0

𝛼𝑅𝐿𝑢,2 0

𝛼𝑅𝐿𝑢,2 d

d 0

𝛼𝑅𝐿𝑢,2 0

]]]]]]]]]
]

,

𝜓
𝑅𝑅
𝐶,2 =

[[[[[[
[

𝛼𝑅𝑅𝑢,2

𝛼𝑅𝑅𝑢,2

d

𝛼𝑅𝑅𝑢,2

]]]]]]
]
.

(61)

The displacements y𝐿𝐶,𝑛+1 and y𝑅𝐶,𝑛+1 should meet the conti-
nuity condition, and the interaction forces P𝐿𝐶,𝑛+1 and P𝑅𝐶,𝑛+1
must comply with Newton’s third law; that is,

y𝑅𝐶,𝑛+1 = y𝐿𝐶,𝑛+1,
P𝑅𝐶,𝑛+1 + P𝐿𝐶,𝑛+1 = 0. (62)

Substituting the displacements (58) and (60) into (62), (62)
can be written as

0 = Θ0,𝑛+1 +Θ1𝜆𝑑,𝑛+1 +Θ2P𝐿𝐶,𝑛+1 +Θ3,𝑛+1𝜆𝑝, (63)

where

Θ0,𝑛+1 = y𝐿𝐶,𝑛+1 − y𝑅𝐶,𝑛+1,
Θ1 = 𝜓𝐿𝐶,1 − 𝜓𝑅𝐶,1,
Θ2 = 𝜓𝐿𝐿𝐶,2 − 𝜓𝑅𝐿𝐶,2 − 𝜓𝐿𝑅𝐶,2 + 𝜓𝑅𝑅𝐶,2,
Θ3,𝑛+1 = 𝜓𝐿𝐶,3,𝑛+1 − 𝜓𝑅𝐶,3,𝑛+1.

(64)

The interaction forces P𝐿𝐶,𝑛+1 can thus be represented by the
parametric variables 𝜆𝑑,𝑛+1 of the droppers and the contact
force 𝜆𝑝 by solving (63) as follows:

P𝐿𝐶,𝑛+1 = Φ0,𝑛+1 +Φ1𝜆𝑑,𝑛+1 +Φ2,𝑛+1𝜆𝑝, (65)

where

Φ0,𝑛+1 = −Θ−12 Θ0,𝑛+1,
Φ1 = −Θ−12 Θ1,
Φ2,𝑛+1 = −Θ−12 Θ3,𝑛+1.

(66)

In (65), the interaction forces P𝐿𝐶,𝑛+1 are represented by
𝜆𝑑,𝑛+1 and 𝜆𝑝, and in (54), the response of each unit cells
of the catenary is represented by the parametric variables
𝜆𝑢𝑑,𝑗,𝑛+1, 𝜆𝑝, P𝐿𝑢,𝑗,𝑛+1, and P𝑅𝑢,𝑗,𝑛+1. Therefore, the response of
the catenary can be represented by the parametric variables
𝜆𝑑,𝑛+1 of the droppers and the contact force 𝜆𝑝 by substituting
the interaction forces in (65) into (54).

In this section, the responses of the pantograph-catenary
system were obtained by using PIM. In particular, based
on the periodicity of the catenary and PIM, a numeri-
cal time-integration algorithm was established to compute
the response of the catenary. For this method, the matrix
exponential for only one unit cell of the catenary must
be computed, which greatly improves the computational
efficiency.

5. Linear Complementarity Problem for
Contact and the Nonlinear Droppers

In Section 4, the response of the pantograph was represented
by the contact force 𝜆𝑝, and the response of the catenary
was represented by the parametric variables 𝜆𝑑,𝑛+1 of the
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droppers and the contact force 𝜆𝑝. If the contact force and
the parametric variables of the droppers are determined,
the responses of the pantograph-catenary system can be
obtained. In this section, the values of the contact force and
the parametric variables of droppers are computed by using
the complementarity conditions presented in Section 3.

Assuming that the pan-head corresponds to the 𝛿𝑝th
DOF of the 𝜅𝑝th unit cell of the catenary at time 𝑡 = 𝑡𝑛+1,
the displacement of this DOF of the catenary can be given by
(54) as

𝑦𝑝𝐶,𝑛+1 = 𝑦𝑝𝐶,𝑛+1 + 𝛼𝑝𝐶,1𝜆𝑢𝑑,𝜅𝑝,𝑛+1 + 𝛼𝑝𝐿𝐶,2P𝐿𝑢,𝜅𝑝,𝑛+1
+ 𝛼𝑝𝑅𝐶,2P𝑅𝑢,𝜅𝑝,𝑛+1 + 𝛾𝑝𝐶,𝜅𝑝,𝑛+1𝜆𝑝,

(67)

where 𝑦𝑝𝐶,𝑛+1 and 𝛾𝑝𝐶,𝜅𝑝,𝑛+1 are elements of the 𝛿𝑝th row of

vectors v𝑢,𝜅𝑝,𝑛+1 and 𝛾𝑢,𝜅𝑝,𝑛+1, respectively; and 𝛼
𝑝
𝐶,1, 𝛼
𝑝𝐿
𝐶,2, and

𝛼
𝑝𝑅
𝐶,2 denote vectors of the 𝛿𝑝th row in matrices 𝛼𝑢,1, 𝛼

𝐿
𝑢,2, and

𝛼𝑅𝑢,2, respectively. Eq. (67) can be rewritten as

𝑦𝑝𝐶,𝑛+1 = 𝑦𝑝𝐶,𝑛+1 + 𝛼𝑝𝐶,1𝜆𝑑,𝑛+1 + 𝛼𝑝𝐶,2P𝐿𝐶,𝑛+1
+ 𝛾𝑝𝐶,𝜅𝑝,𝑛+1𝜆𝑝,

(68)

where

𝛼
𝑝
𝐶,1 = { 0⏟⏟⏟⏟⏟⏟⏟

𝜅𝑝−1

𝛼
𝑝
𝐶,1 0⏟⏟⏟⏟⏟⏟⏟
𝑁−𝜅𝑝

} ,
𝛼
𝑝
𝐶,2 = { 0⏟⏟⏟⏟⏟⏟⏟

𝜅𝑝−2

𝛼
𝑝𝐿
𝐶,2 −𝛼𝑝𝑅𝐶,2 0⏟⏟⏟⏟⏟⏟⏟

𝑁−𝜅𝑝−1
} .

(69)

By substituting the interaction forces in (65) into (68), the
displacement𝑦𝑝𝐶,𝑛+1 of the catenary corresponding to the pan-
head can be represented by the parametric variables 𝜆𝑑,𝑛+1 of
the droppers and the contact force 𝜆𝑝 as

𝑦𝑝𝐶,𝑛+1 = 𝛽0 + 𝛽1𝜆𝑑,𝑛+1 + 𝛽2𝜆𝑝, (70)

where

𝛽0 = 𝑦𝑝𝐶,𝑛+1 + 𝛼𝑝𝐶,2Φ0,𝑛+1,
𝛽1 = 𝛼𝑝𝐶,1 + 𝛼𝑝𝐶,2Φ1,
𝛽2 = 𝛾𝑝𝐶,𝜅𝑝,𝑛+1 + 𝛼𝑝𝐶,2Φ2,𝑛+1.

(71)

For the pantograph, the response represented by the
contact force 𝜆𝑝 is given by (38) and the displacement of the
pan-head can thus be written as

𝑦𝐶𝑝,𝑛+1 = 𝑦𝐶𝑝,0,𝑛+1 + 𝑦𝐶𝑝,1𝜆𝑝, (72)

where 𝑦𝐶𝑝,0,𝑛+1 and 𝑦𝐶𝑝,1 are the first elements of the vectors
v𝑝,𝑛+1 and 𝛼𝑝,1, respectively. By substituting the displacement
(70) of the contact wire corresponding to the pan-head
and the displacement (72) of the pan-head into (23), a

standard complementarity problem for the contact between
the pantograph and the contact wire can be obtained as

]𝑝 − Z𝑝,1𝜆𝑑,𝑛+1 − 𝑍𝑝,2,𝑛+1𝜆𝑝 + 𝑧𝑝,𝑛+1 = 0,
𝜆𝑝]𝑝 = 0, ]𝑝 ≥ 0, 𝜆𝑝 ≥ 0, (73)

where
Z𝑝,1 = 𝛽1,

𝑍𝑝,2,𝑛+1 = 𝛽2 − 𝑦𝐶𝑝,1,
𝑧𝑝,𝑛+1 = 𝑦𝐶𝑝,0,𝑛+1 − 𝛽0.

(74)

For the droppers, the displacements can be given by
extracting the rows corresponding to the droppers from (54)
as

y𝑢𝑑,𝑗,𝑛+1 = y𝑢𝑑,𝑗,𝑛+1 + 𝛼𝑑,1𝜆𝑢𝑑,𝑗,𝑛+1 + 𝛼𝐿𝑑,2P𝐿𝑢,𝑗,𝑛+1
+ 𝛼𝑅𝑑,2P𝑅𝑢,𝑗,𝑛+1 + 𝛾𝑑,𝑗,𝑛+1𝜆𝑝, (75)

where y𝑢𝑑,𝑗,𝑛+1 and 𝛾𝑑,𝑗,𝑛+1 denote vectors corresponding to
the droppers in the vectors v𝑢,𝑗,𝑛+1 and 𝛾𝑢,𝑗,𝑛+1, respectively;
and 𝛼𝑑,1, 𝛼

𝐿
𝑑,2, and 𝛼

𝑅
𝑑,2 denote vectors consisting of the rows

corresponding to the droppers in the matrices 𝛼𝑢,1, 𝛼
𝐿
𝑢,2, and

𝛼𝑅𝑢,2, respectively. The combination of the displacements of
droppers in all unit cells in (75) can be written as

y𝑑,𝑛+1 = y𝑑,𝑛+1 + 𝜑𝑑,1𝜆𝑑,𝑛+1 + 𝜑𝑑,2P𝐿𝐶,𝑛+1 + 𝜑𝑑,3,𝑛+1𝜆𝑝, (76)

where

y𝑑,𝑛+1 =
{{{{{{{{{{{{{

y𝑢𝑑,1,𝑛+1
y𝑢𝑑,2,𝑛+1...
y𝑢𝑑,𝑁,𝑛+1

}}}}}}}}}}}}}
,

𝜑𝑑,1 =
[[[[[
[

𝛼𝑑,1

𝛼𝑑,1

d

𝛼𝑑,1

]]]]]
]
,

𝜑𝑑,2 =
[[[[[[[[[
[

−𝛼𝑅𝑑,2
𝛼𝐿𝑑,2 −𝛼𝑅𝑑,2
𝛼𝐿𝑑,2 d

d −𝛼𝑅𝑑,2
𝛼𝐿𝑑,2

]]]]]]]]]
]

,

𝜑𝑑,3,𝑛+1 =
{{{{{{{{{{{{{{{{{{{

0𝜅𝑝(𝑡𝑛+1)−1
𝛾𝑑,𝜅𝑝(𝑡𝑛+1),𝑛+1

0
...
0

}}}}}}}}}}}}}}}}}}}

.

(77)
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By substituting the interaction forces in (65) into (76), the
displacements of the droppers y𝑑,𝑛+1 can be represented by the
parametric variables 𝜆𝑑,𝑛+1 of the droppers and the contact
force 𝜆𝑝 as

y𝑑,𝑛+1 = 𝜑𝑑,0,𝑛+1 + 𝜑𝑑,1𝜆𝑑,𝑛+1 + 𝜑𝑑,2,𝑛+1𝜆𝑝, (78)

where

𝜑𝑑,0,𝑛+1 = y𝑑,𝑛+1 + 𝜑𝑑,2Φ0,𝑛+1,
𝜑𝑑,1 = 𝜑𝑑,1 + 𝜑𝑑,2Φ1,
𝜑𝑑,2,𝑛+1 = 𝜑𝑑,3,𝑛+1 + 𝜑𝑑,2Φ2,𝑛+1.

(79)

By substituting the displacements in (78) of the droppers into
(27), a standard complementarity problem for the nonlinear
droppers can be obtained as

^𝑑 − Z𝑑,1𝜆𝑑,𝑛+1 − Z𝑑,2,𝑛+1𝜆𝑝 + z𝑑,𝑛+1 = 0,
𝜆𝑑,𝑖,𝑛+1]𝑑,𝑖 = 0, ]𝑑,𝑖 ≥ 0, 𝜆𝑑,𝑖,𝑛+1 ≥ 0, (80)

where

Z𝑑,1 = A + B𝜑𝑑,1,
Z𝑑,2,𝑛+1 = B𝜑𝑑,2,𝑛+1,
z𝑑,𝑛+1 = −B𝜑𝑑,0,𝑛+1.

(81)

The combination of (73) and (80) gives the following com-
plementarity problem involving the contact and nonlinear
droppers

^ − Z𝜆 + z = 0, 𝜆^ = 0, ^ ≥ 0, 𝜆 ≥ 0, (82)

where

^ = {^𝑑
]𝑝
} ,

𝜆 = {𝜆𝑑,𝑛+1𝜆𝑝 } ,

Z = [Z𝑑,1 Z𝑑,2,𝑛+1
Z𝑝,1 𝑍𝑝,2,𝑛+1] ,

z = {z𝑑,𝑛+1𝑧𝑝,𝑛+1} .

(83)

The parameter variables 𝜆𝑑,𝑛+1 of the droppers and the
contact force𝜆𝑝 between the pantograph and the contact wire
can thus be obtained by solving (82) by using Lemke’s scheme
[32]. For the 𝑘th dropper, the stress state can be indicated
by the value of the parameter variable 𝜆𝑑,𝑘; that is, 𝜆𝑑,𝑘 > 0
indicates that the dropper is under compression, while 𝜆𝑑,𝑘 =0 indicates that the dropper is under tension. With the value
of the contact force 𝜆𝑝, the contact state or the separation
state between the pantograph and the contact wire can be
indicated; that is, 𝜆𝑝 > 0 indicates that pantograph contacts

Table 1: Parameters of the beam and the moving mass [6].

Span length 𝐿 60m
Tension 𝑇 20 kN
Linear mass 𝜌 1.35 kg/m
Bending stiffness 𝐸𝐼 136Nm2

Moving mass 𝑀 3 kg
Preload 𝑃 50N
Travelling speed 𝑉 60m/s

· · ·· · ·

Figure 8: An elastic stitched catenary system.

the contact wire, while 𝜆𝑝 = 0 indicates that the pantograph
does not contact the contact wire.

Once the parameter variables 𝜆𝑑,𝑛+1 and 𝜆𝑝 are obtained,
the responses of the pantograph and the catenary can be
computed as follows. First, the interaction forces between
the adjacent unit cells of the catenary can be obtained by
substituting the parameter variables 𝜆𝑑,𝑛+1 of the droppers
and the contact force 𝜆𝑝 into (65). Second, the state v𝑢,𝑗,𝑛+1 of
each unit cell of the catenary at time 𝑡𝑛+1 can be obtained by
substituting the parameter variables 𝜆𝑢𝑑,𝑗,𝑛+1 of the droppers,
the contact force 𝜆𝑝, and the interaction forces into (54).
Finally, the state v𝑝,𝑛+1 of the pantograph at time 𝑡𝑛+1 can be
obtained easily by substituting the contact force 𝜆𝑝 into (38).

It should be noted that the above-mentioned procedure
can be applied not only for a simple stitched catenary system,
as described in Section 2, but also for an elastic stitched
catenary system (see Figure 8) to simulate its dynamic
behavior.

6. Validation

6.1. The Pantograph-Catenary Interaction. To demonstrate
the validity of the formulation for the contact between
the pantograph and the contact wire, a test case proposed
in the literature [6] is considered. The system features a
concentrated mass moving at a constant forward speed along
a beam supported at both ends (see Figure 9). For the beam,
the properties of a 150mm2 copper contact wire are chosen,
while the values of the slidingmass inertia, preload, and speed
are realistic for a high speed current collector (see Table 1).

The beam is discretized in to 500 uniform two-node
Euler-Bernoulli elements, and the time step is 𝜂 = 0.002 s.
The contact forces between the beam and the moving mass
obtained by the proposed method are shown in Figure 10.
The result obtained by the proposed method coincides
with the result reported in the literature [6]. Therefore, the
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Figure 10: Time history of the contact force.
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Figure 11: A simple stitched catenary structure with three nonlinear
droppers subjected to a moving force.

formulation proposed in this paper for simulating the contact
between the pantograph and the contact wire is accurate.

6.2. Nonlinear Dropper. To validate PVP model for the
nonlinear dropper, a simple stitched catenary with three non-
linear droppers is considered (see Figure 11). The messenger
wire and the contact wire are supported at both ends. A
moving force moves at a constant forward speed along the
contact wire. The properties of a 117mm2 copper messenger
wire, a 121mm2 copper contact wire, and a 9.62mm2 copper
dropper are chosen. The parameters of the catenary and the
values of the load and speed are given in Table 2.Thedroppers
are numbered 1, 2, and 3, as shown in Figure 11. Because of
gravity, the original lengths of the three droppers are 𝑙01 =1.4794m, 𝑙02 = 1.4393m, and 𝑙03 = 1.4794m.

Table 2: Parameters of the catenary subjected to a moving force.

𝐿 50m𝑇𝑐 27 kN𝜌𝑐 1.08 kg/m𝐸𝐼𝑐 140Nm2𝜌𝑑 0.089 kg/m𝐿1, 𝐿2, 𝐿3 12.5m/12.5m/12.5m𝑃 150N𝐻 1.6m𝑇𝑚 21 kN𝜌𝑚 1.07 kg/m𝐸𝐼𝑚 131 Nm2𝐸𝐴𝑑 1154400N𝑉 100m/s
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Figure 12: Time history of the elongation of droppers.

Both the messenger wire and the contact wire are dis-
cretized into 500 uniform two-node Euler-Bernoulli ele-
ments, and the time step is 𝜂 = 0.001 s. Figure 12 shows
the elongations of the three droppers. The time history of
the parameter variables of the three droppers is shown in
Figure 13, where a positive value of the parameter variable
indicates that the dropper is slack and the dropper is under
tension otherwise. It can be observed that the dropper will
undergo slackening when the force passes it and return to
tension after themoving force has left; when thewave returns,
the dropper will again slacken.

6.3. Validation of the Proposed Procedure. An internationally
accepted test case included in European Committee for Elec-
trotechnical Standardization EN50318 [35] is chosen to verify
the accuracy and reliability of the proposed procedure. The
simulation results obtained by the proposed procedure are
given in Table 3, which shows that the simulation results are
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Table 3: Comparison of standard EN50318 and the simulation results.

EN50318 Simulation results
Velocity (km/h) 250 300 250 300
Mean contact force (N) 110–120 110–120 119.98 119.80
Maximum statistician (N) 190–210 210–230
Minimum statistician (N) 20–40 −5–20
Maximum real (N) 175–210 190–225 208.58 223.89
Minimum real (N) 50–70 30–55 50.95 38.52
Maximum uplift at support (mm) 48–55 55–65 54.1 61.1
Percentage of loss of contact (%) 0 0 0 0

Table 4: Parameters of the elastic stitched catenary CH160-Y.

Contact wire Messenger wire Assistant wire
Linear mass (kg/m) 1.07 0.602 0.31
Area (mm2) 120 153 35
Elastic modulus (MPa) 1.3 × 105 0.817 × 105 1.3 × 105
Tension (kN) 13 17 2.8
Number of span 5
Span length (m) 65
Structure height (m) 1.5
Mass of supporting bracket (kg) 1.873
Stiffness of supporting bracket (N/m) 2.5 × 107
Mass of registration arm (kg) 0.53
Location of the droppers (m) 4.0/6 × 9.5/4.0
Mass of droppers (0.1 kg) 1.51, 0.93, 0.84, 0.81, 0.84. 0.93, 1.51
Stiffness of droppers (106N/m) 1.21, 1.37, 1.52, 1.57, 1.52, 1.37, 1.21
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Figure 13: Time history of the parameter variable of droppers.

all within the reference range given by EN50318. Therefore,
the proposed procedure is correct and reliable and can be

used for simulating the dynamic behavior of the pantograph-
catenary system.

Moreover, a pantograph-catenary system consisting an
elastic stitched catenary CH160-Y and a pantograph SS7 [16,
36], which is used on a 160 km/h railway line in China, is ana-
lyzed to demonstrate the validity of the proposed procedure.
The parameters of catenary CH160-Y and pantograph SS7 are
given in Tables 4 and 5, respectively. For each span, 130 Euler-
Bernoulli beam elements are used to model the messenger
wire and 260 Euler-Bernoulli beam elements are used to
model the contact wire. The pantograph can be modeled as
a two-level mass-spring-damper [16].

When the pantograph moves at 160 km/h, the contact
forces and lifted displacements of the contact wire are
as shown in Figures 14 and 15, respectively. Figure 14
shows that when the pantograph moves along the contact
wire at 160 km/h, the contact force varies in the range of
40.06–146.00N, and the mean value of the contact forces is
90.51 N.The relative errors between the results obtained from
the proposed procedure and the reference values reported in
the literatures [16, 36] are within 3%, which demonstrates the
validity of the proposed procedure. Figure 15 shows that the
variation of the lifted displacements of the contact wire at the
contact point presents a certain periodicity along the span. In
each span, the maximum value appears in the middle of the
span, and the minimum value appears near the registration
arm. It can also be observed that the lifted displacement of



Shock and Vibration 17

Table 5: Parameters of the pantograph SS7.

Pan-head mass,𝑚1 (kg) 6
Frame mass,𝑚2 (kg) 20
Pan-head damping value, 𝑐1 (Ns/m) 100
Frame damping value, 𝑐2 (Ns/m) 6
Pan-head stiffness, 𝑘1 (N/m) 6000
Frame stiffness, 𝑘2 (N/m) 50
Static lift force, 𝐹0 (N) 90
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Figure 14: Contact forces at a speed of 160 km/h.

the contact wire in the middle of the third span increases
gradually when the pantograph moves until it reaches its
maximum value when the pantograph approaches this point.
When the pantograph moves away from this point, the lifted
displacement of the contact wire decreases. The results of
the proposed procedure agree with those reported in the
literatures [16, 36], which demonstrates the validity.

7. Dynamic Behavior of
the Pantograph-Catenary System

In this paper, both a simple stitched catenary system and an
elastic stitched catenary system are simulated.The properties
of the Beijing-Tianjin Intercity Railway catenary and the
Beijing-Shanghai High-Speed Railway catenary are chosen
for the simple stitched catenary system and the elastic stitched
catenary system, respectively. The parameters of the simple
stitched catenary system are given in Table 6, and the
parameters of the elastic stitched catenary system are given
in Table 7. The sss400+ pantograph is chosen for simulation,
and its parameters are given in Table 8.

7.1. Contact Force between the Pantograph and the Contact
Wire. The variation of the contact forces when the pan-
tograph moves at 250 km/h or 300 km/h under the simple

Contact wire at contact point
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Figure 15: Lifted displacements of the contact wire at a speed of
160 km/h. Solid line: at the contact point. Dashed line: in the middle
of the third span.

stitched catenary is shown in Figure 16. The figure shows
that the increase in the speed from 250 km/h to 300 km/h
will aggravate the variation. When the pantograph passes
a dropper, the contact forces will vary to a greater extent,
particularly near the two droppers closest to the registration
arms. Moreover, the variation of the contact forces will be
periodic along a span when the pantograph moves at a
constant speed.

When the pantograph moves at 300 km/h or 350 km/h
under the elastic stitched catenary, the variation of the contact
forces between the pantograph and the contact wire is as
shown in Figure 17. Similarly, the increase in speed from
300 km/h to 350 km/h will aggravate the variation, and the
variation of the contact forces is periodic along a span
when the pantograph moves at a constant speed. When the
pantograph passes a dropper, the contact forces will vary to
a greater extent. In particular, the largest peak of the contact
force will occur near the second dropper.

The contact forces for the simple stitched catenary shown
in Figure 16 and for the elastic stitched catenary shown in
Figure 17 exhibit some of the same variation regulation. First,
because of the periodicity of the catenary, if the pantograph
is always in contact with the contact wire, the variation of the
contact forces is periodic along the spanwhen the pantograph
moves at a constant speed for a long time. Second, because the
droppers increase the stiffness variation and wave reflection
in the catenary, the contact forces vary to a greater extent
when the pantograph passes the droppers. Finally, it is clear
that a higher speed causes higher levels of variation of the
contact forces. In addition, by comparing Figures 16 and 17,
we find that when 𝑉 = 300 km/h, the variation of the contact
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Table 6: Parameters of the simple stitched catenary.

Contact wire Messenger wire Dropper
Linear mass (kg/m) 1.082 1.065 0.089
Area (mm2) 121 116.99 9.62
Elastic modulus (MPa) 1.2 × 105 1.2 × 105 1.2 × 105
Tension (kN) 27 21
Span length (m) 50
Registration arm mass (kg) 0.87
Location of the droppers (m) 4.0/5 × 8.4/4.0
Structure height (m) 1.6
Bracket mass (kg) 0.2

Table 7: Parameters of the elastic stitched catenary.

Contact wire Messenger wire Dropper Assistant wire
Linear mass (kg/m) 1.35 1.065 0.089 0.311
Area (mm2) 151 116.99 9.62 34.36
Elastic modulus (MPa) 1.2 × 105 1.2 × 105 1.2 × 105 1.2 × 105
Tension (kN) 31.5 20 3.5
Span length (m) 50
Registration arm mass (kg) 0.7
Location of the droppers (m) 5.0/5 × 8.0/5.0
Assistant wire length (m) 18
Structure height (m) 1.6
Bracket mass (kg) 0.2

Table 8: Parameters of the sss400+ pantograph.

Pan-head mass,𝑚1 (kg) 6.05
Upper frame mass,𝑚2 (kg) 6.4
Lower frame mass,𝑚3 (kg) 14
Pan-head damping value, 𝑐1 (Ns/m) 0
Upper frame damping value, 𝑐2 (Ns/m) 0
Lower frame damping value, 𝑐3 (Ns/m) 64.9
Pan-head stiffness, 𝑘1 (N/m) 5813
Upper frame stiffness, 𝑘2 (N/m) 13600
Lower frame stiffness, 𝑘3 (N/m) 0

forces for the simple stitched catenary is more dramatic than
the variation of the contact forces for the elastic stitched
catenary.

7.2. Slackening of Droppers. The dropper may slacken during
the passage of the pantograph and then return to tension.
The slackening of the dropper directly affects the dynamic
behavior of the pantograph-catenary system.

When the pantograph moves at 250 km/h under the
simple stitched catenary, the variation of the elongations of
the droppers is as shown in Figure 18(a). The figure shows
that, during the passage of the pantograph, the first and
sixth droppers undergo slackening for a short period. After
the dropper returns to tension, the vibration of the dropper
damps out slowly. However, other droppers do not undergo

slackening when the pantograph passes them. When the
speed increases to 300 km/h, all droppers undergo slackening
for a short period during the passage of the pantograph, as
shown in Figure 18(b). Moreover, the first and sixth droppers
undergo slackening longer than others.

Figure 19 shows the variation of the elongations of the
droppers when the pantograph moves under the elastic
stitched catenary. At 300 km/h, the second and fifth droppers
undergo slackening for a short period during the passage
of the pantograph and then return to tension, and other
droppers do not slackenwhen the pantograph passes them, as
shown in Figure 19(a). After the dropper returns to tension,
the vibration of the dropper damps out slowly. When the
speed increases to 350 km/h, not only the second and fifth
droppers but also the third dropper undergoes slackening for
a short period during the passage of the pantograph, as shown
in Figure 19(b). In addition, the second and fifth droppers
slacken much longer than the third dropper.

To summarize, for the simple stitched catenary, the first
and sixth droppers more easily undergo slackening, and the
second andfifthdroppers in the elastic stitched catenarymore
easily slacken, because these droppers generally undergo the
highest variation in force when the pantograph passes them.
It is clear that the increase in speed makes the dropper easier
to slacken.

8. Conclusion

Determining the contact state and computing the value
of the contact force between a moving pantograph and a



Shock and Vibration 19

50 100 150 200 250 3000
Location (m)

50

100

150

200
C

on
ta

ct
 fo

rc
e (

N
)

(a)

50 100 150 200 250 3000
Location (m)

0

100

200

300

C
on

ta
ct

 fo
rc

e (
N

)

(b)

Figure 16: The variation of contact forces for the simple stitched catenary when (a) 𝑉 = 250 km/h and (b) 𝑉 = 300 km/h.

200100 150 250 300500
Location (m)

50

100

150

200

250

C
on

ta
ct

 fo
rc

e (
N

)

(a)

0

100

200

300

C
on

ta
ct

 fo
rc

e (
N

)

50 100 150 200 250 3000
Location (m)

(b)

Figure 17: The variation of contact forces for the elastic stitched catenary when (a) 𝑉 = 300 km/h and (b) 𝑉 = 350 km/h.
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Figure 18: The slackening of the droppers in the simple stitched catenary when (a) 𝑉 = 250 km/h and (b) 𝑉 = 300 km/h.

contact wire are the core tasks in simulating the dynamic
behavior of the pantograph-catenary system. A formulation
for the contact between the pantograph and the contact wire
was herein proposed based on PVP, which can accurately
determine the contact state and compute the value of the
contact force. In addition, because the droppers increase
the stiffness variation and wave reflection in the catenary,
which significantly affects the contact force variation, a
formulation for the nonlinear droppers in the catenary was
proposed based on PVP, which can describe the slackening
of a dropper when the pantograph passes it. Moreover, based

on the periodicity of the catenary and PIM, a numerical
time-integration method for computing the responses of the
catenary subjected to a moving force was developed. For
this method, the matrix exponential of only one unit cell
of the catenary must be computed, which greatly improves
the computational efficiency. The validity and reliability of
the proposed procedure were demonstrated using several test
cases.

The dynamic behavior of the pantograph-catenary system
was discussed. First, because of the periodicity of the cate-
nary, if the pantograph is always in contact with the contact
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Figure 19: The slackening of the droppers in the elastic stitched catenary when (a) 𝑉 = 300 km/h and (b) 𝑉 = 350 km/h.

wire, the variation of the contact forces is periodic along the
span when the pantograph moves at a constant speed for a
long time. Second, because the droppers increase the stiffness
variation and the wave reflection in the catenary, a larger
variation of the contact forces occurs when the pantograph
passes the droppers. Third, for the simple stitched catenary,
the two droppers nearest to the registration arms easily
undergo slackening when the pantograph passes them, and
for the elastic stitched catenary, the second and fifth droppers
slacken more easily than the others during the passage of the
pantograph. Finally, it is clear that a higher speedwould cause
higher levels of variation of the contact forces and would
make the droppers slacken more easily.
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