Hindawi

Shock and Vibration

Volume 2018, Article ID 8072843, 13 pages
https://doi.org/10.1155/2018/8072843

Research Article

Hindawi

Modeling of Temperature Effect on Modal Frequency of
Concrete Beam Based on Field Monitoring Data

Wenchen Shan ©®),’ Xianqgiang Wang,2 and Yubo Jiao

! College of Transportation, Jilin University, Changchun, Jilin 130025, China

2Jiangsu Transportation Institute, Nanjing 211112, China

Correspondence should be addressed to Yubo Jiao; jiaoyb@jlu.edu.cn

Received 14 November 2017; Accepted 14 January 2018; Published 11 February 2018

Academic Editor: Giosue Boscato

Copyright © 2018 Wenchen Shan et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Temperature variation has been widely demonstrated to produce significant effect on modal frequencies that even exceed the effect
of actual damage. In order to eliminate the temperature effect on modal frequency, an effective method is to construct quantitative
models which accurately predict the modal frequency corresponding to temperature variation. In this paper, principal component
analysis (PCA) is conducted on the temperatures taken from all embedded thermocouples for extracting input parameters of
regression models. Three regression-based numerical models using multiple linear regression (MLR), back-propagation neural
network (BPNN), and support vector regression (SVR) techniques are constructed to capture the relationships between modal
frequencies and temperature distributions from measurements of a concrete beam during a period of forty days of monitoring.
A comparison with respect to the performance of various optimally configured regression models has been performed on
measurement data. Results indicate that the SVR exhibits a better reproduction and prediction capability than BPNN and
MLR models for predicting the modal frequencies with respect to nonuniformly distributed temperatures. It is succeeded that
temperature effects on modal frequencies can be effectively eliminated based on the optimally formulated SVR model.

1. Introduction

With the development of advanced techniques in sensing,
data acquisition, computing, and information management,
structural health monitoring (SHM) systems have been
widely implemented to diagnose structural condition [1-3].
Vibration-based damage identification, as an important part
of SHM system, has been most widely investigated because of
their capability for accurately identifying structural damage
[4]. The basic concept underlying the use of vibration-based
damage identification is that vibration properties (natural
frequencies, mode shapes, and damping ratio) are functions
of the physical properties (mass, stiffness, and damping) of
structure [5, 6]. The measured changes in dynamic parame-
ters can be used to evaluate corresponding changes in phys-
ical properties that indicate the structural damage. However,
dynamic parameters are inevitably affected by environmental
and operational conditions (temperature, humidity, wind,
traffic load, etc.). Changes of dynamic parameters caused by

environment may lead to a false damage identification result
[7-10].

Modal frequency is the most widely used dynamic
parameter to identify structural damage because it is easy to
be measured with high precision [11]. Extensive researches
have demonstrated that temperature change is the most
important source that causes the variation in modal fre-
quencies of structures [12]. Researchers from Los Alamos
National Laboratory find that the first three frequencies of
Alamosa Canyon Bridge vary about 4.7%, 6.6%, and 5.0%
during 24 hours, in which the temperature of the bridge
deck changes by approximately 22°C [13, 14]. Peeters et al.
[15, 16] report that the first four modal frequencies of Z24
Bridge vary by 14%-18% during 10-month monitoring period,
and this variation is more significant than the change of
10% caused by destructive damage. Desjardins et al. [17]
make a continuous monitoring for the modal frequencies
and average girder temperature of Confederation Bridge. The
modal frequencies are reduced by 4% when the temperature
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varies from —20°C to 25°C. Askegaard and Mossing [18]
continuously monitor a three-span reinforced concrete (RC)
bridge for three years, and the seasonal changes of modal
frequencies reach as much as 10%. Yuen and Kuok [19]
extract the modal frequencies of a 22-storey RC building
for one year using Bayesian spectral density approach. They
find that the first three modal frequencies increase with an
increase in ambient temperature. Chen et al. [20] explore
the correlation between modal frequencies of Guangzhou
New TV Tower and air temperature through more than
100 h measurement. Results show that modal frequencies are
linearly dependent on air temperature. Saisi et al. [21, 22]
present the results of continuous dynamic monitoring for
Gabbia Tower in Italy during a period of 8 months. Identified
natural frequencies are observed to vary by 5-11% when the
measured temperatures range from 2°C to 45°C. Ubertini et
al. [23] monitor the modal frequencies of San Pietro Bell
Tower during more than nine-month period. Temperature
variation produces significant changes in natural frequencies,
up to 16 MHz/°C, while effects of air humidity were relatively
marginal. As indicated by the prior researches, temperature
significantly affects the modal frequencies. In addition, no
such temperature dependence has been observed for the
mode shapes and damping ratio, and hence the temperature
effect on them can be generally ignored [12, 24]. For the reli-
able performance of vibration-based damage identification, it
is of paramount importance to eliminate and discriminate the
variations in modal frequencies due to temperature change
from those caused by structural damage.

In order to eliminate the temperature effect on modal
frequency, quantitative models between them are required
to normalize the identified modal frequencies to an identical
reference temperature [25-27]. Xia et al. [24] propose a sim-
ple linear regression model to correlate the air temperatures
and modal frequencies of a RC slab based on laboratory
monitoring data. Peeters and De Roeck [15] derive an autore-
gressive and moving average (ARMA) model to formulate the
relationship between air temperature and modal frequencies
for the Z24 Bridge. Moser and Moaveni [28] utilize several
models (a static linear model, an ARX model, a bilinear
model, and polynomials with various orders) to represent the
relationship between the modal frequencies and measured
temperatures. Ding and Li [29] propose a polynomial regres-
sion model to describe the frequency-temperature seasonal
correlations of the Runyang Suspension Bridge. Ni et al.
[30, 31] apply the support vector machine (SVM) and back-
propagation neural network (BPNN) techniques to formulate
regression models that quantified the temperature effect on
modal frequencies of the cable-stayed Ting Kau Bridge.
These studies mentioned above have proposed methods for
predicting the modal frequencies of bridges, but none has
compared the prediction accuracy of multiple linear regres-
sion (MLR), BPNN, and SVM methods. In addition, these
regression models mainly focus on the relationships between
modal frequencies and air temperature or structural tem-
peratures measured at some surface points. They ignore the
nonuniformly distributed temperatures in the cross-section
of structure, which may lead to information loss in modeling
the temperature effect on modal frequencies [32, 33].
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In this paper, three regression models of predicting modal
frequencies corresponding to nonuniformly distributed tem-
peratures are built on measurements from a concrete beam
during 40-day monitoring period. Prediction capabilities
are compared in order to select the optimal model for
eliminating temperature effect on modal frequency. The rest
of the paper is organized as follows. The various regression
algorithms that are adopted to predict the modal frequencies
are first outlined. A concrete beam is constructed and the
details are described. Principal component analysis (PCA) is
performed to extract principal components from the mea-
sured temperatures. And the quantitative models using MLR,
BPNN, and SVR are constructed by use of extracted principal
components (PCs) of temperatures. Prediction capabilities
of constructed regression models are studied and examined
on training and test samples. Selected optimal model is later
used to remove the variability of identified modal frequencies
due to temperature effect. Lastly, results are summarized with
important conclusions.

2. Theoretical Background

Modal frequency is directly related to the temperature
distribution across the structure. This research proposes
to employ internal distributed temperature measurements
to predict the modal frequency of a concrete beam. The
methodology is outlined in the form of a flowchart in Figure 1.
Temperature measurements collected from monitoring are
first preprocessed by PCA for dimensionality reduction. The
PCs of temperatures are then supplied as input to statistical
regression techniques to compute regression models. Predic-
tion capabilities of regression models are examined and com-
pared based on statistical indicators. The regression model
with the best prediction accuracy is then used to predict
modal frequency from collected temperatures, which have
been preprocessed by PCA. Temperature effect on modal
frequency is successfully eliminated using the regression
model with the best prediction accuracy.

2.1. Principal Component Analysis (PCA). PCA is multivari-
ate statistical tool that takes advantage of inherent corre-
lations between variables for dimensionality reduction and
feature extraction. It is a linear transformation mapping an
original set of variables into a substantially smaller set of
uncorrelated variations that represents most of information
in original set of variables [3, 34]. Using PCA, original set
of correlated variables X € R" in an n-dimensional space
can be transformed into a new set of uncorrelated variables
Y € R™ in an m-dimensional (m < n) orthogonal space by
the application of the following equation:

Yy =17Xx, 1

where I'(n x m) is a transformation matrix that applies
an orthogonal rotation to the original coordinate system.
Through the singular value decomposition for the covariance
matrix of original variables X, we can obtain

xx' =uAUT, ()
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FIGURE 1: Technical flowchart of proposed method in this paper.

where U is the orthogonal eigenvector matrix with U'U = I
and A is a diagonal matrix composed of singular values as
follows:

(A, O 0
0 A, 0

A= , 3)
L0 0 -- ,\n_

where the singular values rank in descending order A, >
A, > > A, > 0. They represent the variances of
principal components, and the small singular values are
not relevant to explain the overall variance of data set. The
proportion of original variables explained by the first m
principal components is defined as

XA
YA

where f8,, is accumulated variance contribution rate and
decides the number of selected principal components. Gen-
erally, if 8, x 100% > 85%, the transformation matrix I
could be obtained by the first #1 column vectors in orthogonal
eigenvector matrix U. Once m has been chosen and orthog-
onal transformation matrix I has been determined, variables
in principal space can be calculated by (1).

B (4)

2.2. Multiple Linear Regression (MLR). MLR is an extension
of simple linear regression for the purpose of predicting
dependent variables by multiple explanatory variables [35].
When a dependent variable y is linearly related to n explana-
tory variables, the general form of MLR model can be
expressed as

y =B+ Bix;+ Bpxy +o+ Bux, te, (5)

where y is the predicted value of dependent variable, f3, is
the intercept and (f;, 3, ..., 3,) are regression coeflicients
associated with the explanatory variables (x;, x,, ..., x,,), and
e is random error with mean zero and variation o”. Based
on the data from n measurements, unknown regression
coeflicients can be determined using least-squares method. In
this study, y represents the modal frequency at specific time,
and (x;, x,,...,x,) represent PCs extracted from measured
temperatures in cross-section at mid-span of concrete beam.

2.3. Back-Propagation Neural Network (BPNN). Artificial
neural network (ANN) is a functional abstraction from bio-
logic neural structure, which can process complex nonlinear
relationships among several variables through learning [36].
Therefore, it provides a powerful tool for modeling the
relationship between modal frequencies and distributed tem-
peratures. As one of the widely used ANN structures, BPNN
is established through forward transfer of information and
back-propagation of training error. The biases and weights
are constantly adjusted to minimize target error through
gradient descent algorithm. An evaluator, the sum of square
error (SSE) between actual and target outputs, is taken as the
objective function of BPNN model, as shown in

P n
SSE= Y > (Ot~ Tim)” (6)

k=1m=1

where Oy,,, and Ty, are the actual and target output of mth
node in output layer for kth pattern, respectively, # is the
number of outputs, and p is the number of patterns.

The typical two-layer BPNN contains an input layer,
hidden layer, and output layer. The transfer function for
hidden layer is taken as a tan-sigmoid function and that
for the output layer is a linear function. In this research,
BPNN is simulated using MATLAB’s neural network toolbox,
and the “traingdx” and “learngd” functions are chosen as
training function and learning function, respectively [37].
An important parameter in BPNN is the optimal number
of nodes in the hidden layer. It is optimally determined
through trials and validation errors. In order to avoid the
underfitting and overfitting phenomena, an early stopping
technique is employed. Training process is stopped when
the errors on validation data increases for a specific number
of iterations. The parameters (weights and biases) of BPNN
model are determined as those associated with the minimum
of validation error.

2.4. Support Vector Regression (SVR). Support vector ma-
chine (SVM) is a newly emerging learning technique fol-
lowing the structural risk minimization (SRM) principle
rather than the common empirical risk minimization (ERM)
principle. It transforms sample data to a higher dimensional
feature space and defines the optimal linear hyperplane to
minimize the upper bound on the generalization error [3,
30, 38]. SVR refers to the regression model of SVM. It is
to transform the nonlinear relationship in original space
into linear relationship in a feature space so as to discover
relationship more easily.



Consider a set of training data S = {(x, ¥,), (X3, ¥3),
...,(x,, )} € RY x R, where x; is a P-dimensional input
vector and y; is the corresponding scalar output in original
space. For linear regression problem in the feature space, the
linear estimation function is described as

f )= (w9 x)+b, 7)

where w and b are weights and thresholds, respectively, ¢ is
the mapping function transforming input vector to feature
space, and (*, *) denotes the inner product.

The SRM principle is adopted in SVR to avoid overfitting
and improve generalization performance. The optimization
object is set as

| N .
Minimize > Iwll® + C; (&+&) (8)

Subject to ¥, —(w,p(x;)) —b<e+§
(wo(x) +b-y <e+&; ©)
Ei’gl‘* = 0’

where ¢ is loss function, C is penalty coefficient, and &;, & are
slack variables.

Solution of (8) under constraints of (9) is achieved by
introducing the Lagrange multipliers and using the duality
principle.

1 n
Maximize - —

—

i1 ‘ (10)

Subject to Z (;—0a;)=0

where «;, o are the Lagrange multipliers, which can be
obtained from the above optimization problem. The weight
vector w can be solved and written as

w=Y (o, —a)p(x,). (11)
i1

For nonlinear regression problems, SVR transforms data
to a high-dimensional feature space by a kernel function. The
linear SVR algorithm conducted in feature space represents
the nonlinear SVR operation in original space. Inner product
in the feature space calculated using a kernel function is
expressed as

K (x.x;) = (¢ (x). ¢ (x;)) - (12)

Radial-basis kernel function (RBF) is a reasonable choice
of kernel functions since it equips with more flexible and
fewer parameters. It is applied and listed as follows:

K (x0x)) = e (v s -x[) 13)
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Therefore, the nonlinear regression function can be cal-
culated and expressed by

n

f) =) (- o) K (x;,%) +b. (14)

i=1

In the formulation of SVR model, selection of hyperpa-
rameters (C, y, €) is crucial to improve the generalization abil-
ity and prediction accuracy. Grid search method is applied to
optimize the hyperparameters. For each combination of the
hyperparameters, SVR is trained using the training data and
their performance is evaluated by a cross-validation scheme.
Optimal hyperparameters are determined to construct the
SVR model for modeling the relationship between modal
frequencies and nonuniformly distributed temperatures.

2.5. Prediction Capability Evaluation Index. The prediction
capabilities of formulated models (MLR, BPNN, and SVR)
are examined and compared using training and test set.
Prediction error (PE) is proposed to reflect the difference
between target and prediction values. PE is defined as

PE = f,— fi (15)

where f; is identified modal frequency and f; is predicted
modal frequency.

In order to quantify and rank the performances of formu-
lated models, two statistical indicators including root mean
squared error (RMSE) and correlation coefficient (R) are
used to quantitatively evaluate the performance of regression
models, which are expressed by (16), and R is a numerical
value between —1 and 1, which illustrates the relationship
between target and predicted values. A high R value close to
1 indicates a strong positive correlation between target and
predicted values, which demonstrates good generalization
capability of models. RMSE represents the root mean square
of differences between actual and predicted values. It can be
also used to evaluate forecasting accuracy of models.

Z?:l (f: - ﬁ)Z

cov (f,f)

=’

a(f)o(f)

where nis the number of sample data, cov( f, f) represents the
covariance between target value f and predicted value f, and
o(f), o(f) are standard deviations of f and f, respectively.

RMSE =
(16)

3. Case Study

3.1. Monitoring of Concrete Beam. A RC beam with cross-
sectional dimensions of 4000 mm x 300 mm x 400 mm is
constructed and placed outside the laboratory in Changchun
City, China. It is simply supported on concrete piers by two
bearings, as shown in Figure 2. The measured span between
two bearings is 3700 mm, and 150 mm overhangs are present
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FIGURE 2: RC beam constructed for monitoring (unit: mm).

at each end. The RC beam was produced on 8 June 2015 and
was installed on 12 September 2015. During this period, the
hydration reaction is sufficiently completed, and shrinkage
and creep of concrete would produce negligible effect on
measurement results. Considering that the nonuniform tem-
perature is primarily distributed in cross-section, a total of
14 type T thermocouples are embedded in the cross-section
at the mid-span of the beam to monitor the temperature
field. Figure 3 illustrates the deployment of thermocouples
at mid-span. “V” represents thermocouples along vertical
direction, while “H” represents the thermocouples along
horizontal direction. In order to fix the thermocouples
in accurate position, preformed concrete units containing
type T thermocouples are located at predetermined position
before pouring concrete. Type T thermocouples are made
by copper and constantan, and measurement range of them
is =250 to 260°C. A TP700 multichannel data recorder is
employed to sample data collected by type T thermocouples.
It features an auto-zero channel, a cold-junction compen-
sator, and automatic voltage-temperature conversions for
common thermocouples. Due to the operating temperature
ranging from 0 to 50°C, it is installed in laboratory to ensure
the accuracy of measurement. Type T thermocouples are con-
nected to TP700 data recorder using shielded thermocouple
compensation lead [39].

As for the modal testing, two DHI3IE piezoelectric accel-
erometers are used to acquire the acceleration response under
impact excitation from a rubber hammer at 7/10 span length
from left end along vertical direction. The 1* accelerometer is
placed at mid-span and 2" accelerometer at 3/10 span length
from left end. DHI3IE accelerometers feature a sensitivity of
1mV/g, a frequency range of 1-8000 Hz, small size (10 x
16 mm), and light weight (5.5 g). The operating temperature
ranging from —40 to 80°C makes it ideal for outdoor appli-
cation. The magnetic bases are fixed on the upper surface of
RC beam using metal/concrete epoxy, and accelerometers are
mounted on the magnetic bases. A DH5922 type dynamic
signal measurement and analysis system is used to measure
and analyze acceleration response. It includes sixteen 24-bit
Integrated Electronics PiezoElectric (IEPE) input channels
and supports sampling rates of up to 51.2kHz. Antialias-
ing filters and time-base export for tight synchronization
between channels are equipped. The DH5922 system has
an operating temperature range of 0 to 40°C, and it is
placed in laboratory. Accelerometers are connected with data

acquisition device using L5 coaxial extension cables with
lengths of 15 m. DH5922 system samples a 16-second data
from the two acceleration channels at a 5120 Hz sampling
rate. Data processing is performed by DHDAS-2013 software
platform, which is an important part of DH5922 system.
Firstly, the recorded sample data is bandpass-filtered between
10 and 1000 Hz using a finite impulse response filter. Secondly,
Hamming window with 50% overlap is used to intercept
acceleration signal. The number of spectrum lines is set as
6400, and obtained frequency resolution is 0.156 Hz. Finally,
modal frequencies are identified and extracted by frequency
spectrum analysis using fast Fourier transform (FFT). For
example, samples of data collected from accelerometers
installed on the RC beam on March 6, 2016, at 8:00 am are
shown in Figure 4. Both the time history of acceleration signal
and corresponding amplitude spectrum are illustrated.

Vibration tests were carried out with two hour intervals
from 8:00 am to 22:00 pm in everyday monitoring, while
temperatures are measured at an interval of 5 minutes. The
continuously measured temperatures are used to analyze the
temperature variation and its nonuniform distribution. In
this study, temperatures corresponding to vibration rests are
selected and employed to explore the correlation between
temperature and modal frequency and construct regression
models between them.

3.2. Temperature Effect on Modal Frequencies. Due to the
restrictions of measurement equipment, RC beams are dis-
continuously monitored. Measurement data have been col-
lected during the period beginning on 20 September 2015 and
ending on 29 August 2016. In this research, measurement data
from forty days of monitoring since 19 January 2016 covering
winter (minimum temperature) and summer (maximum
temperature) are used. During this period, measurements are
carried out under weak wind condition (hourly-average wind
speed less than 3 m/s). Therefore, wind speed effect on modal
frequency can be ignored.

Under the influence of solar radiation, air temperature,
and thermal inertia of concrete, temperature distributions
in the RC beam are usually nonuniform and nonlinear. In
order to specifically exhibit the nonuniform temperature
distributions in beam, temperatures measured on 27 June
2016 at 14:00 pm are shown in Figure 5. One can find
that the temperature distributions along vertical direction
and horizontal direction are nonuniform and nonlinear.
This indicated that it is important to consider the nonuni-
formly distributed temperatures in modeling the relationship
between modal frequencies and temperatures.

A total of 320 sets of modal frequencies and temperature
data from January to August in 2016 are obtained. The
measured data samples are sorted in measurement time
order. Figure 6 presents the identified modal frequencies and
measured average temperature during monitoring period. As
can be seen, significant negative correlations exist between
modal frequencies and temperature. The modal frequencies
decrease with average temperature increasing. Statistical
analysis for the variation of modal frequencies during moni-
toring period is summarized in Table 1. Average temperature
variation ranging from —22°C to 37°C accounts for the change
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FIGURE 6: Modal frequencies (red) versus average temperature (blue) (thick lines represent the fitting curve). (a) 1st mode; (b) 2nd mode; (c)
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in modal frequencies 0f 14.29% to 41.70% in the relative sense
for the first four modes. And the variation coefficient varies
from 4.05% to 11.48%. For the second modal frequency, it is
combined action from vertical vibration and torsional vibra-
tion interfered. The higher relative variation (41.70%) and
variation coefficient (11.48%) could be caused by the couple
effect of vertical vibration and torsional vibration. As listed
in Table 1, significant changes of first four modal frequencies
demonstrate the necessity to eliminate temperature effect.

4. Performance Comparison between
Regression Models

4.1. Formulation of Regression Models. Three regression algo-
rithms presented in previous section are applied to predict
modal frequencies of RC beam, and prediction accuracy of
models becomes the utmost concern. Table 1 indicates that
the ranges of variation of modal frequencies vary with modes.
If models are configured to accommodate all the modes,
corresponding reproduction and prediction capabilities will
be reduced [40]. Therefore, an individual model is developed
for each mode separately, which will improve the accuracy

of predicting and eliminating temperature effect on modal
frequencies. Measurement data from 40 days of monitoring
on RC beam are divided into three nonoverlapping and
independent data sets: a training set of 50% (160 sets of data
from 20 days of monitoring), a validation set of 20% (64 sets
of data from 8 days of monitoring), and a test set of 30% (96
sets of data from 12 days of monitoring). Training set is used
to construct and train the regression models, validation set
to optimize the models, and test set to check their prediction
accuracy. The detailed partition is illustrated in Figure 7
taking the first modal frequency, for example. Training set
covers a complete temperature range, which is necessary to
contain the limitation of prediction. Validation set and test
set are uniformly distributed in the range of training set. This
partition is helpful to improve the accuracy of prediction
models.

In multivariate regression, the highly correlated data
could produce unstable regression estimates [3, 35]. Inter-
nal temperatures of RC beam measured by thermocouples
embedded in the cross-section at mid-span are highly corre-
lated. In this research, PCA technique is employed to extract
the PCs of temperatures taken from all thermocouples over
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TABLE 1: Statistics of first four modal frequencies.
. . ndaar riation
Mode Max Min Mean }.lel'a tlveo cslgi/ii?oi c\(,)t:ff?ctiznt
(Hz) (Hz) (Hz) variation (%) (Hz) (%)
1st 56.25 4750 50.51 17.32 2.16 4.28
2nd 185.31 123.49 148.38 41.70 17.04 11.48
3rd 575.31 462.5 499.63 22.58 32.67 6.54
4th 797.50 693.13 730.30 14.29 29.56 4.05
Note. Relative variation = (Max — Min)/Mean * 100%.
TaBLE 2: RMSE and R values of reproduced modal frequencies.
Model Ist mode 2nd mode 3rd mode 4th mode
RMSE R RMSE RMSE R RMSE R
MLR 0.8413 0.9163 5.0748 0.9427 9.0764 0.9547 7.7886 0.9639
BPNN 0.4072 0.9839 3.0462 0.9849 3.8317 0.9935 3.6636 0.9927
SVR 0.3234 0.9910 2.4426 0.9916 2.8059 0.9965 2.6063 0.9964
R E E E E 4, 4, and 5, respectively. SVR modeling is also carried out
] 2 % - . 3 . = individually for each mode using the LIBSVM toolbox in
S o fee F £ e = HEE MATLAB [41]. A grid search method is used to determine
5 '%f;@:g‘g‘;% “e, the optimal hyperparameters (C, y,¢). The bounds on the
g 534 <% i @0: hyperparameters C and y are set to vary from 27'% to 2'°, and
E 51 1 ‘B m“’ BRI ° 9 ¢ is set to vary from 0 to 107°. SVR models are built by the
g 49 $° 8 0 3BT 0 00 O o3 miE B, training data set using fivefold cross-validation scheme.
2 e b
47 |
45 4.2. Reproduction Capability. PEs between identified and
°S]%8888388% § S % § § § § § reproduced modal frequencies are calculated on training set

Sample number

FIGURE 7: Sample selection for training, validation, and test set.

the monitoring period, and the transformed data is then
given as input to the regression models. The 320 sets of
temperatures measured by 14 thermocouples are analyzed by
PCA. Variance contribution rate of the first four PCs accounts
for 99.99% of total variance, and hence the extracted four PCs
of temperatures are applied to construct regression models
for accurately predicting modal frequencies.

The relationship between modal frequencies and PCs of
temperatures are first formulated for each mode by MLR.
Training data set is used to build MLR models and calculate
regression coefficients using the least square method. For the
formulation of BPNN model, an early stopping technique is
employed to optimize the BPNN model and avoid overfitting
caused by unreasonable performance goal. With intent to
determine the optimal number of hidden nodes, BPNN
models with different number of hidden nodes are trained by
the early stopping technique using training data. The optimal
number of hidden nodes is determined so that the validation
error reaches the minimum value. Optimally configured
BPNN model is selected as the one with 5 hidden nodes
for the first vibration mode. Similarly, the optimal numbers
of hidden nodes for the other modes are determined as

and are evaluated by the use of histograms. Figure 8 presents
the histograms of PEs generating from the three regression
models. As can been seen, the PEs generated by BPNN
and SVR model are concentrated in narrower range, and
the observed probability distribution is in good agreement
with a normal distribution with zero mean. It indicates that
the reproduction capacities of formulated BPNN and SVR
models are excellent compared to MLR model. Additionally,
the PEs from SVR model are smaller than BPNN model, and
the distributions are concentrated in zero more significantly,
which demonstrates the outstanding reproduction capability
of SVR model.

RMSE and R values between target and reproduced
modal frequencies for the first four modes are listed in
Table 2. It is observed that the MLR model generates the
highest RMSE among the three models, while the SVR
model achieves the lowest. In addition, R values of the SVR
model are larger than those of MLR and BPNN models. This
reveals that SVR model presents a stronger linear relationship
between reproduced and identified modal frequencies. Based
on above comparisons, SVR model has higher accuracy in
reproducing the training data and the reproduction capability
rank with a descending order of SVR, BPNN, and MLR.

4.3. Prediction Capability. The prediction capacities of for-
mulated models are verified using testing data set. His-
tograms of PEs generating from the three regression models
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TaBLE 3: RMSE and R values of predicted modal frequencies.
Model Ist mode 2nd mode 3rd mode 4th mode
RMSE R RMSE R RMSE R RMSE R
MLR 0.9140 0.9005 5.8713 0.9416 9.9947 0.9465 8.0774 0.9535
BPNN 0.6553 0.9417 3.5616 0.9766 5.6797 0.9777 6.6021 0.9638
SVR 0.6223 0.9492 2.6851 0.9846 5.0268 0.9826 5.5101 0.9750
40 40 40 40
20 20 20
0 0 0
-2 -1 0 1 2 =20 -10 0 10 20 -30 =20 -10 0 10 20 30 -30 -20 -10 0 10 20 30
(al) (a2) (a3) (ad)
40 40 40 40
20 20 20 l 20
0 0 0 0
-2 -1 0 1 2 =20 -10 0 10 20 -30 =20 -10 0 10 20 30 -30 -20 -10 O 10 20 30
(b1) (b2) (b3) (b4)
60 100 80 80
30 50 40 40
0 0 0
-2 -1 0 1 2 -20 -10 0 10 20 -30 -20 -10 0 10 20 30 -30 -20 -10 O 10 20 30
(c1) (c2) (c3) (c4)

FIGURE 8: Histograms of PEs generated by three regression models on training set (horizontal axis represents PEs, and vertical axis represents
sample number). (al) MLR for 1st mode; (a2) MLR for 2nd mode; (a3) MLR for 3rd mode; (a4) MLR for 4th mode; (bl) BPNN for 1st mode;

(b2) BPNN for 2nd mode; (b3) BPNN for 3rd mode; (b4) BPNN for
3rd mode; (c4) SVR for 4th mode.

are illustrated in Figure 9. It presents that the PEs generated by
BPNN and SVR model are concentrated in narrower range.
And the observed probability distribution is in good agree-
ment with a normal distribution with zero mean. Similar
to reproduction capability, BPNN and SVR models possess
better prediction accuracy than MLR model because of less
prediction error.

RMSE and R values of three regression models for all the
modes are listed in Table 3. It can be seen that RMSE values of
MLR, BPNN, and SVR models rank with a descending order
of MLR, BPNN, and SVR. The SVR model with minimal
RMSE value performs higher prediction accuracy than the
BPNN and MLR models. Moreover, R values of SVR model
are larger than those of other models, which imply that
the performance of SVM models is excellent in predicting
the modal frequencies under the nonuniformly distributed
temperatures.

5. Fliminating Temperature Effect on
Modal Frequency

The main purpose of constructing accurate regression model
is to eliminate the temperature effect on the modal frequen-
cies and to normalize all the modal frequencies to a set of

4th mode; (c1) SVR for Ist mode; (c2) SVR for 2nd mode; (c3) SVR for

reference temperature. Comparing to the MLR and BPNN
regression models, the SVR model exists with better capa-
bility for predicting modal frequencies of RC beam in this
research. The established SVR model above is used to elim-
inate the temperature effect on modal frequencies. Firstly,
the modal frequencies at the reference temperature of 20°C
are identified. Then the normalized modal frequencies after
removing environmental effect can be obtained by

f = freference + (fidentiﬁed - fpredicted) ’ (17)
where f, ference 1S the modal frequencies at reference tem-
perature, fyedicea iS the modal frequencies predicted by
SVR regression model, and figenipe.q represents the modal
frequencies identified at different temperature.

Figure 10 illustrates the PEs of first four modal frequencies
produced by SVR regression model. It can be clearly observed
that the variation of PEs is around zero (the small difference
is due to the measurement error, prediction error, and other
noise). This indicates that the seasonal variation of modal
frequencies is successfully eliminated. Histograms of modal
frequencies before and after correction by SVR regression
model are plotted to demonstrate the reduction of the vari-
ation of modal frequencies. Figure 11 presents the histograms
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TABLE 4: Variability of first four modal frequencies before and after eliminating temperature effect.

Standard deviation (Hz)

Variation coefficient (%)

Mode

Before After Ratio Before After Ratio
Ist 2.16 0.46 21.30 4.28 0.92 21.50
2nd 17.04 2.82 16.55 11.48 2.05 17.86
3rd 32.67 3.91 11.97 6.54 0.82 12.54
4th 29.56 4.39 14.85 4.05 0.62 15.31

Note. Ratio = after/before * 100%.

0 0
-2 -1 0 1 2 -15 -10 =5 0 5 10 15 -30 =20 =10 0 10 20 30 -30 -20 -10 0 10 20 30
(al) (a2) (a3) (ad)
40 40 40 40
20 20 20 20
0 0 0 0
-2 -15-10 -5 0 5 10 15 -30 =20 -10 0 10 20 30 -30 -20 =10 0 10 20 30
(b1) (b2) (b3) (b4)
40 40 40 40
20 20 20 20
0 0 0
-2 -1 0 1 2 -15 -10 -5 0 5 10 15 -30 =20 -10 O 10 20 30 -30 -20 -10 0 10 20 30

(c1)

(c2)

(c3)

(c4)

FIGURE 9: Histograms of PEs generated by three regression models on test set (horizontal axis represents PEs, and vertical axis represents
sample number). (al) MLR for 1st mode; (a2) MLR for 2nd mode; (a3) MLR for 3rd mode; (a4) MLR for 4th mode; (bl) BPNN for Ist mode;
(b2) BPNN for 2nd mode; (b3) BPNN for 3rd mode; (b4) BPNN for 4th mode; (c1) SVR for 1st mode; (c2) SVR for 2nd mode; (c3) SVR for

3rd mode; (c4) SVR for 4th mode.

of first four modal frequencies during the period of 40 days of
monitoring. It is clear that the modal frequencies are concen-
trated in narrower range with normal distributions after the
application of SVR regression model. Standard deviation and
variation coefficient of first four modal frequencies before
and after eliminating temperature effect are listed in Table 4.
As can be seen, standard deviations of modal frequencies
after eliminating temperature effect are only 25% of standard
deviations before eliminating temperature effect. Maximum
variation coefficient is reduced from 11.48% to 2.05% after
eliminating temperature effect. This verifies the effectiveness
of SVR regression model in eliminating temperature effect on
modal frequencies.

6. Conclusions

In this paper, three regression models are constructed to
predict the modal frequencies of a concrete beam caused by
temperature change in seasonal cold region. The prediction
capabilities of formulated MLR, BPNN, and SVR models are
evaluated and compared. The following conclusions can be
obtained.

(1) During the monitoring period, average temperature
variation in RC beam ranging from —22°C to 37°C accounts
for the changes in first four modal frequencies of 14.29%
to 41.70% in relative sense. And the variation coefficient
ranges from 4.05% to 11.48%. It demonstrates the necessity
to eliminate temperature effect on modal frequency.

(2) A series of statistical indexes including PE, RMSE, and
R are introduced to evaluate the reproduction and prediction
capability of the formulated models. Histograms statistics
of PEs demonstrates that the reproduction and prediction
capability of SVR model are superior to MLR and BPNN
models. Comparison analysis on RMSE and R indicators also
prove that SVR model exhibits excellent reproduction and
prediction capabilities and evaluates the modal frequency
with high accuracy.

(3) Eliminating temperature effect on modal frequen-
cies is achieved by use of the established SVR model.
After eliminating temperature effect, seasonal variation of
modal frequencies disappeared, and modal frequencies are
concentrated in narrower range with normal distributions.
Comparison between variabilities of modal frequencies
before and after eliminating temperature effect demonstrates
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FIGURE 10: PEs of first four modal frequencies by use of SVR model. (a) 1st mode; (b) 2nd mode; (c) 3rd mode; (d) 4th mode.
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FIGURE 11: Histograms of the modal frequencies before and after the elimination of temperature effects. (al) 1st modal frequency before
eliminating temperature effect; (a2) 2nd modal frequency before eliminating temperature effect; (a3) 3rd mode modal frequency before
eliminating temperature effect; (a4) 4th modal frequency before eliminating temperature effect; (bl) 1st modal frequency after eliminating
temperature effect; (b2) 2nd modal frequency after eliminating temperature effect; (b3) 3rd modal frequency after eliminating temperature

effect;

(b4) 4th modal frequency after eliminating temperature effect.
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