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A simple yet accurate solution procedure based on the improved Fourier series method (IFSM) is applied to the vibration
characteristics analysis of a cylindrical shell-circular plate (𝑆-𝑃) coupled structure subjected to various boundary conditions. By
applying four types of coupling springs with arbitrary stiffness at the junction of the coupled structure, the mechanical coupling
effects are completely considered. Each of the plate and shell displacement functions is expressed as the superposition of a two-
dimensional Fourier series and several supplementary functions. The unknown series-expansion coefficients are treated as the
generalized coordinates and determined using the familiar Rayleigh-Ritz procedure. Using the IFSM, a unified solution for the 𝑆-𝑃
coupled structure with symmetrical and asymmetrical boundary conditions can be derived directly without the need to change
either the equations of motion or the expressions of the displacements. This solution can be verified by comparing the current
results with those calculated by the finite-element method (FEM). The effects of several significant factors, including the restraint
stiffness, the coupling stiffness, and the situation of coupling, are presented. The forced vibration behaviors of the 𝑆-𝑃 coupled
structure are also illustrated.

1. Introduction

The cylindrical shell-circular plate (𝑆-𝑃) coupled structure is
widely used as a structural component in various engineering
fields, such as naval vessel, spacecraft, and civil building
construction. Therefore, a complete understanding of the
vibration characteristics of the 𝑆-𝑃 coupled structure is nec-
essary and of great significance. In the past several decades,
many studies [1–5] have been published on cylindrical shells,
stiffened shells, plates, and other structures. Based on these
dynamic models, a simulation method that can calculate the
response of a cylindrical shell-plate combined structure was
developed.

Tavakoli and Singh [6] presented a state-space method
to analyse the free vibration of a hermetic shell composed
of a circular cylinder with two circular end plates, and the
analytical results were compared with model measurements.
Cheng and Nicolas [7] studied the inherent characteristics of
a circular cylindrical shell closed at one end by a circular plate
with various boundary supports. However, they neglect the

in-plane motion of the circular plate. Huang and Soedel [8]
used the receptance method to solve the 𝑆-𝑃 structure with
shear diaphragm-shear diaphragm boundary conditions. Tso
and Hansen [9] studied the wave propagation through cylin-
der/plate junctions and provided a theoretical basis for the
study of the bulkhead. Chen et al. [10] studied the free vibra-
tion of a ring-stiffened cylindrical shell with intermediate
large frame ribs, and the equations of motion of annular
circular plates were used to describe the motions of the ribs.

In the analyses cited above, the focus was the free
vibration of a circular cylindrical shell coupled with end
plates; little literature [11, 12] is available on the free and
forced vibration of the 𝑆-𝑃 coupled structure in which the
circular plate connects the shell in the middle. In this paper,
a unified dynamical model for the 𝑆-𝑃 coupled structure
with arbitrary boundary conditions is presented. To eliminate
the potential discontinuities and accelerate the convergence
of the displacement functions, the displacements of the
cylindrical shell and the circular plate are expressed as
an improved Fourier series. Translational and rotational
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Figure 1: Coordinate system of the 𝑆-𝑃 coupled structure.

springs with independent stiffness are introduced to simulate
the complex boundary and coupling conditions. Finally,
an analytical method is presented to analyse the free and
forced vibrations of the 𝑆-𝑃 coupled structure. To validate
the proposed method, selected results for symmetrical and
asymmetrical boundary conditions are compared with those
calculated by the finite-element method (FEM). Further-
more, the effects of the restraint stiffness, the coupling
stiffness, and the coupling situation are discussed in detail.
The forced vibration behavior is also presented.

2. Theoretical Formulations

2.1. Theoretical Model. An 𝑆-𝑃 coupled structure is schemat-
ically presented in Figure 1. The cylindrical shell is described
with the (𝑟, 𝜃, 𝑥) cylindrical coordinate system, in which𝑥𝑠, 𝑟𝑠, and 𝜃𝑠 denote the axial, circumferential, and radial
directions, respectively. The displacements of the cylindrical
shell with respect to this coordinate system are denoted by 𝑢𝑠,
V𝑠, and 𝑤𝑠 in the 𝑥𝑠, 𝜃𝑠, and 𝑟𝑠 directions, respectively. 𝐿 𝑠, ℎ𝑠,
and 𝑅𝑠 are the length, thickness, and middle-surface radius
of the shells, respectively. 𝐸𝑠, 𝜇𝑠, and 𝜌𝑠 are Young’s modulus
of elasticity, Poisson’s ratio, and density, respectively. For the
plate, an annular plate model is used in the coupled system as
a basic structural component that can be used to model the
annular and circular plates.

For the circular plate, the equations of strain energy
appear to become singular at the pole of the coordinate
system. However, it has been observed that the existence of
the singularity has a negligible effect on the physical response
of the plate. Therefore, the method adopted here is to assume
that the inner radius of the annular plate approaches 0, which
avoids the coordinate-dependent singularity.

To simulate the arbitrary elastic boundary and the
coupling conditions, an artificial spring technique is adopted
here. According to the boundary conditions, four springs
distributed along the boundary are used to match the
bending moments 𝑀, transverse shear 𝑆, tangential shear
force 𝑇, and axial force𝑁 separately. The different boundary
and coupling conditions can be easily realized by changing
the stiffness of the corresponding springs. At the left end

of the cylindrical shell, 𝑘𝑢0, 𝑘V0, and 𝑘𝑤0 denote the linear
springs in the 𝑥, 𝜃, and 𝑟 directions, respectively, and 𝑘𝛽0
denotes the rotational spring stiffness around the 𝜃 direction.
Similarly, a set of springs 𝑘𝑢0, 𝑘V0, 𝑘𝑤0, and 𝑘𝛽0 can also be
applied to the right side.

2.2. Theoretical Formulations. The displacement admissible
functions of the cylindrical shell and circular plate can
be expediently expressed by an improved Fourier series
composed of the standard Fourier cosine series and supple-
mentary functions

𝑢𝑠 (𝑥, 𝜃, 𝑡)
= { 𝑁∑
𝑛=0

( 𝑀∑
𝑚=0

𝐴𝑠𝑚𝑛 cos (𝜆𝑠𝑚𝑥) +
2∑
𝑙=1

𝑎𝑠𝑙 𝜉𝑙 (𝑥)) cos (𝑛𝜃)

+ 𝑁∑
𝑛=1

( 𝑀∑
𝑚=0

𝐴𝑆𝑚𝑛 cos (𝜆𝑠𝑚𝑥) +
2∑
𝑙=1

𝑎𝑠𝑙 𝜉𝑙 (𝑥)) sin (𝑛𝜃)}
⋅ 𝑒𝑗𝜔𝑡,

V𝑠 (𝑥, 𝜃, 𝑡)
= { 𝑁∑
𝑛=1

( 𝑀∑
𝑚=0

𝐵𝑠𝑚𝑛 cos (𝜆𝑠𝑚𝑥) +
2∑
𝑙=1

𝑏𝑠𝑙 𝜉𝑙 (𝑥) sin (𝑛𝜃))

+ 𝑁∑
𝑛=0

( 𝑀∑
𝑚=0

𝐵𝑆𝑚𝑛 cos (𝜆𝑠𝑚𝑥) +
2∑
𝑙=1

�̃�𝑠𝑙 𝜉𝑙 (𝑥)) cos (𝑛𝜃)}
⋅ 𝑒𝑗𝜔𝑡,

𝑤𝑠 (𝑥, 𝜃, 𝑡)
= { 𝑁∑
𝑛=0

( 𝑀∑
𝑚=0

𝐶𝑠𝑚𝑛 cos (𝜆𝑠𝑚𝑥) +
4∑
𝑙=1

𝑐𝑠𝑙 𝜉𝑙 (𝑥)) cos (𝑛𝜃)

+ 𝑁∑
𝑛=1

( 𝑀∑
𝑚=0

𝐶𝑠𝑚𝑛 cos (𝜆𝑠𝑚𝑥) +
4∑
𝑙=1

𝑐𝑠𝑙 𝜉𝑙 (𝑥)) sin (𝑛𝜃)}
⋅ 𝑒𝑗𝜔𝑡,
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𝑢𝑝 (𝑠, 𝜃, 𝑡)
= { 𝑁∑
𝑛=0

( 𝑀∑
𝑚=0

𝐴𝑝𝑚𝑛 cos (𝜆𝑝𝑚𝑠) +
2∑
𝑙=1

𝑎𝑝
𝑙
𝜉𝑙 (𝑠)) cos (𝑛𝜃)

+ 𝑁∑
𝑛=1

( 𝑀∑
𝑚=0

𝐴𝑝𝑚𝑛 cos (𝜆𝑝𝑚𝑠) +
2∑
𝑙=1

𝑎𝑝
𝑙
𝜉𝑙 (𝑠)) sin (𝑛𝜃)}

⋅ 𝑒𝑗𝜔𝑡,
V𝑝 (𝑠, 𝜃, 𝑡)

= { 𝑁∑
𝑛=1

( 𝑀∑
𝑚=0

𝐵𝑝𝑚𝑛 cos (𝜆𝑝𝑚𝑠) +
2∑
𝑙=1

𝑏𝑝
𝑙
𝜉𝑙 (𝑠)) sin (𝑛𝜃)

+ 𝑁∑
𝑛=0

( 𝑀∑
𝑚=0

𝐵𝑝𝑚𝑛 cos (𝜆𝑝𝑚𝑠) +
2∑
𝑙=1

�̃�𝑝
𝑙
𝜉𝑙 (𝑠)) cos (𝑛𝜃)}

⋅ 𝑒𝑗𝜔𝑡,
𝑤𝑝 (𝑠, 𝜃, 𝑡)

= { 𝑁∑
𝑛=0

( 𝑀∑
𝑚=0

𝐶𝑝𝑚𝑛 cos (𝜆𝑝𝑚𝑠) +
4∑
𝑙=1

𝑐𝑝
𝑙
𝜉𝑙 (𝑠)) cos (𝑛𝜃)

+ 𝑁∑
𝑛=1

( 𝑀∑
𝑚=0

𝐶𝑝𝑚𝑛 cos (𝜆𝑝𝑚𝑠) +
4∑
𝑙=1

𝑐𝑝
𝑙
𝜉𝑙 (𝑠)) sin (𝑛𝜃)}

⋅ 𝑒𝑗𝜔𝑡,
(1)

where 𝜔 denotes the angular frequency and 𝑡 is the time
variable. 𝜆𝑠𝑚 = (𝑚𝜋)/𝐿, (𝑚 = 0, 1, 2, . . . ,𝑀), 𝑚 and 𝑛
are the sequence number of the expansions in the axial
and circumferential directions. 𝑞 = [𝐴𝑖𝑚𝑛, 𝑎𝑖𝑙 , 𝐴𝑖𝑚𝑛, 𝑎𝑖𝑙 , 𝐵𝑖𝑚𝑛, 𝑏𝑖𝑙 ,𝐵𝑖𝑚𝑛, �̃�𝑖𝑙 , 𝐶𝑖𝑚𝑛, 𝑐𝑖𝑙 , 𝐶𝑖𝑚𝑛, 𝑐𝑖𝑙 ] (𝑖 = 𝑆, 𝑃) are the coefficients of the
series expansions. The introduction of the supplementary
functions 𝜉𝑙(𝑥) (𝑙 = 1, 2, 3, 4) can not only remove the
potential discontinuities at the joint and boundary but also
ensure and accelerate the convergence of expansion series.
The supplementary functions 𝜉𝑙(𝑥) can be any continuous
closed form functions and allow easily exact differential
and integral calculus for high accuracy. The supplementary
functions 𝜉𝑙(𝑠) (𝑙 = 1, 2, 3, 4) for the circular plate can be
obtained by replacing 𝑥 with 𝑠. A set of auxiliary functions
describing the cylindrical shell is selected as follows [13]:

{{{{{{{{{{{

𝜉1 (𝑥)𝜉2 (𝑥)𝜉3 (𝑥)𝜉4 (𝑥)

}}}}}}}}}}}
=

{{{{{{{{{{{{{{{{{{{{{{{

6𝐿𝑥 − 2𝐿2 − 3𝑥26𝐿3𝑥2 − 𝐿26𝐿−15𝑥4 + 60𝐿𝑥3 − 60𝐿2𝑥2 + 8𝐿4360𝐿15𝑥4 − 30𝐿2𝑥2 + 7𝐿4360𝐿

}}}}}}}}}}}}}}}}}}}}}}}

. (2)

From (2) it can be seen that the highest order of the
supplementary function is four. Thus, the second-order
derivatives of in-plane displacements (𝑢 and V) as well as the
third-order derivatives of the radial displacement (𝑤) can be
achieved.

Once the form of the solutions has been established
for the circular plate and cylindrical shell, the remaining
task is to find a suitable set of expansion coefficients that
will ensure that the series satisfies the governing equations,
boundary conditions, and joint continuity. A solution can be
obtained either in strong form by making the series satisfy
the relevant equations exactly or in weak form by solving
for the series coefficients approximately. The Ritz method
is a direct method for finding an approximate solution of a
boundary-value problem. Since the constructed solutions are
sufficiently smooth over the solution domain, the unknown
series coefficients are calculated using the Rayleigh-Ritz
technique, which is equivalent to solving the governing
equations, boundary conditions, and coupling conditions
directly.

The energy expressions are essential for achieving suffi-
ciently accurate solutions. The entire energy for the coupled
cylindrical shell-plate system includes five parts: the stain
energy 𝑉𝑠 and the kinetic energy 𝑇𝑠 for the cylindrical shell,
the stain energy 𝑉𝑝 and the kinetic energy 𝑇𝑝 for the annular
plate, the spring elastic potential energy 𝑉𝑏 denoting the
energy caused by boundary conditions at the ends of the
shell, the potential energy 𝑉𝑐 stored at the junction between
adjacent substructures, and the energy function𝑉𝑓 caused by
the external loads.

Adopting Reissner’s thin shell theory, the strain energy𝑉𝑠 and the kinetic energy 𝑇𝑠 for the cylindrical shell can be
written as

𝑉𝑠 = 𝐸sℎs2 (1 − 𝜇2) ∫
2𝜋

0
∫𝑙
0
{(𝜕𝑢𝜕𝑥 + 𝜕V𝑅𝜕𝜃 + 𝑤𝑅)2

− 2 (1 − 𝜇) 𝜕𝑢𝜕𝑥 ( 𝜕V𝑅𝜕𝜃 + 𝑤𝑅)
+ (1 − 𝜇)

2 ( 𝜕V𝜕𝑥 + 𝜕𝑢𝑅𝜕𝜃)
2}𝑅𝑑𝑥𝑑𝜃

+ 𝐸𝑠ℎ𝑠324 (1 − 𝜇2) ∫
2𝜋

0
∫𝑙
0
{(𝜕2𝑤𝜕𝑥2 + 𝜕2𝑤𝑅2𝜕𝜃2)

2

− 2 (1 − 𝜇) [𝜕2𝑤𝜕𝑥2 𝜕2𝑤𝑅2𝜕𝜃2 − ( 𝜕2𝑤𝑅𝜕𝑥𝜕𝜃)
2]}𝑅𝑠𝑑𝑥 𝑑𝜃

+ 𝐸sℎs324𝑅2 (1 − 𝜇2) ∫
2𝜋

0
∫𝐿
0
{−2𝜇𝜕V𝜕𝜃 𝜕2𝑤𝜕𝑥2 − 2𝜕V𝜕𝜃 𝜕2𝑤𝑅2𝜕𝜃2

+ ( 𝜕V𝑅𝜕𝜃)
2 − 4 (1 − 𝜇) 𝜕V𝜕𝑥 𝜕2𝑤𝜕𝑥𝜕𝜃

+ 2 (1 − 𝜇) ( 𝜕V𝜕𝑥)
2}𝑅𝑠𝑑𝑥 𝑑𝜃,
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𝑇𝑠 = ∫𝐿
0
∫2𝜋
0

{𝜌𝑠ℎ𝑠2 [(𝜕𝑢𝜕𝑡 )
2 + (𝜕V𝜕𝑡 )

2 + (𝜕𝑤𝜕𝑡 )
2]}

⋅ 𝑅𝑠𝑑𝜃 𝑑𝑥.
(3)

According to the thin plate theory (Leissa, 1993), the
strain energy and the kinetic energy for the circular plate can
be written as

𝑉𝑝 = 𝐸𝑝ℎ𝑝2 (1 − 𝜇2) ∫
2𝜋

0
∫𝑅𝑝
0

{(𝜀𝑠,𝑝)2 + (𝜀𝜃,𝑝)2 + 2𝜇𝜀𝑠,𝑝𝜀𝜃,𝑝
+ (1 − 𝜇)

2 (𝛾𝑠𝜃,𝑝)2} (𝑠 + 𝑎) 𝑑𝑠 𝑑𝜃

+ 𝐸𝑝ℎ𝑝324 (1 − 𝜇2) ∫
2𝜋

0
∫𝑅𝑝
0

{(𝑘𝑠,𝑝)2 + (𝑘𝜃,𝑝)2

+ 2𝜇𝑘𝑠,𝑝𝑘𝜃,𝑝 + (1 − 𝜇)
2 (𝜏𝑠𝜃,𝑝)2} (𝑠 + 𝑎) 𝑑𝑠 𝑑𝜃,

𝑇𝑝 = 𝜌𝑝ℎ𝑝2
⋅ ∫𝐿
0
∫2𝜋
0

{[(𝜕𝑢𝑝𝜕𝑡 )2 + (𝜕V𝑝𝜕𝑡 )2 + (𝜕𝑤𝑝𝜕𝑡 )2]} (𝑠
+ 𝑎) 𝑑𝑠 𝑑𝜃,

(4)

where 𝜀𝑠,𝑝, 𝜀𝜃,𝑝, and 𝛾𝑠𝜃,𝑝 are the normal and shear strains in
the middle surface of the circular plate, 𝑘𝑠,𝑝 and 𝑘𝜃,𝑝 are the
mid-surface changes in curvature, and 𝜏𝑠𝜃,𝑝 is themid-surface
twist. The strain-displacement equations can be written as

𝜀𝑠,𝑝 = 𝜕𝑢𝑝𝜕𝑠 ,
𝜀𝜃,𝑝 = 1𝑠 + 𝑎 (𝜕V𝑝𝜕𝑠 + 𝑢𝑝) ,
𝛾𝑠𝜃,𝑝 = 𝜕V𝑝𝜕𝑠 + 1𝑠 + 𝑎 (𝜕𝑢𝑝𝜕𝑠 − V𝑝) ,

𝑘𝑠,𝑝 = −𝜕2𝑤𝑝𝜕𝑠2 ,
𝑘𝜃,𝑝 = − 1

(𝑠 + 𝑎)2
𝜕2𝑤𝑝𝜕𝑠2 − 1𝑠 + 𝑎

𝜕𝑤𝑝𝜕𝑠 ,

𝜏𝑠𝜃,𝑝 = − 2𝑠 + 𝑎
𝜕2𝑤𝑝𝜕𝑠𝜕𝜃 + 1

(𝑠 + 𝑎)2
𝜕𝑤𝑝𝜕𝑠 .

(5)

Consider displacement continuity conditions at the junc-
tion and boundary conditions of the coupled system; the
potential energy stored in the boundary and coupling springs
can be written as

𝑉𝑐 = 12 ∫2𝜋
0

[𝑘𝑐𝑢 (𝑢𝑠 − 𝑤𝑝)2 + 𝑘𝑐V (V𝑠 − V𝑝)2

+ 𝑘𝑐𝑤 (𝑤𝑠 − 𝑢𝑝)2 + 𝑘𝑐𝛽 (𝜕𝑤𝑠𝜕𝑥 − 𝜕𝑤𝑝𝜕𝑟 )2]𝑥=𝑥𝑐 ,𝑠=𝑏
⋅ 𝑅𝑠𝑑𝜃,

𝑉𝑏 = 12 ∫2𝜋
0

[𝑘𝑢0𝑢𝑠2 + 𝑘V0V𝑠2 + 𝑘𝑤0𝑤𝑠2

+ 𝑘𝛽0 (𝜕𝑤𝑠𝜕𝑥 )2]
𝑥=0

𝑅𝑠𝑑𝜃 + 12 ∫2𝜋
0

[𝑘𝑢1𝑢𝑠2 + 𝑘V1V𝑠2

+ 𝑘𝑤1𝑤𝑠2 + 𝑘𝛽1 (𝜕𝑤𝑠𝜕𝑥 )2]
𝑥=𝐿

𝑅𝑠𝑑𝜃.
(6)

The frequency response function (FRF) of the coupled
structure can be calculated considering the potential energy𝑉𝑓 caused by an external point loads. Under the application
of the point force located at (𝑥0, 𝜃0) the potential energy 𝑉𝑓
can be written as

𝑉𝑓 = ∫2𝜋
0

∫𝐿
0
(𝑓𝑢𝑖𝑢𝑖 + 𝑓V𝑖V𝑖 + 𝑓𝑤𝑖𝑤𝑖) 𝛿 (𝑥 − 𝑥0, 𝜃 − 𝜃0)

⋅ 𝑅 (𝑥𝑖) 𝑑𝑥𝑖𝑑𝜃𝑖,
(7)

where 𝑓𝑢𝑖, 𝑓V𝑖, and 𝑓𝑤𝑖 are the external force in the 𝑥𝑠, 𝜃𝑠, and𝑟𝑠 directions, respectively. 𝑖 = 𝑠, 𝑝 denote the cases of the
external force acting on the cylindrical shell or circular plate,
respectively. 𝛿 denotes the Dirac function.

When all of the energy expressions are prepared, the
Rayleigh-Ritz technique will be used to obtain a weak form
of solutions. Thus the Lagrangian energy function can be
written as

𝐿 = 𝑁𝑠∑
𝑖=1

(𝑉𝑠 + 𝑇𝑠) +
𝑁𝑝∑
𝑖=1

(𝑉𝑝 + 𝑇𝑝) + 𝑉𝑐 + 𝑉𝑏 + 𝑉𝑓, (8)

where𝑁𝑠 and𝑁𝑝 are the number of the cylindrical shells and
circular plates in the coupling structure.The current solution
procedure can be utilized to derive the characteristic equation
of the 𝑆-𝑃 coupled structure with more substructures readily.
Substituting the total energy into (8), the eigenvalue problem
is formulated by minimizing the Lagrangian function with
respect to the arbitrary coefficients. This corresponds to the
following equation:

𝜕𝐿𝜕q = 0, (9)

where q denotes the coefficient vector of the series expan-
sions. Equation (9) yields a set of liner and homogeneous
algebraic equations in the unknown coefficients. Then the
final system equation can be obtained and summarized in a
matrix form as

(K − 𝜔2M) q = F, (10)
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Table 1: The frequency for the coupled structure with symmetrical boundary condition 𝑓/Hz.

Mode F-F S-S C-C
Current Ansys Errors Current Ansys Errors Current Ansys Errors

(1) 25.01 25.03 0.07 88.21 87.64 0.65 85.99 85.42 0.67(2) 25.01 25.03 0.06 179.04 177.85 0.67 179.05 177.85 0.67(3) 68.07 68.13 0.09 179.04 177.85 0.67 179.05 177.85 0.67(4) 68.07 68.13 0.09 293.83 291.74 0.72 293.84 291.74 0.72(5) 88.21 87.64 0.65 293.83 291.88 0.67 293.84 291.88 0.67(6) 128.55 128.69 0.11 295.67 295.76 0.03 335.01 332.70 0.69(7) 128.55 128.69 0.11 295.67 295.76 0.03 356.56 356.70 0.04(8) 170.33 170.33 0.00 329.87 329.98 0.03 356.56 356.70 0.04(9) 170.33 170.33 0.00 329.87 329.98 0.03 376.51 376.64 0.03(10) 179.37 178.18 0.67 337.94 335.63 0.69 376.51 376.64 0.03(11) 179.37 178.18 0.67 344.03 344.17 0.04 417.62 417.27 0.08(12) 195.77 195.26 0.26 344.03 344.17 0.04 417.62 417.27 0.08(13) 195.77 195.26 0.26 354.59 354.00 0.17 423.03 421.88 0.27(14) 206.36 206.65 0.14 354.59 354.00 0.17 423.03 421.88 0.27(15) 206.36 206.65 0.14 375.55 375.48 0.02 424.65 424.86 0.05(16) 219.70 219.98 0.13 375.55 375.48 0.02 424.65 424.86 0.05(17) 219.70 219.98 0.13 417.24 415.28 0.47 430.00 426.90 0.73(18) 293.84 291.75 0.72 417.24 415.28 0.47 430.00 426.90 0.73(19) 293.84 291.88 0.67 429.95 426.86 0.72 455.71 455.92 0.05(20) 301.50 302.00 0.17 429.95 426.86 0.72 455.71 455.92 0.05

where K and M are the stiffness and mass matrices of the
coupling structure, respectively. F represents the external
force vector. They are written as

K = [Ks Ksp

KT
sp Kp

] ,

M = [Ms

Mp
] .

(11)

3. Numerical Example and Discussions

In this section, several examples are presented to evaluate
the accuracy and reliability of the proposed method. First,
symmetrical and asymmetric boundary conditions are given
for the 𝑆-𝑃 coupled structure. The excellent accuracy of the
presented solution is validated through comparison with the
results obtained from the FEM. Then, arbitrary positions
of the coupling shell are studied. The characteristics of the
response are discussed as well.

Unless otherwise specified, the properties for these cou-
pled structures are summarized as follows: length of the shell𝐿 𝑠 = 1.2m, thickness ℎ𝑠 = 0.002m, mean radius 𝑅𝑠 =0.24m, outer diameter of circular plate 𝑏𝑝 = 0.24m, and
interdiameter 𝑎𝑝 = 10−4𝑏𝑝. Material properties are as follows:𝜌𝑠 = 𝜌𝑝 = 7800 kg/m3, 𝐸𝑠 = 𝐸𝑝 = 2.1 kg/m3, and 𝜇𝑠 = 𝜇𝑝 =0.3. The circular plate is coupled to the middle of shells along
the axial direction.

3.1. Validation Study. In this subsection, free vibration results
of the 𝑆-𝑃 coupled structure with symmetrical and asymmet-
ric boundary conditions are studied. For convenience, the
symbols F, S, C, and E are introduced and denote free, simple-
support, clamped, and elastic-support boundary conditions,
respectively. In Tables 1 and 2, the calculated first twenty
natural frequencies are compared with the results obtained
using ANSYS. Through this comparison, we find that the
discrepancies between the current method and ANSYS are
acceptable, with a maximum error of approximately 0.8%. To
enhance our understanding of the vibration behaviors of the
coupled structures, the first sixmode shapes for the structures
with various boundary conditions are plotted in Figures 2–7.
It is clear that the two sets of modes are essentially identical.

3.2. The Coupled Structure with Arbitrary Coupling Position.
In this subsection, selected examples are presented to illus-
trate the effects of the position of the junction. Various posi-
tions of the junction, including the 1/4-, 1/3-, and 1/2-length
positions of the shell near the right end, are examined here.

Table 3 shows the comparison of natural frequencies
obtained by the proposed method and FEM. Figure 8 shows
the first six mode shapes of the 𝑆-𝑃 coupled structure with
various positions of the junction. The frequency of the
circular plate does not change significantly; however, the
frequency of the cylindrical shell increases as the position of
the junctionmoves from the left end to themiddle of the shell.

3.3. The Effect of the Boundary Restraint. In this section, the
effects of the boundary spring on the vibration characteristics
of the coupled structure are investigated. To understand the
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Table 2: The frequency for coupled structure with asymmetrical boundary condition 𝑓/Hz.

Mode F-F S-S C-C
Current Ansys Errors Current Ansys Errors Current Ansys Errors

(1) 88.21 87.64 88.21 85.98 85.41 0.67 85.98 85.41 0.67
(2) 139.26 139.07 139.26 142.58 142.32 0.18 179.04 177.85 0.67
(3) 139.26 139.07 139.26 142.58 142.32 0.18 179.04 177.85 0.67
(4) 147.90 147.99 147.90 149.75 149.82 0.05 293.84 291.74 0.72
(5) 147.90 147.99 147.90 149.75 149.82 0.05 293.84 291.88 0.67
(6) 179.12 177.93 179.12 178.98 177.79 0.67 312.95 312.98 0.01
(7) 179.12 177.93 179.12 178.98 177.79 0.67 312.95 312.98 0.01
(8) 212.16 212.44 212.16 212.81 213.10 0.13 334.81 332.51 0.69
(9) 212.16 212.44 212.16 212.81 213.10 0.13 352.81 352.93 0.03
(10) 229.81 228.79 229.81 230.42 229.33 0.47 352.81 352.93 0.03
(11) 229.81 228.79 229.81 230.42 229.33 0.47 357.38 357.23 0.04
(12) 293.84 291.76 293.84 265.27 265.19 0.03 357.38 357.23 0.04
(13) 293.84 291.89 293.84 265.27 265.19 0.03 401.76 401.00 0.19
(14) 303.71 304.22 303.71 293.85 291.76 0.72 401.76 401.00 0.19
(15) 303.71 304.22 303.71 293.85 291.89 0.67 403.79 403.61 0.04
(16) 318.17 318.15 318.17 303.93 304.45 0.17 403.79 403.61 0.04
(17) 318.17 318.15 318.17 303.93 304.45 0.17 429.98 426.88 0.73
(18) 337.94 335.63 337.94 334.81 332.51 0.69 429.98 426.88 0.73
(19) 355.63 355.75 355.63 369.09 369.22 0.04 443.39 443.63 0.05
(20) 355.63 355.75 355.63 369.09 369.22 0.04 443.39 443.63 0.05

Table 3: The frequency of the coupled structures with different coupling-junction positions 𝑓/Hz.

Mode 1/4 1/3 1/2
Current Ansys Errors Current Ansys Errors Current Ansys Errors

(1) 88.13 87.64 0.56 88.02 87.74 0.32 88.21 87.64 0.65
(2) 178.87 177.84 0.58 178.66 178.04 0.35 179.04 177.85 0.67
(3) 178.87 177.84 0.58 178.66 178.04 0.35 179.04 177.85 0.67
(4) 219.62 219.48 0.06 250.24 250.21 0.01 293.83 291.74 0.72
(5) 219.62 219.48 0.06 250.24 250.21 0.01 293.83 291.88 0.67
(6) 241.26 241.34 0.03 255.51 255.74 0.09 295.67 295.76 0.03
(7) 241.26 241.34 0.03 255.51 255.74 0.09 295.67 295.76 0.03
(8) 288.70 288.05 0.23 293.26 292.05 0.41 329.87 329.98 0.03
(9) 288.70 288.05 0.23 293.26 292.18 0.37 329.87 329.98 0.03
(10) 293.58 291.74 0.63 323.94 324.50 0.17 337.94 335.63 0.69
(11) 293.58 291.87 0.59 323.94 324.50 0.17 344.03 344.17 0.04
(12) 317.21 317.44 0.07 337.27 335.97 0.39 344.03 344.17 0.04
(13) 317.21 317.44 0.07 344.43 344.04 0.11 354.59 354.00 0.17
(14) 337.62 335.59 0.61 344.43 344.04 0.11 354.59 354.00 0.17
(15) 419.03 419.07 0.01 427.15 427.34 0.04 375.55 375.48 0.02
(16) 419.03 419.07 0.01 427.15 427.34 0.04 375.55 375.48 0.02
(17) 423.29 423.69 0.09 429.23 428.22 0.24 417.24 415.28 0.47
(18) 423.29 423.69 0.09 429.23 428.22 0.24 417.24 415.28 0.47
(19) 429.66 426.91 0.64 449.12 449.47 0.08 429.95 426.86 0.72
(20) 429.66 426.91 0.64 449.12 449.47 0.08 429.95 426.86 0.72
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Figure 2: The modes of coupled structures with F-F.
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Figure 3: The modes of coupled structures with S-S.
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Figure 4: The modes of coupled structures with C-C.
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Figure 5: The modes of coupled structures with S-F.
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Figure 6: The modes of coupled structures with C-F.
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Figure 7: The modes of coupled structures with C-S.
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Figure 8: The modes of coupled structures with different coupling-junction positions.

effects of the boundary springs, we consider a cylindrical shell
that is clamped at the right end and elastically supported
at the left end and has only one style of spring attached in
the corresponding direction. Clearly, the case in which the
stiffness is zero represents clamp-free supported boundary
conditions. As stated above, there is no correlation between
the vibration characteristics of the circular plate and the
boundary conditions of the coupled structure. Thus, the
effects of the boundary spring that acts on the shell are the
main consideration.

In Table 4, the first six natural frequencies are presented
against the spring stiffness of the right end for all four support
configurations. The frequencies are nearly equal when the
stiffness of the rotational spring increases from 0 to 1𝐸12.The
contribution of the rotational spring to the boundary restraint
is relatively small. Relative to the rotational spring, the axial
spring has a slight impact when the stiffness increases up to1𝐸10. In comparison, the circumference and the radial spring
have a larger influence on the boundary restraint. To further
clarify the effects of the two types of spring on the boundary
restraint, Figure 9 gives the influence of the two springs on
the foundation frequency.

Table 4 shows that the first six natural frequencies
increase continuously when the single spring stiffness
changes from 0 to 1𝐸12. The natural frequencies are less
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Figure 9: Natural frequency as a function of the stiffness of the
radial and the circumferential linear springs.

sensitive to changes in the stiffness of the axial linear springs
and the rotational springs. Relative to the axial linear springs
and the rotational springs, the effects of the radial and
the circumferential linear springs are larger for the natural
frequencies of the coupling structure. To illustrate the effect of
the sensitive springs, Figure 9 shows the natural frequencies
of the coupled structure with the change of the stiffness of
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Table 4: Natural frequencies for a clamped, elastically supported shell 𝑓/Hz.

Stiffness (1) (2) (3) (4) (5) (6)

𝑘𝑥
0 143.65 150.16 213.20 233.85 265.82 304.441𝐸4 143.65 150.16 213.20 233.85 265.82 304.441𝐸6 143.71 150.18 213.21 233.99 265.98 304.441𝐸8 149.55 152.27 213.85 246.05 279.07 304.661𝐸10 176.32 205.89 222.30 307.96 340.41 345.431𝐸12 179.66 212.57 223.64 308.56 343.98 355.50

𝑘𝜃
0 143.65 150.16 213.20 233.85 265.82 304.441𝐸4 143.68 150.18 213.21 233.89 265.86 304.441𝐸6 146.66 151.91 214.02 237.27 269.57 304.841𝐸8 249.71 263.48 303.81 329.33 385.81 394.801𝐸10 313.07 352.82 357.63 406.39 406.66 438.041𝐸12 313.74 353.13 359.17 406.56 406.96 438.04

𝑘𝑟
0 143.65 150.16 213.20 233.85 265.82 304.441𝐸4 143.93 150.45 213.41 233.99 265.86 304.581𝐸6 168.50 175.18 231.25 247.30 269.57 316.691𝐸8 308.64 338.51 351.82 386.27 404.76 405.851𝐸10 311.26 348.03 352.67 405.93 406.30 437.911𝐸12 311.29 348.12 352.68 405.94 406.30 437.91

𝐾𝑟
0 143.65 150.16 213.20 233.85 265.82 304.441𝐸4 144.59 151.31 214.23 234.31 265.84 305.341𝐸6 146.31 153.31 215.90 235.17 265.87 306.671𝐸8 146.36 153.37 215.94 235.20 265.88 306.701𝐸10 146.36 153.37 215.94 235.20 265.87 306.701𝐸12 146.36 153.37 215.94 235.20 265.88 306.70

the radial and the circumferential linear springs. When the
stiffness of the spring changes from 0 to 1𝐸6, the stiffness
is so small that there is no difference between the natural
frequencies of the C-E boundary condition and those of the
C-F boundary condition. When the stiffness of the spring
is higher than 1𝐸10, the stiffness is so large that the elastic
boundary condition can be viewed as rigid. The curves in
Figure 9 are relatively steep when 1𝐸6 < 𝐾 < 1𝐸10 because
the natural frequencies aremuchmore sensitive to the change
of the stiffness in this range for the current set of parameters.

The 𝑆(1, 5)mode shapes for the radial spring stiffness and
circumferential spring stiffness are plotted in Figures 10 and
11, respectively.Themode shapes are significantlymodified by
the stiffness of the restraining springs. When the boundary
condition changes from C-E (with a circumferential spring
stiffness of 1𝐸4) to C-C, the natural frequency changes
accordingly from approximately 213Hz to approximately
358Hz. The same phenomenon can be observed in Figure 11.

3.4. Forced Vibration Analyses. Three points, Point A (0.24, 0,
0.2) and Point B (0.24, 0, 0.9) in the cylindrical shell and Point
C (0.12, 0, 0.6) in the middle circular plate, are introduced
in the respective local coordinate systems. A unit harmonic
force 𝑓𝑠 = 𝑒𝑗𝜔𝑡 is applied on the cylindrical shell at Point
A. The accuracy of the proposed model is validated through
comparison with the finite-element program ANSYS. The
finite-element model of the cylindrical shell-plate coupled
structure, which consists of 4-node SHELL181 elements, is

meshed into 15360 elements to obtain reasonably convergent
results. The full calculation procedure (direct solver) is
implemented in ANSYS.

Figures 12 and 13 show the comparisons of responses at
Points B and C for the coupled structure subjected to the
normal point forces at Point A between ANSYS and the
proposed method. The responses of the cylindrical shell-
plate coupled structure subjected to a point force show many
resonant peaks.This behavior is expected since these external
loads can excite both symmetric and antisymmetric vibration
modes of the coupled structure. Since no damping has been
introduced in the proposed and finite-element models, the
resonant peaks should in theory reach an infinite level but
are limited due to the chosen frequency-calculation step.
Therefore, the amplitudes of the resonant peaks are not
significant because they are strongly affected by the finite
discretization of the frequency range. Except for the locations
of the resonant peaks, the displacement responses of the
two methods are in excellent agreement, which validates the
accuracy of the proposed method in predicting the forced
vibration of the coupled structure. It should be noted that the
computational time and the number of degrees of freedom
(DOFs) accounts for the advantages of the proposed method
over the traditional FEM. In the calculation, only 2772 DOFs
are needed for the proposed method, while ANSYS requires
more than 90000 DOFs. Thus, the proposed computational
procedure is simple and effective, which will make it of great
interest to engineers.
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Figure 10: The 𝑆(1, 5) modes of coupled structures with C-E boundary condition: (a) 𝑘𝑥 = 𝑘𝑟 = 𝐾𝑟 = 0 and 𝑘𝜃 = 1𝐸4, 213.21Hz; (b)𝑘𝑥 = 𝑘𝑟 = 𝐾𝑟 = 0 and 𝑘𝜃 = 1𝐸8, 263.48Hz; (c) 𝑘𝑥 = 𝑘𝑟 = 𝐾𝑟 = 0 and 𝑘𝜃 = 1𝐸12, 313.74Hz; and (d) C-C, 358.82Hz.
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Figure 11: The 𝑆(1, 5) modes of coupled structures with C-E boundary condition: (a) 𝑘𝑥 = 𝑘𝜃 = 𝐾𝑟 = 0 and 𝑘𝑟 = 1𝐸4, 213.41Hz; (b)𝑘𝑥 = 𝑘𝜃 = 𝐾𝑟 = 0 and 𝑘𝑟 = 1𝐸8, 308.64Hz; (c) 𝑘𝑥 = 𝑘𝜃 = 𝐾𝑟 = 0 and 𝑘𝑟 = 1𝐸12, 311.27Hz; and (d) C-C, 358.82Hz.

As noted in Section 3.3, the stiffness of the boundary
springs can have a significant impact on themodal character-
istics of the coupled structure. The responses of the coupled
structure for different stiffness values are shown in Figure 14.
The figures indicate that the heights of the resonance peaks
monotonically increase with the stiffness of the boundary

springs. In a comparison of Figures 14(a) and 14(b), the
increase of 𝑘V1 is more easily detected near the stiffness 1𝐸8.
The phenomenon can be explained by referring to Figure 9.

Figure 15 shows the responses of the coupled structure
for different values of coupling-spring stiffness. The stiffness
of all four types of spring is increased from 1𝐸7 to 1𝐸9. The
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Figure 12: The response of the cylindrical shell subjected to a normal point force.
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Figure 13: The response of the circular plate subjected to a normal point force.

change in stiffness alters only the vibration characteristics of
the plate and has no effect on the shell.

4. Conclusion

In this paper, an improved Fourier series method (IFSM)
is presented for the calculation of the vibrations of the𝑆-𝑃 coupled structure with various boundary conditions.
The displacement components of the cylindrical shell and
circular plate are generally expanded, regardless of boundary
conditions, as the superposition of a two-dimensional
Fourier series and several supplementary functions. The
unknown series-expansion coefficients are treated as the
generalized coordinates and determined using the familiar

Rayleigh-Ritz procedure. The boundary and coupling
conditions are accounted for by applying four types of
translational and rotational springs with arbitrary stiffness at
the junction and the boundary. Using the IFSM, the vibration
characteristics of the 𝑆-𝑃 coupled structure with various
boundary conditions and various junction positions can be
obtained. The excellent accuracy of the current solutions is
demonstrated by comparison with the results calculated by
FEM. The response of the coupled structure and the effects
of the restraint spring are illustrated.
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