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.e application of optimization techniques to design passive energy dissipation devices of structures subject to seismic excitation
has rapidly increased in the past decades. It is now widely acknowledged that uncertainties inherent to the earthquake loading and
structural parameters must be taken into account in the design process. In the case of friction-tuned mass dampers (FTMDs), this
optimization under the uncertainty problem leads to the following issues: (a) the high computational cost of the objective function
since we are dealing with time-dependent reliability analysis of nonlinear dynamical models and (b) the nonconvexity and
multimodality of the resulting optimization objective function. In order to address these issues, we propose here the use of efficient
global optimization (EGO) for the probability of failure minimization in FTMD design. EGO is a metamodel-(kriging-) based
optimization scheme able to handle expenses to evaluate objective functions, and its capabilities have not been explored in the
optimal FTMD design. In order to show the effectiveness of EGO, its results are compared to those of other algorithms from the
literature. .e results showed that EGO outperformed the competing algorithms, successfully providing the optimum solution of
FTMD design under uncertainty within a reasonable computational effort.

1. Introduction

.e application of passive energy dissipation devices, such as
viscoelastic dampers, friction dampers, and tuned mass
dampers, to reduce the dynamic response of structures
subject to seismic loading has been rapidly increasing. It is
now widely acknowledged that the uncertainties inherent to
the earthquake loading as well as the structural parameters
must be taken into account in the design process of the
dissipation devices [1, 2]. If optimization tools are applied
for this purpose, it leads to optimization under uncertainties
problems. In civil engineering structures, the main objective
in the design of these dampers is the minimization of the

structural probability of failure (or maximization of its
counterpart, the structural reliability) [3, 4].

A literature survey reveals that most of the tuned mass
damper studies are associated with the hypothesis of linear
behavior for the structure and for the dampers [5]. In this
sense, research studies involving some nonlinearities of these
devices [6, 7], such as the consideration of a friction damping,
which is the case of the friction-tuned mass dampers
(FTMDs), are significantly reduced. One of the issues that
appear with the inclusion of these nonlinearities is the asso-
ciated high computational cost, even for deterministic analysis.

Consequently, a well-known drawback of the coupling
of the nonlinear dynamics, optimization procedure, and
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reliability analysis is the high computational cost, which may
be inviable. Furthermore, an additional complexity is that
the design of a multiple FTMD system leads to a multimodal
optimization problem [8]. .at is, local optimization
methods may get stuck in local minima, and global opti-
mization methods are normally required. In the passive
energy dissipation device literature, metaheuristic algo-
rithms have been applied for this purpose, mostly on linear
and deterministic problems [2, 9]. However, the computa-
tional cost required by this class of algorithm is usually high,
and their employment for the optimization under un-
certainties of nonlinear systems may be inviable.

In order to find a trade-off between computational
cost and global optimization, this paper investigates the
performance of efficient global optimization (EGO) for
the probability of failure minimization in FTMD design.
To balance exploration and exploitation, EGO uses in-
formation from kriging [10, 11], which provides a pre-
diction of the value of the original function as well as the
stochastic error associated with such a value. .e expected
improvement infill criterion is employed to guide the EGO
search, since it presented robust results in a series of op-
timization problems [12]. In addition, the time-dependent
reliability problem is modeled using an outcrossing ap-
proach [13].

.e rest of the paper is organized as follows: Section 2
presents the problem of optimal design of passive control
devices; i.e., it poses the optimization problem and details
the evaluation of the time-dependent reliability problem.
.e EGO algorithm employed for the reliability maximi-
zation is detailed in Section 3. Two cases of design under
uncertainty of FTMD are analyzed in Section 4. Finally, the
main conclusions drawn from this paper are summarized in
Section 5.

2. Optimal Design of Passive Control Devices

.is paper deals with the design of FTMD systems for the
minimization of the probability of failure of the structures
subject to seismic excitations. .en, the optimal passive
control design optimization problemmay be posed as follows:

find : d ∈ Rnd , (1)

that

minimizes y(d) � Pf(d), (2)

subject to dmin ≤ d≤ dmax, (3)

where y is the objective function, whose value is given by Pf
and which represents the structural probability of failure, d
is the design vector, while dmin and dmax are, respectively,
the lower and upper bounds of the design variables. For
instance, in the FTMD design, d is comprised by the
stiffness (kFi

) and friction force magnitude (fFi
) of each

FTMD, while dmin and dmax are the manufacturing limits of
these variables.

In order to keep the paper self-contained, the nonlinear
dynamics of the FTMD model is briefly presented in

Appendix, while a full description may be found in [8]. It
should be noted that some aspects of real structures are
not taken into account in the model employed here; for
example, assuming the structural response linear elastic, the
excitation comes from a stationary process, the random
variables of each floor are uncorrelated, and so on. However,
it remains as a fairly complex problem comprehending the
engineering fields of optimization, control, nonlinear dy-
namics, and reliability.

For the reliability analysis and optimization process, we
model all the FTMD, structural, and excitation parameters
as random variables and group them into the random vector
X. .at is, X is comprised by the (a) stiffness, damping,
and masses of the structure, (b) masses, stiffness, and fric-
tion forces of the control system (kF1

, . . . , kFnF
, mF1

, . . . ,

mFnF
, and fF1

, . . . , fFnF
), and (c) parameters of the excitation

(S0, ξg, and ωg). In such a situation, the design variables of the
problem are the mean value of the stiffness and friction forces
of the FTMDs, i.e., d � (E[kF1

], . . . ,E[kFnF
],E[fF1

], . . . ,

E[fFnF
]).

.e evaluation of Pf of a building subject to seismic loads
leads to a time-dependent reliability problem [13]. .us, in
order to compute equation (2), we employ the outcrossing
rate approach, which is detailed in the next section.

2.1. Time-Dependent Reliability Analysis. .e time-variant
reliability problem for the random system response dis-
placement can be formulated as follows. During a zero mean
excitation event of specified duration tE, the response of the
oscillator should not exceed the specified limit (or barrier)
± b. .is barrier b can be the relative displacement between
floors, displacement of the top floor, or any other critical
measure. For a linear system excited by a zero mean
Gaussian process, the response is Gaussian, and the
upcrossing rate can be evaluated as

v
+
z (d,X) �

σ _z(d,X)

σz(d,X)

1
2π

exp −
b2

2 σz(d,X)( 
2

⎛⎝ ⎞⎠, (4)

where σz and σ _z are the standard deviation of the dis-
placement and of the velocity response, respectively. .ese
quantities are obtained from the solution of the nonlinear
dynamics model presented in Appendix. In Equation (4), we
make explicit the dependence of the crossing rate on the
design variables d as well as the random parameters X of the
problem. .us, considering a stationary excitation, the
probability of a failure event F for a given duration tE may be
computed as

P F d,X, tE
  � 1− exp −2

tE

0
v

+
z (d,X) dt 

� 1− exp −2tEv
+
z (d,X)( .

(5)

.e structural loading from an earthquake, which is the
application topic, is described by the arrival of an unknown
number of events, which is modeled here as a Poisson
process. Consequently, the probability of failure, for a design
life tD with a number of events ne, may be evaluated as
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P F d,X, tD
  � 

∞

i�1
P F d,X, tE, ne � i

  P ne � i tD
 , (6)

where

P F d,X, tE, ne � i
  � 1− 1−P F d,X, tE

  
i
, (7)

P ne � i tD
  �

]tD( 
i exp −]tD( 

i!
, (8)

where ] is the arrival rate of events. Note that the probability
in Equation (6) still depends on the random vector X,
characterized by its joint probability density function fX.
Consequently, in order to compute the resulting structural
failure probability (Pf ), we must then employ the total
probability theorem, leading to

Pf(d) � EX P F d,X, tD
  , (9)

Pf(d) � 
X

P F d, x, tD
 fX(x) dx, (10)

where E is the expected value operator and Pf(d) is the
objective function to be minimized in the optimization
process. For the computational implementation, we may
approximate Equation (10) using MCI by

Pf(d) ≈ Pf(d) �
1
nr



nr

i�1
P F d, x(i), tD

 , (11)

where x(i) are samples of X that comprise the sample set
x(1), . . . , x(nr)

  drawn from fX. .en, we must set a sample
size nr for the estimation of Pf . For this purpose, we employ
the following procedure widely adopted in the literature for
robust design [14, 15]. First, we construct a plot of the es-
timation of Pf with respect to the sample size (nr). .en, we
set nr as the sample number around the value that Pf be-
comes stable. In Section 4.1, an example of this procedure is
given.

In Numerical Examples, to make it easier to visualize the
results, we present them in terms of reliability index, instead
of probability of failure. .e relation between them is given
by

β(d) :� −Φ−1 Pf(d) , (12)

and the problem becomes the maximization of β.
One may easily see that the computation of Equation

(11) is demanding, since it requires hundreds of calls of the
FE dynamics code. Hence, to mitigate the computational
burden of the β maximization, we employ the EGO ap-
proach described in the next section.

3. Efficient Global Optimization (EGO)

According to the study in [12], EGO methods generally
follow these steps:

(1) Construction of the initial sampling plan
(2) Construction of the kriging metamodel

(3) Addition of a new infill point to the sampling plan
and return to step 2

Steps 2 and 3 are repeated until a stop criterion is met,
e.g., maximum number of function evaluations. .e manner
in which the infill points are added in each iteration is what
differs in the different EGO approaches. In the next sections,
these steps are detailed in order to set the basis of the
proposed approach.

3.1. Initial Sampling Plan. In the first step, a kriging sam-
pling plan Γ containing ns points is created, i.e.,

Γ � d(1)
, d(2)

, . . . , d ns( ) . (13)

A Latin hypercube scheme is usually employed for this
purpose..en, the objective function value y of each of these
points is evaluated using the original model, obtaining

y � y
(1)

, y
(2)

, . . . , y
ns( ) , (14)

where y(i) � β(d(i)), and the reliability index is estimated
using Equations (11) and (12).

3.2. Kriging Approximation. Step 2 constructs a prediction
model y based on the available information on the current
sampling plan (Γ and y) using kriging [16]. .e basic idea
behind kriging is to construct a metamodel whose response
at any point d is modeled as a realization of a stationary
stochastic process. .us, at any point on the design domain,
we have a normal random variable with mean μ and variance
σ2. Considering an initial sampling plan Γ, the covariance
between any two input points d(i) and d(j) is

Cov d(i)
,d(j)

  � σ2Ψ d(i)
,d(j)

 , (15)

where Ψ is the correlation matrix, which has the following
form:

Ψ d(i)
, d(j)

  � 

nd

k�1
exp −θk d

(i)
k − d

(j)

k




pk

 . (16)

.e unknown parameters θk and pk may be found by the
maximum likelihood estimate (MLE) [12], which then gives
us the mean value (or average trend) and variance of the
approximation:

μ �
1TΨ−1y
1TΨ−11

,

σ2 �
(y − 1μ)TΨ−1(y − 1μ)

ns
,

(17)

where 1 is the identity matrix. With the estimated param-
eters, the kriging prediction at a given point du is

y du(  � μ
Trend

+ rTΨ−1(y − 1μ)
√√√√√√√√√√√√
Model uncertainty

,
(18)

where r is the vector of correlations of du with the other ns
kriging sampled points. .e second term in the right-hand
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side of Equation (18) may be viewed as the model un-
certainty since its value is inferred based on the function
value of the points of the sampling plan.

One of the key benefits of kriging- and other Gaussian
process-based models is the provision of an estimated error
in its predictions. .e mean squared error (MSE) derived by
Sacks et al. [16] using the standard stochastic process ap-
proach reads

s
2
(d) � σ2 1− rTΨ−1r +

1− 1TΨ−1r( 
2

1TΨ−11
⎡⎣ ⎤⎦. (19)

Equation (19) has the intuitive property that it is zero at
already sampled points. In other words, kriging acts as a
regression model which exactly interpolates the observed
input/output data, i.e., y(d(i)) � y(i).

3.3. Expected Improvement Infill Criterion. .e idea behind
the EGO infill criteria is to use the information about the
uncertainty of the model given by the kriging interpolation
to guide the optimization search. In this paper, we employ
the expected improvement infill criterion, which estimates
the amount of improvement expected at a given point in the
domain. Such an improvement at a given design point d is
evaluated using its kriging prediction y(d) and variance
s2(d). If the best solution found up to the current iteration is
fmin � min y(1), y(2), . . . , y(ns) , then an improvement I

may be measured as I(d) � (fmin − y(d)). As shown in [17],
the expected improvement is analytically tractable and given
by

E(I(d)) � fmin − y(d) Φ
fmin − y(d)

s(d)
 

+ s(d)ϕ
fmin − y(d)

s(d)
 ,

(20)

where Φ(·) and ϕ(·) are the Gaussian cumulative and
probability density functions, respectively. .us, at each
iteration of EGO, the point on the design domain that
maximizes Equation (20) is added to the sampling plan Γ,
and then, a new surrogate is constructed. .is process is
repeated until a convergence criterion is achieved,
e.g., maximum computational budget is reached.

4. Numerical Examples

In this section, we investigate the efficiency and robustness
of EGO for the probability of failure minimization of FTMD
design. We compared the performance of EGO to a firefly
algorithm (FA) [18] and to a Nelder-Mead (NM) algorithm
[19]. .e parameters set for the FA were population of 10
fireflies, 10 iterations, randomization parameter α � 0.5, and
light absorption coefficient c � 1.0. For the NM algorithm, a
tolerance constant is set as ϵ � 10−5, and it is used as a
stopping criterion for the local search (minimum change in
the objective function value between two iterations).

In order to compare the efficiency of EGO with that of
other algorithms, we employed the following procedure: the

computational budget—measured here as the number of
objective function evaluations (OFEs)—was fixed and
employed as the stopping criterion; then, we analyzed which
algorithm reached the best results within such a computa-
tional budget.

To compare the robustness, it is important to point out
that EGO and firefly depend on random quantities (and NM
depends on the starting point of the search). .erefore, the
results obtained are not deterministic and may change when
the algorithm is run several times. For this reason, when
dealing with stochastic algorithms, it is appropriate to present
statistical results over a number of algorithm runs [20]. .us,
for each problem, the average and standard deviation (SD) of
the results found over the set of 10 independent runs are
presented. .e SD may be seen as a robustness measure of
each algorithm, i.e., its ability to provide reasonable results
independently of the seed of the random number generator.
For example, the lower the dispersion (SD), the more robust
the algorithm. In the case of the NM algorithm, we selected 10
initial points on the design domain using the same procedure
employed for the initial sampling plan of kriging. For this
algorithm, the results shown in the section demonstrate the
average computational cost of a local search.

4.1. 2-FTMD System Design. In this section, the design of a
2-FTMD passive control system is analyzed. .e structure,
taken from the study in [21] and illustrated in Figure 1, is
modeled as a planar steel building frame, with ten stories
(37.42m high) and three spans (23.77m wide). .e linear
elastic finite element model is discretized into 70 elements
and 44 nodes, totalizing 132 degrees of freedom. A con-
sistent mass matrix and the classical Rayleigh proportional
damping matrix are adopted. .e damping ratio is fixed as
5% for the first and second vibration modes. .e geometric
properties of the steel profiles were obtained from the study
in [22]. An additional mass of 44 t is considered per story,
due to slabs and some eventual overload.

As already mentioned, the seismic excitation, structural,
and FTMD parameters are modeled as random variables
and grouped into the vector X, whose mean value and
coefficient of variation are detailed in Table 1. For the op-
timization problem, the design vector is d � (E[kF1

],E[fF1
],

E[kF2
],E[fF2

]), and its lower and upper bounds are dmin �

(0 kN/m, 0 kN/m, 0 kN, 0 kN) and dmax � (66.5 kN/m,

2.50 kN, 66.5 kN/m, 2.50 kN), respectively. In addition, we
set the design life as tD � 50 years in Equation (6) and the
earthquake occurrence rate as ] � 0.1 (1 event every 10
years) in Equation (8) accordingly to the study in [3]. For the
barrier b in Equation (4), two cases are analyzed here:

(i) Case 1: the barrier b is chosen as the top floor hor-
izontal displacement limit. Its value is set here as
0.467m, following the results obtained by Curadelli
and Amani [23] from a static nonlinear analysis
(pushover) and also employed byMantovani et al. [8].

(ii) Case 2: the barrier is the interstory drift limit, which
is taken from Eurocode [24] as 1.5% h, in which h is
the floor height.
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For selecting the sample size required to approximate the
failure probability, we employ the procedure brie�y de-
scribed at the end of Section 2.1. �us, Figures 2(a) and 2(b)
show examples of the behavior of β̂ with respect to nr in a
given point of the domain for both barrier cases. �e

estimator β̂ becomes stable after approximately 400 simu-
lations for both barriers. �en, throughout the search, we set
nr � 400 and sample x(i) always with the same seed of the
random number generator.

For Case 1, Table 2 presents the statistics of the objective
function reached by each algorithm over independent 10
runs. In this table, EGO results were obtained with three
di�erent values of the stopping criterion (OFE), while FA
and NM were run up to OFE � 100.

From the results presented in Table 2, one can easily see
that even EGO employing only 60 points was able to out-
perform the FA and NM algorithms. For example, the re-
liability indexmean value over 10 independent runs for EGO
was around 4.15, while FA and NM reached 3.89 and 3.95,
respectively. Since the objective function is not convex and
multimodal, the performance of the NM algorithm was
strongly dependent on the quality of the starting point of the
search, which is unknown a priori. Hence, most of the local
searches got stuck in a local minimum whose reliability
index was around 3.87. Moreover, it is important to high-
light that the stopping criterion reached by all NM searches
was the maximum number of OFEs. �at is, it was not
possible to completely �nish a local search within the given
computational budget. Although the FA is able to deal with
nonconvexity, its search engine would require a much
higher number of OFEs to provide reasonable results.

For Case 2, Table 3 presents the statistics of the response
over 10 independent runs of each algorithm. Case 2 pos-
sesses a better behaved objective function in comparison to
Case 1. For example, 9 out of 10 NM runs reached the basis
of attraction of the optimum solution (β � 4.28). Also, the
standard deviation of all algorithms was lower than the
previous case.

Even though it was a less complex optimization problem,
EGO was able to outperform FA and especially NM algo-
rithm. For example, EGO using 100 points reached a higher
objective function mean value and lower standard deviation
than NM. In other words, it is more likely to provide a
solution close to the optimum design than its competing
algorithms.

A comment is worth making here: our �rst intention was
to compare the performance of EGO to hybrid algorithms,
such as the �re�y-Nelder-Mead algorithm [25] and the
global and bounded Nelder-Mead [26], since they were
successfully applied to several multimodal problems in
engineering [27, 28]. However, the available computational
budget (OFE � 100) made their use inviable. For example,
with such a computational budget, one could barely pursue
one local search with NM (as it was shown) making it
impossible to apply hybrid algorithms. Consequently, the
main advantage of EGO is that it is able to pursue a global
search requiring the computational budget of an NM local
search.

5. Conclusions

�is paper is aimed at presenting an e�cient approach
for the design of friction-tuned mass dampers (FTMDs)
under uncertainties. �e objective function was set as the
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Figure 1: Planar steel frame (dimensions in m; adapted from [21]).

Table 1: Statistical information about the random variables.

Random variable Probability
distribution

Mean
value

Coe�cient
of variation

(%)
Building frame
Elasticity modulus (steel) Gamma 200GPa 5.0
Speci�c mass (steel) Gamma 7500 kg/m3 5.0
Additional mass
per story Gamma 44 t 5.0

Damping ratio Gamma 0.05 10.0
FTMD
Mass (Case 1) Gamma 1.94 t 5.0
Mass (Case 2) Gamma 4.95 t 5.0
Sti�ness Gamma E[kFi] 10.0
Friction force magnitude Gamma E[fFi] 10.0
Seismic excitation
Natural frequency
of the �lter Normal 37.3 rad/s 20.0

Damping ratio
of the �lter Normal 0.30 20.0

PGA Log-normal 0.500 g 20.0
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maximization of structural reliability, which was evaluated
using an outcrossing approach.�e solution of the equations
of motion of the FTMD system led to a nonlinear dynamical
problem, which coupled with the time-dependent reliability
problem required a substantial computational e�ort.
Moreover, the design of a multiple FTMD system is well
known to be a nonlinear and multimodal optimization
problem. In order to address the issues of computational cost
and multimodality, an e�cient global optimization (EGO)
method with expected improvement as the in�ll criterion
was employed.

In Numerical Examples, di�erent objective functions
were analyzed. �e performance of EGO was compared to
that of two additional optimizers, Nelder-Mead and �re�y
algorithms. �e results showed that EGO outperformed the
competing algorithms, successfully providing the optimum

solution of FTMD design under uncertainty within a rea-
sonable computational e�ort. For example, using only 100
points, EGO was able to consistently �nd the optimum
solution for all the cases analyzed in this paper. One aspect
that is worth to be highlighted is that these results were
obtained in problems with a relatively high stochastic di-
mension, e.g., over 30 random variables. Finally, EGO was
able to pursue the global search requiring a computational
budget lower than a Nelder-Mead local search.

EGO reached promising results for FTMD design under
uncertainty, deserving additional development and research.
Regarding optimization, the inclusion of uncertainty in the
surrogate model (stochastic kriging) is a natural next step in
the development of e�cient methods for FTMD design.

Appendix

Friction-Tuned Mass Damper (FTMD) Model

Consider the system composed of a structure with nS degrees
of freedom equipped with nF FTMDs arranged in parallel in
the top story as illustrated in Figure 3. �is system is subject
to a seismic excitation represented by the ground acceler-
ation €zg(t), which here is considered unidirectional without
loss of generality of the proposed methodology. �us, the
nonlinear equation that governs the motion of this system
may be written as

M€z(t) + C _z(t) + Kz(t) + FF(t) � MΓ€zg(t), (21)

where z(t), _z(t), and €z(t) are, respectively, the displacement,
velocity, and acceleration system vectors, whose dimension
is (nS + nF); M, C, and K denote, respectively, the mass,
damping, and sti�ness matrices of the system, whose size is
(nS + nF) × (nS + nF); Γ represents the (nS + nF) in�uence
matrix of ground motion coe�cients; and FF(t) is the
friction force (n + nF) dimension vector between the last
structure story n and the FTMDs. �e matricesM, C, and K
are, respectively,
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Figure 2: Setting the value of nr for the estimation of β̂. (a) Case 1. (b) Case 2.

Table 2: 2-FTMD system (Case 1): results for di�erent optimi-
zation methods over 10 independent runs.

Optimization method
Objective function (β̂)

Mean SD Best Worst
FA (OFE � 100) 3.89 0.08 4.03 3.72
NM (OFE � 100) 3.95 0.16 4.24 3.87
EGO (OFE � 60) 4.15 0.11 4.25 3.80
EGO (OFE � 80) 4.15 0.15 4.25 3.89
EGO (OFE � 100) 4.19 0.11 4.25 3.95

Table 3: 2-FTMD system (Case 2): results for di�erent optimi-
zation methods over 10 independent runs.

Optimization method
Objective function (β̂)

Mean SD Best Worst
FA (OFE � 100) 4.20 0.05 4.27 4.09
NM (OFE � 100) 4.23 0.11 4.28 3.90
EGO (OFE � 60) 4.26 0.02 4.28 4.21
EGO (OFE � 80) 4.27 0.006 4.28 4.26
EGO (OFE � 100) 4.27 0.007 4.28 4.25
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M �
MS 0

0 MF
[ ],

C �
CS 0

0 0
[ ],

K �

KS +∑
nF

j�1
kFj −kF1 −kF2 · · · −kFnF

−kF1 kF1 0 · · · 0

−kF2 0 kF2 · · · 0

⋮ ⋮ ⋮ ⋱ ⋮

−kFnF 0 0 · · · kFnF





,

(22)

where MF � diag[mF1
, mF2

, . . . , mFnF
]; mFj

, kFj, and fFj are,
respectively, the mass, sti�ness, and friction force magnitude
of the jth FTMD, whileMS,CS, andKS are the submatrices of
the structure; and 0 is the null matrix.

�e Coulomb friction force, developed between the jth
FTMD and the last story of the structure, is given by

FFj(t) � μjmFj
g sgn _zFj(t)− _znS(t)( ) � fFj sgn _yFj/nS(t)( ),

(23)

where μj is the dynamic friction coe�cient (assumed
constant and equal to the static), g is the gravity acceleration,
sgn(·) is the signal function, and _yFj/nS(t) is the relative
velocity between each FTMD ( _zFj(t)) and the last structure
story ( _znS(t)).

From equation (23), it can be noted that the friction force
depends on the direction of the relative velocity _yFj/nS(t).
�e control problem presented is characterized by recurrent
changes in the direction of this velocity, which combined
with the stick slip e�ect results in discontinuities in the
friction force, characterizing the nonlinear behavior of the
system and thus making its analysis even more di�cult.
Given these assumptions and considering the balance of
forces of the system shown in Figure 3, the friction force
vector is

FF(t) �

0

0

⋮

−∑
nF

j�1
FFj(t)nS

FF1(t)
FF2(t)
⋮

FFnF
(t)





�

0

0

⋮

−∑
nF

j�1
fFj sgn _yFj/nS(t)( )

fF1 sgn _yF1/nS(t)( )

fF2 sgn _yF2/nS(t)( )
⋮

fFnF
sgn _yFnF/nS

(t)( )





.

(24)

�e seismic excitation was simulated by a zero mean
Gaussian stationary stochastic process, €z0(t), �ltered
through the Kanai–Tajimi (Kanai, 1961; Tajimi, 1960)
model, with power spectral density function expressed by

S(ω) � S0
ω4
g + 4ω2

gξ
2
gω

2

ω2 −ω2
g( )

2 + 4ω2
gξ

2
gω2

 , (25)

where S0 is the constant spectral density, ω is the angular
frequency, and ξg and ωg are, respectively, the damping ratio
and the natural frequency of the �lter, which are normally
parameters associated with the local soil.

As it was detailed in Section 2.1, the probability of failure
estimation requires the knowledge of the standard deviation
of the velocity and displacement of the DOF associated with
the failure mode. �ese quantities are approximated for this
nonlinear system using statistical linearization. For the

kF1 kF2 kFnF

mF1 mF2 mFnF
fF1 fF2 fFnF

Story n

Story 3

Story 2

Story 1

z̈g

Figure 3: n-story structure equipped with nF FTMDs.
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interested reader, a full presentation of this procedure is
presented in [29, 30].
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