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Dynamic analysis for a vibratory system typically begins with an evaluation of its eigencharacteristics. However, when design
changes are introduced, the eigensolutions of the system change and thus must be recomputed. In this paper, three different
methods based on the eigenvalue perturbation theory are introduced to analyze the effects of modifications without performing
a potentially time-consuming and costly reanalysis. (ey will be referred to as the straightforward perturbation method, the
incremental perturbation method, and the triple product method. In the straightforward perturbation method, the eigenvalue
perturbation theory is used to formulate a first-order and a second-order approximation of the eigensolutions of symmetric and
asymmetric systems. In the incremental perturbation method, the straightforward approach is extended to analyze systems with
large perturbations using an iterative scheme. Finally, in the triple product method, the accuracy of the approximate eigenvalues is
significantly improved by exploiting the orthogonality conditions of the perturbed eigenvectors. All three methods require only
the eigensolutions of the nominal or unperturbed system, and in application, they involve simple matrix multiplications.
Numerical experiments show that the proposed methods achieve accurate results for systems with and without damping and for
systems with symmetric and asymmetric system matrices.

1. Introduction

In order to analyze the vibration of any structural system,
one usually first calculates the system’s eigensolutions.
After the initial analysis has been performed, if any
design modifications are then subsequently introduced,
one would need to recalculate the perturbed system’s
eigensolutions. However, when the degrees-of-freedom
for the system is large, solving the eigenvalue problem
multiple times for each set of perturbations can be
computationally expensive and undesirable. In these
cases, eigenvalue perturbation theory can be applied to
obtain the approximate eigencharacteristics of the sys-
tem without resolving an entirely new eigenvalue
problem. (e expressions for the approximate eigenso-
lutions of the perturbed system consist solely of matrix
multiplications, which can be efficiently performed by
any computer.

Over the years, there has been a large amount of interest
in applying the perturbation theory and sensitivity analysis
to study the effects of design changes on the eigensolutions
of structures. Because of the large number of studies that
have been published in these areas, only selected references
will be addressed in this paper. Fox and Kapoor [1] derived
expressions for the first derivatives of eigenvalues and ei-
genvectors with respect to a system’s parameters. (e ex-
pressions were applicable only to self-adjoint systems, and
the numerical examples used only contained real eigenvalues
and were restricted to small perturbations in the system.
Romstad et al. [2] formulated a power-series perturbation
approach and applied the method to structural systems in
order to find perturbed distinct or repeated eigenvalues and
eigenvalue sensitivities. However, the systems they analyzed
were symmetric and undamped. Plaut and Huseyin [3]
derived expressions of the derivatives of eigenvalues and
eigenvectors of non-self-adjoint systems. Rudisill [4] further
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explored sensitivity analysis by deriving simpler expressions
of a system’s eigenvalues and eigenvectors using only one
left-hand and right-hand eigenvector. (ese expressions
could also be extended to any order of derivative of the
eigenvalue and eigenvector, though it was not explicitly done
so in the paper. Meirovitch [5, 6] obtained the complete
response of gyroscopic systems using the perturbation
method, but his method required an extra step of reducing
the generalized eigenvalue problem to its standard form in
order to take advantage of the fact that the gyroscopic matrix
is skew symmetric. Rudisill and Chu [7] built upon the work
of Rudisill and introduced two numerical methods of
computing the derivatives of a system’s eigenvalues and
eigenvectors. (e first method consisted of an iterative
method that could be used to compute the first partial
derivatives of the eigenvalues and eigenvectors of a self-
adjoint system and only the first partial derivative of the
largest eigenvalue and its associated eigenvector of a non-
self-adjoint system. (e second method was an algebraic
method that could be used to compute all orders of the
eigensolutions’ derivatives without using the left-hand ei-
genvectors. However, unlike in Rudisill’s work, this method
required the solution of (n + 1) equations as opposed to
simply n equations. Nelson [8] presented a simplified
procedure of calculating eigenvector derivatives of an
eigensystem of any order using only the left and right ei-
genvectors and their associated eigenvalues. However, these
expressions were derived based on only the standard ei-
genvalue problem, and the original eigensystem’s matrix of
rank (n− 1) must be converted to rank n. Chen and Wada
[9] formulated a first-order perturbation solution using
a power-series expansion to conduct structural dynamic
analysis. However, their analysis was restricted to systems
with symmetric matrices. Meirovitch and Ryland [10] ex-
amined gyroscopic systems with small internal damping and
utilized a second-order approach along with the Cholesky
decomposition and linear transformations to reduce the
generalized eigenvalue problem to a standard one. Because
the damping considered was small, they used a perturbation
approach to obtain the response of the system by consid-
ering the undamped gyroscopic system as the unperturbed
system and treated the damping as perturbation. Belle [11]
presented expressions of higher order sensitivities, allowing
for more accurate approximations of a perturbed system’s
eigensolutions than when using only the first partial de-
rivatives. However, the paper did not quantify the im-
provement in accuracy with these higher-order sensitivities.
Meirovitch and Ryland [12] extended their aforementioned
perturbation approach to include external damping and
used Rayleigh’s quotient to enhance the accuracy of the
approximate eigenvalues used in the modal analysis. Bald-
win and Hutton [13] surveyed various structural dynamics
modification techniques, and in their analysis of perturba-
tion techniques, they described a first-order approach re-
stricted to systems without any damping. Chung and Lee
[14] developed a second-order perturbation solution and
analyzed heavily but weakly proportionally damped systems.
Bickford [15] proposed a scheme that improved the accuracy
of the approximate eigenvalues obtained using the usual

first-order perturbation approach. It led to results whose
accuracy approached those using the second-order pertur-
bation approach.(e method, however, was strictly valid for
symmetric eigenvalue problems. Cronin [16] used the
perturbation approach to analyze nonclassically damped
dynamic systems. (e proposed method involved a partial
diagonalization of the homogeneous equations of motion. A
perturbation quantity based on the off-diagonal terms of the
partially diagonalized damping matrix was then defined.(e
eigenvalues and eigenvectors for the damped system were
described in terms of power-series in the perturbation
quantity. Wang [17] introduced two approximate methods
for calculating a eigenvector’s derivatives when only
a truncated set of the system’s mode shapes is available. (e
first was the explicit method, which approximated the
contribution of higher modes. (e second method was the
implicit method, which assumed that the eigenvector de-
rivatives were spanned by the truncated mode shapes and
a residual static mode. Eldred et al. [18] developed an im-
proved mass normalization method for expressing eigen-
value derivatives of structural systems. (is improved
method performed accurately only for slightly less restrictive
parameter changes (up to 10%). In addition, Eldred et al. [19]
explored the perturbation approach and developed a solu-
tion of the full nonlinear eigensolution perturbation equa-
tions that took into account all orders of the perturbation
expansion, whereby the frequency and mode shape per-
turbation equations were coupled. (e method presented in
this paper will show that these coupled equations are not
necessary in order to achieve accurate results with large
perturbations. Kwak [20] proposed a power-series pertur-
bation approach to express the perturbed eigensolutions of
lightly damped systems. However, the analysis depended on
the original system being undamped. Chen et al. [21] ex-
tended the perturbation approach to not only deal with
distinct or repeated eigenvalues but also close eigenvalues or
eigenvalue clusters.(eir analysis, however, was constrained
to deal with relatively small perturbations, and the system
they analyzed contained only symmetric system matrices
and no damping. Wang and Kirkhope [22] used a pertur-
bation approach to analyze damped rotor systems. (e
solution scheme they developed, however, was restricted to
gyroscopic systems with no cross-coupling other than gy-
roscopic effects. Tang and Wang [23] applied a power-series
perturbation approach to analyze systems with distinct,
repeated, and nearly equal frequencies. (eir technique
utilized complex operations such as subspace condensation
and orthogonal decompositions, and they only considered
undamped systems with small perturbations. Liu and Chan
[24] developed an efficient matrix perturbation technique to
approximate the changes in the eigensolutions of the system
due to structural modifications. (e solution scheme re-
quired one to perform a subspace condensation and an
orthogonal decomposition in order to obtain the lower-
order perturbed eigensolutions. (e matrix singular value
decomposition was then subsequently used to compute the
higher-order perturbations of the eigensolutions. Trisovic
[25] applied sensitivity analysis to two structural systems,
a shaft of an electromotor and a cantilever beam, utilizing
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only the first partial derivatives of the eigenvalues and ei-
genvectors to alter the systems’ natural frequencies. Cha and
Solberg [26] applied the eigenvalue perturbation theory to
analyze various problems in structural dynamics. (e
method they used, however, was restricted to a first-order
analysis and only valid for symmetric systems. ElBeheiry
[27] analyzed weakly, nonproportionally damped systems,
where this damping stemmed from gyroscopic moments or
external damping factors. He utilized a second-order per-
turbation approach and represented the original system as
a conservative gyroscopic system. However, the perturba-
tions in the system were restricted to be one order of
magnitude smaller than the values in the original system
matrices.

In this paper, simple methods are introduced that can be
used to obtain the approximate eigenvalues and eigenvectors
of various systems, including those with asymmetric mass,
stiffness, or damping matrices and those with varying
magnitudes of perturbations. A simple first-order pertur-
bation analysis is sufficient if the modifications introduced
into the system are small. By including perturbations up to
the second-order, the accuracy achieved with the straight-
forward method becomes better than that obtained using
a first-order perturbation approach. When the design
changes are sufficiently large, the straightforward pertur-
bation method, even with a second-order analysis, fails to
approximate the structural vibration eigencharacteristics. In
this case, the incremental perturbation method can be
employed, which returns accurate eigensolutions because
the system is minimally perturbed from one iteration to the
next. Finally, a simple triple product method is proposed
that further enhances the accuracy of the approximate ei-
genvalues of the modified systems. Numerical examples are
presented to demonstrate the accuracy of the proposed
perturbation methods for undamped and damped systems,
and for structures with symmetric and asymmetric system
matrices.

2. Theory

(e use of eigenvalue perturbation theory in the design of
mechanical systems has been well explored. However, most
papers have only applied this method to systems with small
damping parameters or to systems with symmetric mass and
stiffness matrices. In the following, the first-order and
second-order approximations of the perturbed eigenchar-
acteristics are derived based on the perturbation theory.(is
formulation can be applied to systems with asymmetric
matrices, such as gyroscopic systems, and to systems with
large damping. An iterative scheme based on perturbing the
system matrices incrementally is also proposed, which al-
lows one to obtain accurate approximations of the eigen-
solutions of the perturbed system when large modifications
are introduced. Finally, knowing the perturbed eigenvectors,
a third approach is developed that yields approximate ei-
genvalues that are more accurate than the previous methods.

2.1. Straightforward Perturbation Method. Consider a sys-
tem whose modes of vibration are governed by the solutions
of the following generalized eigenvalue problem:

B0􏼂 􏼃x0 � λ0 A0􏼂 􏼃x0, (1)

where [B0] and [A0] denote the nominal system matrices,
both of size p × p, λ0 represents a nominal eigenvalue, and
x0 is the corresponding nominal right eigenvector. Assume
all the unperturbed eigenvalues of the system are distinct,
and [B0] and [A0] are asymmetric. (e initial system’s left
eigenvectors, denoted by y0, satisfy

B0􏼂 􏼃
Ty0 � λ0 A0􏼂 􏼃

Ty0. (2)

Assume the jth left eigenvector and the ith right ei-
genvector have been properly normalized such that they
satisfy the following orthogonality conditions:

yT
0j A0􏼂 􏼃x0i � δj

i ,

yT
0j B0􏼂 􏼃x0i � λ0iδ

j

i ,
(3)

where δj
i denotes the Kronecker delta and i, j � 1, . . . , p.

After an initial analysis has been performed, design
changes are introduced so that the system matrices become

[A] � A0􏼂 􏼃 +[δA],

[B] � B0􏼂 􏼃 +[δB],
(4)

where [A0] and [B0] denote the unperturbed matrices, [δA]

and [δB] the perturbation matrices, and [A] and [B] the
perturbed matrices. Moreover, elements of [δA] and [δB]

are assumed to be an order of magnitude smaller than those
of [A0] and [B0]. Because the system parameters have been
perturbed, the eigensolutions of the modified system will
undergo changes as follows:

λj � λ0j + δλj + δ2λj,

xj � x0j + δxj + δ2xj,

yj � y0j + δyj + δ2yj,

(5)

where δλj, δxj, and δyj denote the first-order eigensolution
perturbations, and δ2λj, δ

2xj, and δ
2yj represent the second-

order eigensolution perturbations. Resolving the eigenvalue
problem associated with the perturbed system can be time-
consuming and computationally taxing. Instead, the per-
turbation theory is used to find the approximate eigen-
characteristics of the modified system. For completeness, the
eigenvalue perturbation theory will be presented in detail.

Consider the jth right and left eigenvectors of the
perturbed system that satisfy

[B]xj � λj[A]xj,

yT
j [B] � λjy

T
j [A].

(6)

Substituting Equations (4) and (5) in Equation (6),
expanding, and keeping only the first-order and second-
order terms, the following equations are obtained:
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B0􏼂 􏼃x0j + B0􏼂 􏼃δxj + B0􏼂 􏼃δ2xj +[δB]x0j +[δB]δxj

� λ0j A0􏼂 􏼃x0j + λ0j A0􏼂 􏼃δxj + λ0j A0􏼂 􏼃δ2xj

+ λ0j[δA]x0j + λ0j[δA]δxj + δλj A0􏼂 􏼃x0j

+ δλj A0􏼂 􏼃δxj + δλj[δA]x0j + δ2λj A0􏼂 􏼃x0j,

(7)

yT
0j B0􏼂 􏼃 + δyT

j B0􏼂 􏼃 + δ2yT
j B0􏼂 􏼃 + yT

0j[δB] + δyT
j [δB]

� λ0jy
T
0j A0􏼂 􏼃 + λ0jδy

T
j A0􏼂 􏼃 + λ0jδ

2yT
j A0􏼂 􏼃

+ λ0jy
T
0j[δA] + λ0jδy

T
j [δA] + δλjy

T
0j A0􏼂 􏼃

+ δλjδy
T
j A0􏼂 􏼃 + δλjy

T
0j[δA] + δ2λjy

T
0j A0􏼂 􏼃.

(8)

Equating the first-order terms in Equations (7) and (8)
gives

B0􏼂 􏼃δxj +[δB]x0j � λ0j A0􏼂 􏼃δxj + λ0j[δA]x0j + δλj A0􏼂 􏼃x0j,

(9)

yT
0j[δB] + δyT

j B0􏼂 􏼃 � λ0jy
T
0j[δA] + λ0jδy

T
j A0􏼂 􏼃 + δλjy

T
0j A0􏼂 􏼃.

(10)

Similarly, equating the second-order terms in Equations
(7) and (8) yields

B0􏼂 􏼃δ2xj +[δB]δxj � λ0j A0􏼂 􏼃δ2xj + λ0j[δA]δxj

+ δλj A0􏼂 􏼃δxj + δλj[δA]x0j

+ δ2λj A0􏼂 􏼃x0j,

(11)

δyT
j [δB] + δ2yT

j B0􏼂 􏼃 � λ0jδy
T
j [δA] + λ0jδ

2yT
j A0􏼂 􏼃

+ δλjy
T
0j[δA] + δλjδy

T
j A0􏼂 􏼃

+ δ2λjy
T
0j A0􏼂 􏼃.

(12)

Because the unperturbed eigenvalues are distinct, the
unperturbed eigenvectors are linearly independent and form
a basis. (us, δxj and δ2xj can be expressed as a linear
combination of x0r as follows:

δxj � 􏽘

p

r�1
εrjx0r, (13)

δ2xj � 􏽘

p

r�1
ηrjx0r, (14)

where εrj and ηrj are small coefficients that are to be
determined.

Consider Equation (9), which consists of the first-
order terms. Substituting Equation (13) in Equation (9)
gives

B0􏼂 􏼃 􏽘

p

r�1
εrjx0r +[δB]x0j � λ0j A0􏼂 􏼃 􏽘

p

r�1
εrjx0r

+ λ0j[δA]x0j + δλj A0􏼂 􏼃x0j.

(15)

Premultiplying Equation (15) by yT
0j and noting the

orthogonality conditions of Equation (3), one finds an ex-
pression for δλj, the first-order eigenvalue perturbation, as
follows:

δλj � yT
0j [δB]− λ0j[δA]􏼐 􏼑x0j. (16)

Premultiplying Equation (9) by yT
0i, where i≠ j, one can

readily solve for εij:

εij �
yT
0i [δB]− λ0j[δA]􏼐 􏼑x0j

λ0j − λ0i

. (17)

Consider now Equation (11), which consists of the
second-order terms. Substituting Equation (14) in Equation
(11) gives

B0􏼂 􏼃 􏽘

p

r�1
ηrjx0r +[δB]δxj � λ0j A0􏼂 􏼃 􏽘

p

r�1
ηrjx0r

+ λ0j[δA]δxj + δλj A0􏼂 􏼃δxj

+ δλj[δA]x0j + δ2λj A0􏼂 􏼃x0j.

(18)

Premultiplying Equation (18) by yT
0j and exploiting the

orthogonality conditions, one obtains the following ex-
pression for δ2λj, the second-order eigenvalue perturbation:

δ2λj � yT
0j [δB]− λ0j[δA]􏼐 􏼑δxj − δλjy

T
0j A0􏼂 􏼃δxj +[δA]x0j􏼐 􏼑.

(19)

Premultiplying Equation (18) by yT
0i, for i≠ j, one obtains

ηij �
yT
0i [δB]− λ0j[δA]􏼐 􏼑δxj − δλjyT

0i A0􏼂 􏼃δxj +[δA]x0j􏼐 􏼑

λ0j − λ0i

.

(20)

To determine εjj and ηjj, consider

yT
j [A]xj � 1. (21)

Substituting Equations (4) and (5) in Equation (21),
expanding the resulting expression, and keeping only terms
up to the second-order, one has

yT
0j A0􏼂 􏼃δxj + yT

0j A0􏼂 􏼃δ2xj + yT
0j[δA]x0j

+ yT
0j[δA]δxj + δyT

j A0􏼂 􏼃x0j + δyT
j A0􏼂 􏼃δxj

+ δyT
j [δA]x0j + δ2yT

j A0􏼂 􏼃x0j � 0.

(22)

Equating the first-order and second-order terms in
Equation (22) gives

yT
0j A0􏼂 􏼃δxj + yT

0j[δA]x0j + δyT
j A0􏼂 􏼃x0j � 0, (23)

yT
0j A0􏼂 􏼃δ2xj + yT

0j[δA]δxj

+ δyT
j A0􏼂 􏼃δxj + δyT

j [δA]x0j + δ2yT
j A0􏼂 􏼃x0j � 0.

(24)

Expressing δyj and δ2yj as a linear combination of y0r,
one obtains
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δyj � 􏽘

p

r�1
􏽢εrjy0r, (25)

δ2yj � 􏽘

p

r�1
􏽢ηrjy0r. (26)

Substituting Equations (13) and (25) in Equation (23)
gives

yT
0j A0􏼂 􏼃 􏽘

p

r�1
εrjx0r + yT

0j[δA]x0j + 􏽘

p

r�1
􏽢εrjy

T
0r

⎛⎝ ⎞⎠ A0􏼂 􏼃x0j � 0,

(27)

and because of the orthogonality conditions, Equation
(27) reduces to

εjj + yT
0j[δA]x0j + 􏽢εjj � 0. (28)

Assuming εjj � 􏽢εjj, then

εjj � 􏽢εjj � −
1
2
yT
0j[δA]x0j. (29)

Substituting Equations (14) and (26) in Equation (24)
leads to

yT
0j A0􏼂 􏼃 􏽘

p

r�1
ηrjx0r + yT

0j[δA]δxj + δyT
j A0􏼂 􏼃δxj

+ δyT
j [δA]x0j + 􏽘

p

r�1
􏽢ηrjy

T
0r

⎛⎝ ⎞⎠ A0􏼂 􏼃x0j � 0,

(30)

which simplifies to

ηjj + yT
0j[δA]δxj + δyT

j A0􏼂 􏼃δxj + δyT
j [δA]x0j + 􏽢ηjj � 0,

(31)

due to the orthogonality conditions. Assuming ηjj � 􏽢ηjj,
then

ηjj � 􏽢ηjj � −
1
2

yT
0j[δA]δxj + δyT

j A0􏼂 􏼃δxj + δyT
j [δA]x0j􏼐 􏼑.

(32)

In summary, the perturbed eigenvalues are given by

λj � λ0j + δλj + δ2λj,

δλj � yT
0j [δB]− λ0j[δA]􏼐 􏼑x0j,

δ2λj � yT
0j [δB]− λ0j[δA]􏼐 􏼑δxj

− δλjy
T
0j A0􏼂 􏼃δxj +[δA]x0j􏼐 􏼑.

(33)

(e perturbed right eigenvectors are

xj � x0j + δxj + δ2xj,

δxj � 􏽘

p

r�1
εrjx0r,

δ2xj � 􏽘

p

r�1
ηrjx0r,

εij �
yT
0i [δB]− λ0j[δA]􏼐 􏼑x0j

λ0j − λ0i

for i≠ j,

εjj � −
1
2
yT
0j[δA]x0j,

ηij �
yT
0i [δB]− λ0j[δA]􏼐 􏼑δxj − δλjyT

0i A0􏼂 􏼃δxj +[δA]x0j􏼐 􏼑

λ0j − λ0i

for i≠ j,

ηjj � −
1
2

yT
0j[δA]δxj + δyT

j A0􏼂 􏼃δxj + δyT
j [δA]x0j􏼐 􏼑,

(34)

and the perturbed left eigenvectors are

yj � y0j + δyj + δ2yj,

δyj � 􏽘

p

r�1
􏽢εrjy0r,

δ2yj � 􏽘

p

r�1
􏽢ηrjy0r,

􏽢εij �
yT
0j [δB]− λ0j[δA]􏼐 􏼑x0i

λ0j − λ0i

for i≠ j,

􏽢εjj � εjj,

􏽢ηij �
yT
0j [δB]− λ0j[δA]􏼐 􏼑δxi − δλjyT

0j A0􏼂 􏼃δxi +[δA]x0i( 􏼁

λ0j − λ0i

for i≠ j,

􏽢ηjj � ηjj.

(35)

Equations (33)–(35) can be used to obtain the approx-
imate first-order or the second-order eigencharacteristics of
an asymmetric system whose system parameters have un-
dergone design changes or modifications. For a first-order
analysis, the perturbed eigensolutions are given by
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λj � λ0j + δλj,

xj � x0j + δxj,

yj � y0j + δyj,

(36)

and for a second-order analysis, the perturbed eigen-
solutions are given by

λj � λ0j + δλj + δ2λj,

xj � x0j + δxj + δ2xj,

yj � y0j + δyj + δ2yj.

(37)

While these equations appear to be complicated at first
glance, they are easy to code and efficient to run because they
only involve simple matrix multiplications. Finally, for
a symmetric system where [A0] � [A0]

T and [B0] � [B0]
T,

the left and right eigenvectors are identical, i.e., yj � xj.
(us, in applying the perturbation equations, only the
perturbed right eigenvectors need to be solved.

2.2. Incremental Perturbation Method. While the pertur-
bation method is applicable only when elements of [δA] and
[δB] are assumed to be an order of magnitude smaller than
those of [A0] and [B0], the method can be easily extended to
analyze systems that are undergoing large changes. Specif-
ically, assume the modifications introduced in the pertur-
bation matrices [δA] and [δB] are large. A simple iterative
procedure is proposed whereby the perturbations are
accounted for incrementally. (e proposed iteration scheme
is applicable to either a first-order or a second-order
analysis. (e proposed iterative procedure is as follows:

(1) Solve for the eigensolutions, λ0j, x0j, and y0j, of the
nominal system whose matrices are given by [A0]

and [B0].
(2) Divide the large perturbation matrices into N

smaller increments [δA]/N and [δB]/N, where N is
chosen such that |δA(i, j)|/N and |δB(i, j)|/N are
less than 10% of |A0(i, j)| and |B0(i, j)|, respectively.

(3) Obtain the perturbed eigensolutions of the modified
system whose matrices are given by [A′] � [A0] +

[δA]/N and [B′] � [B0] + [δB]/N using Equation
(36) or Equation (37), depending on if a first-order
or a second-order analysis is desired. Denote the
perturbed eigenvalues as λj

′ and the perturbed right
and left eigenvectors as xj

′ and yj
′, respectively.

(4) Assemble the perturbed right and left modal ma-
trices [Xpert] and [Ypert], whose columns correspond
to xj
′ and yj

′, for j � 1, . . . , p.
(5) Normalize the perturbed modal matrices [Xpert] and

[Ypert] such that the diagonal elements of
[Ypert]

T[A′][Xpert] equal 1.
(6) For the next iteration, let the nominal systemmatrices

be [A0] � [A′] and [B0] � [B′], and let the nominal
eigensolutions be λ0j � λj

′, x0j � xj
′, and y0j � yj

′.
(7) Repeat Steps 3 to 6 until [A′] � [A] and [B′] � [B].

Using the proposed scheme, the error between the exact and
perturbed eigensolutions at each iteration becomes negligible if
N is sufficiently large. (e perturbed eigensolutions are ob-
tained iteratively until the smaller perturbations have accu-
mulated to equal to the total modifications. It is also important
to note that after each iteration, the perturbed eigenvectorsmust
be properly normalized such that the diagonal elements of
[Ypert]

T[A′][Xpert] are equal to 1.(is step is necessary because
the perturbed eigenvectors must satisfy Equation (3).

Of great interest is also the accuracy of the perturbed
eigenvectors, which can be determined by checking their
self-compatibility using the orthogonality conditions. For
the generalized eigenvalue problems, the following or-
thogonality check may be used:

I′􏼂 􏼃 � Ypert􏽨 􏽩
T
[A] Xpert􏽨 􏽩, (38)

where [I′] denotes an orthogonal matrix, [A] is the system
matrix, and [Xpert] and [Ypert] are normalized such that the
diagonal elements of [I′] are identical ones. For an ith-order
analysis, the column vectors of the perturbedmodal matrices
[Xpert] and [Ypert] are the ith-order perturbed eigenvectors.
(eoretically, if the perturbedmodal matrices are exact, then
the orthogonal matrix corresponds to the identity matrix.
Since the perturbed modal matrices are approximate, the
magnitudes of the nonzero off-diagonal terms of the or-
thogonal matrix can be used to infer the accuracy of the
perturbed eigenvectors. As such, an error parameter for the
modal matrices is defined, which is given by the average of
the magnitudes of the off-diagonal terms, as follows:

δ �
1

p(p− 1)
􏽘

p

i�1
􏽘

p

j�1,j≠i
I′(i, j)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌, (39)

where p represents the size of the system matrices and
|I′(i, j)| denotes the absolute value of the (i, j)th element of
the orthogonal matrix [I′]. (e smaller the value of δ is, the
more accurate the perturbed modal matrices are.

2.3. Triple Product Method. After the completion of the
straightforward perturbation method or the incremental per-
turbation method, the following triple product is calculated:

Ypert􏽨 􏽩
T
[B] Xpert􏽨 􏽩, (40)

assuming these perturbed modal matrices have been properly
normalized so that the diagonal elements of Equation (38) are
all ones. If the perturbed modal matrices were replaced with
the exact modal matrices, then the diagonal elements of
Equation (40) correspond to the exact eigenvalues and all the
off-diagonal terms will be identically zero. Since the per-
turbation analysis is only an approximation, the diagonal
terms from the triple product can also be used to approximate
the eigenvalues. In evaluating Equation (40), the modal
matrices can be obtained via either a first-order or second-
order analysis. Interestingly, numerical experiments show
that using an ith-order perturbation analysis, the diagonal
elements of Equation (40) are significantly more accurate
than those obtained using the ith-order straightforward
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perturbation method. �is drastic improvement in accuracy is
achieved by performing one additional step consisting of
simple matrix multiplication. As such, in all of the examples,
the diagonal elements of the triple product of Equation (40) will
also be presented, both to validate the accuracy of the perturbed
eigenvectors and to o�er yet another approximation for the
eigenvalues of the modi�ed system.

3. Results

�ree di�erent methods are proposed to obtain the eigen-
characteristics of modi�ed symmetric or asymmetric sys-
tems. �ey consist of the straightforward perturbation
method, the incremental perturbationmethod, and the triple
product method. Each of these methods can be applied using
either a �rst-order or second-order perturbation analysis.
Using the straightforward perturbation method, the ap-
proximate eigensolutions are readily obtained by the direct
application of Equations (33)–(35). Using the incremental
perturbation method, Equations (33)–(35) are still appli-
cable, except the perturbations are divided into N in-
crements, and the approximate eigencharacteristics of the
modi�ed system are obtained iteratively. Lastly, using the
triple product method, the accuracy of the approximate
eigenvalues given by the diagonal elements of Equation (40)
becomes dramatically improved at the cost of only one
additional step consisting of simple matrix multiplication. In
the following, the eigensolutions for various symmetric and
asymmetric systems will be obtained using the methods
presented in this paper. For brevity, only the governing
equations for the unperturbed system will be presented in
each example. �e governing equations for the perturbed
system are identical to those of the unperturbed system,
except that the perturbed system matrices will include the
structural modi�cations that are subsequently introduced.

3.1. Torque-Free Rigid Body. Consider a torque-free rigid
body as shown in Figure 1 [5], which is symmetric about

axis ζ. Two masses, each m/2, are located at distances ζ �
±a from the �xed center O. Each mass is supported by 4
springs, each with sti�ness k/4. �e rigid body spins about
axis ζ with a constant angular velocity of Ωζ . �e mass
moments of inertia of the rigid body about axes ξ, η, and ζ
are α, β � α, and c, respectively. �e mass moment of
inertia of the entire body about a transverse axis is given
by α′ � α +ma2. �e system’s unperturbed matrices are
given by [5]

[A0] =

[B0] =

m0ω0
2 0 0

0 m0ω0
2 0

0 0 m0

0

0

0

0

0

0

0

0

m0a0

0

0

0

0

0

0

0

0

m0a0

m0

–m0a0

0

–m0a0

α0′

0

0

0

α0′

0
m0ω0

2Ω0

m0ω0
2

–m0ω0
2Ω0

0

0

–m0ω0
2

0

0

0
–m0ω0

2

–m0Ω0

0
0

m0a0Ω0

0
0

0

0
0

–m0a0Ω0

0
0

–(c0 – α0′)Ω0

m0a0Ω0

(c0 – α0′)Ω0

0

0
0

0

m0ω0
2

0

0

m0Ω0

–m0a0Ω0

0

(41)
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1/4k

1/4k

1/4k

1/4k

1/4k

0

Figure 1: A torque-free rigid body.
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where α0′ � α0 + m0a
2
0. For definiteness, the original and

unperturbed system’s parameters areΩζ �Ω0 � 5×101 rad/s,
ω0 � 6×101 rad/s, c0/α0 � 1.5, a0 � 2m, m0 � 2.5×10−2 kg,
k0 � 9×101N/m, and α0 � 1 kg·m2.

After an initial analysis has been performed, design
changes are introduced. Let x denote an arbitrary system
parameter. Assume it is perturbed systematically from its
initial value of x0 as follows:

x � x0(1 + σδx), (42)

where δx is arbitrarily chosen from a set of random numbers
with zero mean and a standard deviation of one, and σ
represents a disorder strength that can be varied. Together,
σδx denotes the percentage change in x0. (us, a large σ
value implies a large perturbation from the nominal value.
All the modified system parameters are perturbed in this
manner.

For the torque-free rigid body, the natural frequencies ω
are the imaginary part of the eigenvalues λ, i.e., ω � imag(λ).
Suppose the modified parameters m and a deviate from their
nominal values such that m � m0(1 + σδm) and
a � a0(1 + σδa), where δm �−4.4070×10−1 and
δa � 8.4650×10−1. Figure 2 shows the natural frequencies as
a function of σ. (ese natural frequencies are obtained via
five different means: by solving the problem exactly, by using
the straightforward perturbation method via a first-order or
a second-order analysis, and using the triple product method
of Equation (40), where the modal matrices consist of the
first-order or the second-order perturbed eigenvectors.
When σ � 0, the system is unperturbed. Note that for
small values of σ, all the approximate natural frequencies
track the exact perturbed natural frequencies accurately.
As the magnitude of σ increases, while the first-order and
second-order straightforward perturbation approxima-
tions deviate from the exact values, the approximations
obtained from the diagonal elements of the triple product,
using either the first-order or second-order perturbed
modal matrices, are indistinguishable from the exact
natural frequencies. (e fact that the diagonal elements
track the exact natural frequencies so closely also validates
the accuracy of the perturbed matrices. Table 1 tabulates
these natural frequencies for σ � 0.65. (us, m and a

deviate from their nominal values by approximately
σδm ≈ −28.6% and σδa ≈ 55.0%, respectively. (e nu-
merical value in the parentheses denotes the percentage
error in the natural frequencies, defined as

ε �
|exact− approximate|

|exact|
× 100%. (43)

Note the drastic improvement in the approximate
natural frequencies obtained using a first-order triple
product approach compared with using a first-order
straightforward expansion, especially for the fundamen-
tal natural frequency. (is significant improvement in
accuracy is the result of carrying out another step con-
sisting of a simple matrix multiplication given by Equation

(40). Interestingly, the approximate natural frequencies
obtained using a first-order triple product approach are
even more accurate that those obtained using a second-
order straightforward perturbation method. Note that
among the different methods, the error parameters using
the triple product with the second-order modal matrices
are the smallest.

If the error parameter ε is deemed too large for a dis-
order strength of σ � 0.65 or if a larger value of σ is applied,
which would represent larger perturbations in the system,
dividing the perturbations into smaller pieces and com-
puting the approximations through an incremental method
can be utilized. Although this incremental procedure in-
volves more computation, it is deemed worthwhile when
dealing with large perturbations in order to obtain accurate
approximations. Consider now the case where σ � 1.8.
Figure 3 shows the natural frequencies obtained using the
five methods mentioned previously as a function of N.
(ese approximate natural frequencies monotonically
converge to their respective exact values though some
methods converge much more quickly than others. Note
that the approximate fundamental natural frequency
converges to the exact ω1 from above, while the other
approximate natural frequencies converge to their re-
spective exact values from below. By N � 5, the triple
product method with the first-order and second-order
modal matrices leads to approximations that are nearly
exact while the first-order incremental perturbation
method is still very inaccurate by N � 10. Across all values
of N, the results of the triple product approximations via
a second-order analysis are the most accurate. Table 2 il-
lustrates the numerical results of Figure 3 for N � 8. With
eight iterations, the perturbations at each iteration are less
than 10% of the original system matrices. At N � 8, the
errors for all three natural frequencies are reduced by at
least an order of magnitude when approximating the new
natural frequencies using the diagonal elements of the
second-order triple product as opposed to simply the in-
cremental perturbation method via a first-order analysis.
With the second-order triple product, the final error
percentages of all three natural frequencies are below
0.83%, substantially smaller than the percentage deviations
in m0 and a0 that are introduced into the system, which are
approximately σδm ≈ −79.3% and σδa ≈ 152.3%, re-
spectively. To assess the accuracy of the perturbed modal
matrices for this torque-free rigid body system, consider
the error parameter given by Equation (39), where p � 6.
Figure 4 shows δ as a function of N for σ � 1.8, obtained
using a first-order or a second-order incremental pertur-
bation analysis. Note that δ decreases with N and that the
error parameter for the second-order modal matrices de-
creases more quickly than the error parameter for the first-
order modal matrices.

3.2. Two-Degrees-of-Freedom Gyroscopic System. Figure 5
shows a two-degrees-of-freedom gyroscopic system
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analyzed by Meirovitch and Ryland [10]. �e governing
equations for the unperturbed system are given by

M0[ ]€q0 + C0[ ] + G0[ ]( ) _q0 + K0[ ]q0 � 0, (44)

where an overdot denotes a time derivative, [M0], [C0], and
[K0] are the mass, damping, and sti�ness matrices of the
nominal system, respectively, [G0] denotes the unperturbed
gyroscopic damping matrix, and q0 is the vector of gener-
alized coordinates for the nominal system. �e system
matrices are all of size 2 × 2, and q0 is of length 2. �e
nominal system matrices are

M0[ ] �
m0 0

0 m0
[ ],

G0[ ] �
0 −2m0Ω0

2m0Ω0 0
[ ],

C0[ ] �
c0 0

0 0
[ ],

K0[ ] �
k01 −m0Ω20 0

0 k02 −m0Ω20
 .

(45)

Table 1: �e exact and approximate natural frequencies for the perturbed torque-free rigid body of Figure 1 for σ � 0.65.

Exact First-order straightforward
perturbation

Second-order straightforward
perturbation First-order triple product Second-order triple product

ω1 1.2592 × 10−1 4.9493 × 10−1 (2.93 × 102) 1.9843 × 10−1 (5.75 × 101) 1.2801 × 10−1 (1.66 × 100) 1.2503 × 10−1 (7.03 × 10−1)
ω2 4.3014 × 101 4.0276 × 101 (6.36 × 100) 4.2147 × 101 (2.01 × 100) 4.2925 × 101 (2.08 × 10−1) 4.3004 × 101 (2.43 × 10−2)
ω3 1.1236 × 102 1.1203 × 102 (2.99 × 10−1) 1.1226 × 102 (9.32 × 10−2) 1.1236 × 102 (1.98 × 10−3) 1.1236 × 102 (5.69 × 10−4)
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Figure 2: �e exact and approximate natural frequencies (rad/s) of the torque-free rigid body as a function of σ.
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To solve for the eigensolutions of the system shown in
Equation (44), the state vector approach [28] is used. In-
troducing a state vector of length 4 of the form

x0 �
_q0
q0
[ ], (46)

allows Equation (44) to be rewritten as

1

1.5

2

2.5

3

3.5

ω1

N
1 2 3 4 5 6 7 8 9 10

(a)

30

32

34

36

38

ω2

N
1 2 3 4 5 6 7 8 9 10

(b)

N

111

111.2

111.4

111.6

111.8

112

ω3

1 2 3 4 5 6 7 8 9 10

First-order incremental perturbation
Second-order incremental perturbation
First-order triple product

Second-order triple product
Exact

(c)

Figure 3: �e approximate natural frequencies of the torque-free rigid body as a function of N for σ � 1.8.

Table 2: �e exact and approximate natural frequencies for the perturbed torque-free rigid body at N � 8 for σ � 1.8.

Exact First-order incremental
perturbation

Second-order incremental
perturbation

First-order
triple product

Second-order
triple product

ω1 1.3511 × 100 2.2065 × 100 (6.33 × 101) 1.6401 × 100 (2.13 × 101) 1.4190 × 100 (5.02 × 100) 1.3622 × 100 (8.22 × 10−1)
ω2 3.7885 × 101 3.4847 × 101 (8.01 × 100) 3.6785 × 101 (2.90 × 100) 3.7427 × 101 (1.20 × 100) 3.7813 × 101 (1.89 × 10−1)
ω3 1.1178 × 102 1.1145 × 102 (2.91 × 10−1) 1.1167 × 102 (9.99 × 10−2) 1.1177 × 102 (4.38 × 10−3) 1.1178 × 102 (1.84 × 10−5)
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A0􏼂 􏼃 _x0 − B0􏼂 􏼃x0 � 0, (47)

where [A0] and [B0] are the nominal state matrices of size
4 × 4 given by

A0􏼂 􏼃 �
M0􏼂 􏼃 [0]

[0] K0􏼂 􏼃
􏼢 􏼣,

B0􏼂 􏼃 �
− C0􏼂 􏼃− G0􏼂 􏼃 −K0􏼂 􏼃

K0􏼂 􏼃 [0]
􏼢 􏼣.

(48)

Figure 5 is an example of a damped, asymmetric system
due to the presence of the gyroscopic damping matrix [G0].

For definiteness, the original or unperturbed system pa-
rameters are m0 � 1 kg, Ω0 � 1 rad/s, c0 � 1× 10−1 N·s/m,
k01 � 3N/m, and k02 � 4N/m. To illustrate that the pertur-
bation methods presented in this paper can also be used
when an asymmetric damping matrix is perturbed, the
parameters c0 and m0 are subjected to modifications; thus
c � c0(1 + σδc) and m � m0(1 + σδm). (e random num-
bers used for the perturbations are δc � −7.2540 × 10−1 and
δm � 2.8480 × 10−1. Figures 6 and 7 illustrate the real and
imaginary parts of the system’s eigenvalues (obtained ex-
actly, with the straightforward perturbation method via
a first-order or a second-order analysis, and with the di-
agonal elements of Equation (40) using the first-order or

N
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Figure 4: (e error parameter, δ, for the perturbed modal matrices of the torque-free rigid body as a function of N for σ � 1.8.
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Figure 5: A two-degree-of-freedom gyroscopic system.
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second-order perturbed modal matrices) as a function of σ.
Note the diagonal elements of both triple products almost lie
on top of the exact eigenvalues, which validates the accuracy
of the perturbed modal matrices, and they are more accurate
than the second-order straightforward perturbation ap-
proximations over the entire range of σ. Tables 3 and 4
compare the real and imaginary parts of the exact and
approximate natural frequencies for σ � 0.8. Note again that
the first-order triple product method yields approximate
eigenvalues that are more accurate than those obtained using
a second-order straightforward perturbation analysis.
Moreover, note that using the second-order triple product
method, the error parameters for both the real and imagi-
nary parts of the eigenvalues are reduced by at least two
orders of magnitude compared to those when using the first-
order straightforward perturbation method. Additionally,
for σ � 0.8, the real parts of the eigenvalues obtained using
the second-order triple product method have ε that are all
less than 0.16%, and the imaginary parts have ε all less than
0.0095%. (ese errors are significantly smaller than the
percentage changes in c0 and m0, which are approximately
σδm ≈ 22.7% and σδc ≈ −58.0%, respectively.

Assume larger perturbations are introduced to the
system by using σ � 1.37. Figures 8 and 9 show the ei-
genvalues found using the five methods mentioned pre-
viously as a function of N. Note that using a first-order

incremental perturbation method, the real parts of the
eigenvalue converge to their exact values from above, while
the imaginary parts converge to their exact values from
below. (e trend is reversed using the second-order in-
cremental perturbation analysis, i.e., the real and imagi-
nary parts converge to their exact values from below and
above, respectively. For the chosen set of structural pa-
rameters, the modified system is stable. However, Figure 8
shows that the first-order incremental perturbation
method yields approximate eigenvalues that erroneously
indicate the system is unstable. In the case, because the real
components of the system’s exact eigenvalues are close to
0, it is important to use a sufficiently large value of N to
accurately capture the system’s stability. Also, note that the
approximate eigenvalues found using the diagonal ele-
ments of the first-order and second-order triple products
converge rapidly to the exact eigenvalues for N as small as
3, and for N � 10, the approximate and exact eigenvalues
become indistinguishable, despite the large perturbations
that are introduced in the system. Tables 5 and 6 show the
corresponding numerical results. Note that ε of the
second-order triple product is at least four orders of
magnitude smaller than ε of the first-order incremental
perturbation method. Figure 10 shows the error parameter
δ for the first-order and second-order perturbed modal
matrices, obtained using Equation (39) with p � 4, as
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Figure 6: (e real parts of the exact and approximate eigenvalues of the two-degree-of-freedom gyroscopic system as a function of σ.
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a function of N. It clearly shows a rapid decrease of δ,
which implies a high accuracy in the perturbed eigen-
vectors, especially those obtained using a second-order
analysis.

3.3. Whirling Beam with Gyroscopic Damping. Figure 11
shows a whirling shaft with a lumped mass M at-
tached at its midspan [12]. (e shaft’s mass is uniformly
distributed with mass per unit length m. (e shaft has
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Figure 7: (e imaginary parts of the exact and approximate eigenvalues of the two-degree-of-freedom gyroscopic system as a function of σ.

Table 3: (e real parts of the exact and approximate natural frequencies for the perturbed two-degree-of-freedom gyroscopic system of
Figure 5 for σ � 0.8.

Exact First-order straightforward
perturbation

Second-order straightforward
perturbation First-order triple product Second-order triple

product

Re(λ1) −4.5435 × 10−3 −9.7877 × 10−4 (7.84 × 101) −5.4541 × 10−3 (2.00 × 101) −4.4447 × 10−3
(2.17 × 100)

−4.5366 × 10−3
(1.50 × 10−1)

Re(λ2) −1.2546 × 10−2 −8.6132 × 10−3 (3.13 × 101) −1.3344 × 10−2 (6.35 × 100) −1.2565 × 10−2
(1.53 × 10−1)

−1.2540 × 10−2
(4.60 × 10−2)

Table 4: (e imaginary parts of the exact and approximate natural frequencies for the perturbed two-degree-of-freedom gyroscopic system
of Figure 5 for σ � 0.8.

Exact
First-order

straightforward
perturbation

Second-order
straightforward
perturbation

First-order triple product Second-order triple
product

Im(λ1) 6.7034 × 10−1 6.4020 × 10−1 (4.49 × 100) 6.7603 × 10−1 (8.49 × 10−1) 6.7000 × 10−1
(5.01 × 10−2)

6.7027 × 10−1
(9.43 × 10−3)

Im(λ2) 2.6928 × 100 2.6623 × 100 (1.13 × 100) 2.6985 × 100 (2.11 × 10−1) 2.6927 × 100 (2.90 × 10−3) 2.6928 × 100 (3.95 × 10−4)

Shock and Vibration 13



10
–5

0

5

10

Re
(λ

1)

(×10–3)

1 2 3 4 5 6 7 8 9
N

(a)

1 2 3 4 5 6 7 8 9 10
N

–5

0

5

10

15

Re
(λ

2)

(×10–3)

First-order incremental perturbation
Second-order incremental perturbation
First-order triple product

Second-order triple product
Exact

(b)

Figure 8: (e real parts of the approximate eigenvalues of the two-degree-of-freedom gyroscopic system as a function of N for
σ � 1.37.

10
0.48

0.5

0.52

0.54

0.56

0.58

0.6

Im
(λ

1)

1 2 3 4 5 6 7 8 9
N

(a)

Figure 9: Continued.

14 Shock and Vibration



stiffnesses EIx and EIy about the x and y axis, re-
spectively. (e end supports provide bending moments
proportional to the angular deflections, where the pro-
portionality constants are K1 at Z � 0 and K2 at Z � L. It
is assumed that there is uniformly distributed external
dissipation proportional by a constant h to the absolute
velocity, and an internal dissipation proportional by
a constant c to the velocity relative to the rotating axes.
(e equations of motion of the unperturbed system are
given by [12]

M0􏼂 􏼃€q0 + C0􏼂 􏼃 + G0􏼂 􏼃( 􏼁 _q0 + K0􏼂 􏼃 + H0􏼂 􏼃( 􏼁q0 � 0, (49)

where the coefficient matrices in Equation (49) are parti-
tioned into s × s submatrices

M0􏼂 􏼃 �
Ms[ ] [0]

[0] Ms[ ]
􏼢 􏼣,

G0􏼂 􏼃 �
[0] Gs[ ]

− Gs[ ] [0]
􏼢 􏼣,

C0􏼂 􏼃 �
Cs[ ] [0]

[0] Cs[ ]
􏼢 􏼣,

K0􏼂 􏼃 �
Ks1􏼂 􏼃 [0]

[0] Ks2􏼂 􏼃
⎡⎣ ⎤⎦,

H0􏼂 􏼃 �
[0] Hs[ ]

− Hs[ ] [0]
􏼢 􏼣.

(50)

(e (i, j)th elements of the submatrices are given by [12]
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Figure 9: (e imaginary parts of the approximate eigenvalues of the two-degree-of-freedom gyroscopic system as a function of N for
σ � 1.37.

Table 5: (e real parts of the exact and approximate natural frequencies for the perturbed two-degree-of-freedom gyroscopic system at
N � 10 for σ � 1.37.

Exact First-order incremental
perturbation

Second-order incremental
perturbation First-order triple product Second-order triple product

Re(λ1) −5.4248 × 10−5 5.7165 × 10−4
(1.15 × 103) −7.0836 × 10−5 (3.05 × 101) −5.0406 × 10−5

(7.08 × 100) −5.4177 × 10−5 (1.30 × 10−1)

Re(λ2) −1.6881 × 10−4 6.4366 × 10−4
(4.81 × 102) −1.8005 × 10−4 (6.65 × 100) −1.6942 × 10−4

(3.62 × 10−1) −1.6879 × 10−4 (1.16 × 10−2)

Table 6: (e imaginary parts of the exact and approximate natural frequencies for the perturbed two-degree-of-freedom gyroscopic system
at N � 10 for σ � 1.37.

Exact First-order incremental
perturbation

Second-order incremental
perturbation First-order triple product Second-order triple product

Im(λ1) 5.6913 × 10−1 5.6296 × 10−1
(1.08 × 100)

5.6989 × 10−1
(3.63 × 10−2)

5.6912 × 10−1
(2.63 × 10−3) 5.6913 × 10−1 (4.71 × 10−5)

Im(λ2) 2.5906 × 100 2.5843 × 100
(2.43 × 10−1) 2.5907 × 100 (6.06 × 10−3) 2.5906 × 100 (1.08 × 10−4) 2.5906 × 100 (1.59 × 10−6)
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Ms
ij � m0L0δ

j
i + 2M0 sin

iπ
2
( )sin

jπ
2

( ),

Gsij � −2Ω0Mij,

Csij � c0 + h0( )L0δ
j
i ,

Ks1
ij � 2 K01 +K02 cos(iπ)cos(jπ)( )

iπ
L0
( )

jπ
L0
( )

+ EI0x
iπ
L0
( )

2
jπ
L0
( )

2

L0δ
j
i −Ω

2
0Mij,

Ks2
ij � 2 K01 +K02 cos(iπ)cos(jπ)( )

iπ
L0
( )

jπ
L0
( )

+ EI0y
iπ
L0
( )

2
jπ
L0
( )

2

L0δ
j
i −Ω

2
0Mij,

Hs
ij � −h0Ω0L0δ

j
i ,

(51)

where i, j � 1, . . . , s. For this example, if s � 3, then all of the
submatrices will be of size 3 × 3. For de�niteness, the
original or unperturbed system parameters are m0 � 1 kg/m,
M0 � 10 kg, L0 � 1m, EI0x � 8.10×10

−2 N·m2, EI0y � 1.82×
10−1N·m2, K01 �K02 � 5×10

−2 N/m, c0 � h0 � 2.5×10
−1

N·s/m, Ω0 � 1.46×10
1 rad/s. �e eigensolutions of the un-

perturbed system are obtained using the state vector ap-
proach, where the system matrices are given by

A0[ ] �
[0] M0[ ]
M0[ ] C0[ ] + G0[ ]

[ ],

B0[ ] �
M0[ ] [0]
[0] − K0[ ]− H0[ ]

[ ].
(52)

Assume now the parameters a�ecting the damping
matrices [C0] and [G0] are perturbed so that the modi�ed
parameters are given by M �M0(1 + σδM),
m � m0(1 + σδm), c � c0(1 + σδc) and h � h0(1 + σδh),
where δM � −1.1079 × 100, δm � 2.5260 × 10−1,
δc � 2.4600 × 10−2, and δh � −1.1270 × 100. For the given
set of system parameters, λ1 and λ2 are strictly real while the
remaining eigenvalues are complex. Additionally, the real
components of the �rst and fourth eigenvalues are positive,
indicating that the system is unstable. Figures 12 and 13
illustrate the real and imaginary parts of the eigenvalues as
a function of σ, obtained using themethods developed in this
paper. �e diagonal elements of the second-order triple
product again track the exact eigenvalues most closely for all
values of σ. Tables 7 and 8 tabulate the numerical results for
σ � 0.2. For the given set of random variations, the pa-
rametersM,m, c, and h deviate from their nominal values by
approximately −22.1%, 5.05%, 0.49%, and −22.5%, re-
spectively. Note that the percentage errors for the diagonal
elements of Equation (40) with the second-order perturbed
modal matrices are all under 0.004%, despite the large de-
viations in some of the selected system parameters.

Consider now a larger disorder strength of σ � 0.5.
Figures 14 and 15 show the real and imaginary parts of the
approximate eigenvalues found using the incremental
perturbation method and the triple product method as
a function of N. Note that as N increases, all the ap-
proximate eigenvalues converge to the exact results.
Tables 9 and 10 tabulate the real and imaginary parts of
the eigenvalues forN � 7 so that the perturbations at each
iteration are less than 10% of the original system ma-
trices. �e percentage errors for all �ve eigenvalues ob-
tained using the second-order triple product method are
below 0.005%. �ese results are substantially more ac-
curate than those obtained using the second-order
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Figure 10: �e error parameter, δ, for the perturbed modal ma-
trices of the two-degree-of-freedom gyroscopic system as a func-
tion of N for σ � 1.37.
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Figure 11: A whirling beam.
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incremental perturbation method, at the cost of one
additional computation given by Equation (40). Figure 16
shows the error parameter δ for the �rst-order and
second-order perturbed modal matrices (with p � 6) as
a function of N. Note that as expected, δ decreases with
increasing N, and that a second-order analysis is more
accurate.

3.4. Nonuniform Rod. �e perturbation method can also be
applied to analyze the eigencharacteristics of a nonuniform
rod. Speci�cally, the uniform rod will be considered as the
unperturbed system, and any deviations from it will be treated
as perturbations. Figure 17 shows a nonuniform rod of length
L, modulus E, density ρ, and cross-sectional area, A(x), that
varies as a function of x from the �xed wall as follows:
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Figure 12: �e real parts of the exact and approximate eigenvalues of the whirling beam as a function of σ.
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A(x) � A0 1 + a
x

L
( )

b

, (53)

where A0, a, and b are constants. Using the assumed modes
method [28], the longitudinal displacement w(x, t) of the rod
can be expressed in the form of a �nite series as follows:

w(x, t) �∑
s

i�1
ui(x)ηi(t), (54)

where s is the number of modes used in the expansion, ui(x)
are the eigenfunctions of the uniform rod, and ηi(t) are the
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Figure 13: �e imaginary parts of the exact and approximate eigenvalues of the whirling beam as a function of σ.

Table 7: �e real parts of the exact and approximate natural frequencies for the perturbed whirling beam of Figure 11 for σ � 0.2.

Exact
First-order

straightforward
perturbation

Second-order
straightforward
perturbation

First-order triple product Second-order triple
product

Re(λ1) 2.5713 × 100 2.5983 × 100 (1.04 × 100) 2.5679 × 100 (1.32 × 10−1) 2.5714 × 100 (3.18 × 10−3) 2.5713 × 100 (1.38 × 10−3)

Re(λ2) −2.7703 × 100 −2.7934 × 100
(8.33 × 10−1)

−2.7670 × 100
(1.17 × 10−1)

−2.7703 × 100
(1.62 × 10−3)

−2.7703 × 100
(1.48 × 10−3)

Re(λ3) −3.3574 × 10−2 −3.1784 × 10−2
(5.33 × 100)

−3.3666 × 10−2
(2.72 × 10−1)

−3.3579 × 10−2
(1.41 × 10−2)

−3.3574 × 10−2
(6.39 × 10−4)

Re(λ4) 1.4107 × 10−1 1.3856 × 10−1
(1.78 × 100)

1.4064 × 10−1
(3.06 × 10−1)

1.4110 × 10−1
(2.34 × 10−2)

1.4107 × 10−1
(2.92 × 10−3)

Re(λ5) −1.6655 × 10−1 −1.6344 × 10−1
(1.86 × 100)

−1.6599 × 10−1
(3.34 × 10−1)

−1.6660 × 10−1
(2.97 × 10−2)

−1.6656 × 10−1
(3.76 × 10−3)
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Table 8: �e imaginary parts of the exact and approximate natural frequencies for the perturbed whirling beam of Figure 11 for σ � 0.2.

Exact First-order straightforward
perturbation

Second-order straightforward
perturbation First-order triple product Second-order triple

product
Im(λ3) 4.6661 × 100 4.6783 × 100 (2.61 × 10−1) 4.6654 × 100 (1.53 × 10−2) 4.6662 × 100 (4.82 × 10−4) 4.6661 × 100 (6.68 × 10−5)
Im(λ4) 1.3917 × 101 1.3929 × 101 (8.71 × 10−2) 1.3919 × 101 (1.53 × 10−2) 1.3916 × 101 (1.25 × 10−3) 1.3917 × 101 (1.59 × 10−4)
Im(λ5) 1.5284 × 101 1.5272 × 101 (7.93 × 10−2) 1.5282 × 101 (1.39 × 10−2) 1.5284 × 101 (1.14 × 10−3) 1.5284 × 101 (1.45 × 10−4)
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Figure 14: �e real parts of the approximate eigenvalues of the whirling beam as a function of N for σ � 0.5.
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Figure 15: �e imaginary parts of the approximate eigenvalues of the whirling beam as a function of N for σ � 0.5.

Table 9: �e real parts of the exact and approximate natural frequencies for the perturbed whirling beam at N � 7 for σ � 0.5.

Exact First-order incremental
perturbation

Second-order incremental
perturbation First-order triple product Second-order triple

product

Re(λ1) 2.6377 × 100 2.6470 × 100
(3.53 × 10−1)

2.6342 × 100
(1.30 × 10−1)

2.6371 × 100
(2.07 × 10−2) 2.6376 × 100 (2.05 × 10−3)

Re(λ2) −2.7433 × 100 −2.7499 × 100
(2.40 × 10−1)

−2.7399 × 100
(1.23 × 10−1)

−2.7432 × 100
(4.96 × 10−3) −2.7433 × 100 (5.26 × 10−4)

Re(λ3) 1.2603 × 10−2 1.4014 × 10−2
(1.11 × 101)

1.2605 × 10−2
(1.42 × 10−2)

1.2600 × 10−2
(2.04 × 10−2) 1.2603 × 10−2 (1.45 × 10−4)

Re(λ4) 1.8246 × 10−1 1.7763 × 10−1
(2.64 × 100)

1.8228 × 10−1
(1.02 × 10−1)

1.8257 × 10−1
(5.89 × 10−2) 1.8247 × 10−1 (2.45 × 10−3)

Re(λ5) −2.1690 × 10−1 −2.1075 × 10−1
(2.83 × 100)

−2.1669 × 10−1
(9.61 × 10−2)

−2.1710 × 10−1
(8.96 × 10−2) −2.1691 × 10−1 (4.37 × 10−3)

Table 10: �e imaginary parts of the exact and approximate natural frequencies for the perturbed whirling beam at N � 7 for σ � 0.5.

Exact First-order incremental
perturbation

Second-order incremental
perturbation First-order triple product Second-order triple product

Im(λ3) 5.0307 × 100 5.0397 × 100 (1.79 × 10−1) 5.0304 × 100 (4.96 × 10−3) 5.0307 × 100 (1.54 × 10−4) 5.0307 × 100 (1.60 × 10−5)
Im(λ4) 1.3720 × 101 1.3743 × 101 (1.73 × 10−1) 1.3721 × 101 (6.34 × 10−3) 1.3719 × 101 (4.66 × 10−3) 1.3720 × 101 (2.16 × 10−4)
Im(λ5) 1.5481 × 101 1.5458 × 101 (1.53 × 10−1) 1.5480 × 101 (5.61 × 10−3) 1.5482 × 101 (4.13 × 10−3) 1.5481 × 101 (1.92 × 10−4)
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unknown generalized coordinates. Formulating the total
kinetic and potential energies of the system, one obtains

T �
1
2

􏽘

s

i�1
􏽘

s

j�1
Mij _ηi(t) _ηj(t),

U �
1
2

􏽘

s

i�1
􏽘

s

j�1
Kijηi(t)ηj(t),

(55)

where the generalized masses and stiffnesses of the non-
uniform rod are given by

Mij � 􏽚
L

0
ρA(x)ui(x)uj(x)dx,

Kij � 􏽚
L

0
EA(x)

dui(x)

dx

duj(x)

dx
dx.

(56)

Applying Lagrange’s equations yields the following
discretized equations of motion:

[M]€η +[K]η � 0, (57)

where the (i, j)th elements of matrices [M] and [K] are Mij

and Kij, respectively. Moreover, note that [M] and [K] are
both symmetric, and because s modes are used in the as-
sumed modes expansion, they are of size s × s.

For this particular system, the uniform rod whose cross-
sectional area is A0 represents the unperturbed system, and
the nonuniform rod is the perturbed system. For a uniform
fixed-free rod, its normalized eigenfunctions are

ui(x) �

�����
2

ρA0L

􏽳

sin
(2i− 1)πx

2L
􏼠 􏼡, (58)

and its natural frequencies are

ω0i �
(2i− 1)π

2

���
E

ρL2

􏽳

. (59)

Because the unperturbed system consists of the uniform
rod, the unperturbed matrices are

M0􏼂 􏼃 � [I],

K0􏼂 􏼃 � Λ0􏼂 􏼃,
(60)

where [I] denotes the identity matrix, and [Λ0] is a di-
agonal matrix whose elements are ω2

0i. For this undamped
system, λ � ω2. Finally, Equations (33)–(35) still remain
valid. In this case, of course, [A] � [M] and [B] � [K].
Note that unlike the previous examples, [A] and [B] are
both symmetric.

For definiteness, consider the case where the cross-
sectional area varies as a function of x with b � 2 in
Equation (53). In this case, the exact natural frequencies for
the nonuniform rod are given by the solution of the fol-
lowing transcendental equation (see [29] for detailed
derivations)

a

1 + a
tan βi � βi, (61)

where

ωi � βi

���
E

ρL2

􏽳

. (62)

Figure 18 shows the natural frequencies as a function of
a, where a spans −0.35≤ a≤ 0.35, obtained using s � 10 in
the assumed modes expansion. For a � 0.35, the rod’s
cross-sectional area at its free end is approximately 82%
larger than its cross-sectional area at the base. Again, the
natural frequencies obtained using the triple product
method closely track the exact natural frequencies. (e
results are tabulated in Table 11. Although a 82% change in
the rod’s cross-sectional area is significant, note that the
largest error parameter for the first-order triple product
method is less than 0.32%, while for the second-order triple
product method it is less than 0.06%.

Consider now a larger nonuniformity with a � 0.55,
implying that the cross-sectional area at the free end of the
rod is 140% greater than its cross-sectional area at the fixed
end. An incremental perturbation approach is used to
obtain the approximate natural frequencies. Figure 19
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Figure 16: (e error parameter, δ, for the perturbed modal ma-
trices of the whirling beam as a function of N for σ � 0.5.
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Figure 17: A nonuniform rod.
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shows the approximate natural frequencies obtained using
the same five methods as a function of N. Although the
approximate natural frequencies are inaccurate when N �

1 or N � 2, they quickly converge to the exact natural
frequencies as N continues to increase. Table 12 tabulates
the perturbed natural frequencies of Figure 19 for N � 10
so that the perturbation at each iteration is less than 10% of
the original system matrices. Note that the percentage

errors, ε, of the first-order and second-order triple product
approximations for all five natural frequencies are less than
0.006%. It should be noted that for this example, because
the nonuniform rod has been discretized using the as-
sumed modes method, the perturbed natural frequencies
will converge to the natural frequencies of the discretized
and not the continuum model of the nonuniform rod. As
such, ω3 to ω5 obtained using the first-order triple
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Table 11: (e exact and approximate natural frequencies for the nonuniform rod of Figure 17 for a � 0.35. (e natural frequencies are
nondimensionalized by dividing by

�������
E/(ρL2)

􏽰
.

Exact First-order straightforward
perturbation

Second-order straightforward
perturbation First-order triple product Second-order triple product

ω1 1.3858 × 100 1.2825 × 100 (7.45 × 100) 1.4396 × 100 (3.88 × 100) 1.3889 × 100 (2.19 × 10−1) 1.3851 × 100 (5.22 × 10−2)
ω2 4.6568 × 100 4.6242 × 100 (6.98 × 10−1) 4.6828 × 100 (5.58 × 10−1) 4.6422 × 100 (3.12 × 10−1) 4.6586 × 100 (3.84 × 10−2)
ω3 7.8209 × 100 7.8014 × 100 (2.48 × 10−1) 7.8369 × 100 (2.04 × 10−1) 7.8109 × 100 (1.27 × 10−1) 7.8226 × 100 (2.20 × 10−2)
ω4 1.0972 × 101 1.0958 × 101 (1.26 × 10−1) 1.0983 × 101 (1.04 × 10−1) 1.0964 × 101 (6.73 × 10−2) 1.0973 × 101 (1.11 × 10−2)
ω5 1.4119 × 101 1.4108 × 101 (7.67 × 10−2) 1.4128 × 101 (6.36 × 10−2) 1.4113 × 101 (4.13 × 10−2) 1.4120 × 101 (6.93 × 10−3)
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Figure 19: (e approximate natural frequencies of the nonuniform rod as a function of N for a � 0.55. (e natural frequencies are
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product method with N � 10 are more accurate than the
ones found using the second-order triple product approach.
(is unexpected result is purely an artifact of the dis-
cretization process. If the number of modes, s, used in the
assumed modes method is sufficiently large, then the second-
order triple product approach will yield natural frequencies
that are more accurate than those obtained using a first-order
triple product method. Figure 20 shows the error parameters
δ for the corresponding first-order and second-order modal
matrices as a function of N. Note that for N � 10, δ < 0.001
for the second-order incremental perturbation method, val-
idating the accuracy of the resulting modal matrices.

Finally, because the computational power of software
and hardware these days is high, a few words on the ad-
vantages of the proposed methods are warranted. Consider
a large, complicated system with a dozen or more pa-
rameters. In order to conduct a parametric study on the
effects of parameter modifications on the eigenvalues of the
system, computationally resolving the eigenvalue problem
could be costly and time intensive. (e perturbation methods
proposed in this paper, on the other hand, can be used ef-
ficiently to conduct such an analysis because the proposed
methods involve only simple matrix multiplication. In ad-
dition to their efficiency, these methods can accurately ap-
proximate a perturbed system’s eigensolutions. Moreover, the
proposed methods are not limited by the magnitude of the
perturbations. Using an incremental approach, these methods
maintain their efficiency and accuracy even for large modi-
fications. In addition, the perturbation methods yield physical
insights into the problem that solving the problem compu-
tationally does not. Using the closed-form expressions given
in Equations (34) and (35), one can track how changes to an
individual parameter affect specific eigenvalues of the system.
One can also calculate the rate at which certain eigenvalues
change with respect to specific parameters. (e perturbation
methods can be harnessed to solve challenging inverse
problems as well. Specifically, if the system requires specific
eigenvalues and eigenvectors, one could determine which
parameters must be changed to obtain said specifications. It
would be difficult to solve such an inverse problem numer-
ically on a computer because one could not predict how
changing certain parameters may affect the system’s eigen-
solutions a priori without guessing and checking.

4. Conclusion

In this paper, three methods are proposed based on
the eigenvalue perturbation theory to approximate the

eigencharacteristics of symmetric and asymmetric sys-
tems that have been subjected to modifications. (ese
methods only require the eigensolutions of the nominal
system, and they involve only simple matrix multipli-
cations. (e straightforward perturbation method is easy
to implement, simple to code, efficient to apply, and it
yields accurate results when the modifications are small.
When large design changes are introduced, an in-
cremental perturbation scheme is proposed whereby the
large modifications are perturbed incrementally. A triple
product method based on the orthogonality conditions of
the perturbed eigenvectors offers yet another means to
approximate the new eigenvalues of the modified system.
It also serves to validate the accuracy of the perturbed ei-
genvectors. Numerical experiments are performed on various
symmetric and asymmetric systems, and they show that the
incremental perturbation method and the triple product
method can accurately track the exact eigensolutions even
when large design changes are introduced. (e eigenvalue
perturbation theory yields accurate eigencharacteristics and,
more importantly, allows the designer to gain physical in-
sights regarding the effects of modifications on the dynamic
characteristics of the system.

First-order incremental perturbation
Second-order incremental perturbation
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–2
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0(
δ)

2 3 4 5 6 7 8 9 101
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Figure 20: (e error parameter, δ, for the perturbed modal ma-
trices of the nonuniform rod as a function of N for a � 0.55. (e
natural frequencies are nondimensionalized by dividing by�������

E/(ρL2)
􏽰

.

Table 12: (e exact and approximate natural frequencies for the nonuniform rod at N � 10 for a � 0.55. (e natural frequencies are
nondimensionalized by dividing by

�������
E/(ρL2)

􏽰
.

Exact First-order incremental
perturbation

Second-order incremental
perturbation First-order triple product Second-order triple product

ω1 1.3053 × 100 1.2910 × 100 (1.10 × 100) 1.3060 × 100 (5.31 × 10−2) 1.3054 × 100 (5.56 × 10−3) 1.3053 × 100 (1.10 × 10−3)
ω2 4.6359 × 100 4.6333 × 100 (5.79 × 10−2) 4.6366 × 100 (1.42 × 10−2) 4.6359 × 100 (1.40 × 10−3) 4.6360 × 100 (1.18 × 10−3)
ω3 7.8085 × 100 7.8070 × 100 (1.95 × 10−2) 7.8090 × 100 (5.59 × 10−3) 7.8085 × 100 (2.47 × 10−4) 7.8086 × 100 (1.07 × 10−3)
ω4 1.0963 × 101 1.0962 × 101 (9.09 × 10−3) 1.0963 × 101 (3.65 × 10−3) 1.0963 × 101 (8.79 × 10−4) 1.0963 × 101 (1.30 × 10−3)
ω5 1.4112 × 101 1.4111 × 101 (4.98 × 10−3) 1.4112 × 101 (2.75 × 10−3) 1.4112 × 101 (1.07 × 10−3) 1.4112 × 101 (1.33 × 10−3)
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