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In the research of gear transmission, the vibration and noise problem has received many concerns all the times. Scholars use tooth
modification technique to improve the meshing state of gearings in order to reduce the vibration and noise. However, few of
researchers consider the influence of measured manufacturing errors when they do the study of tooth modification. In order to
investigate the efficiency of the tooth modification in the actual project, this paper proposes a dynamic model of a helical gear pair
including tooth modification and measured manufacturing errors to do a deterministic analysis on the dynamical transmission
performance. In this analysis, based on the measured tooth deviation, a real tooth surface (including modification and measured
tooth profile error) is fitted by a bicubic B-spline. With the tooth contact analysis (TCA) and loaded tooth contact analysis (LTCA)
on the real tooth surface, the loaded transmission error, tooth surface elastic deformation, and load distribution can be de-
termined. Based on the results, the time-varying mesh stiffness and gear mesh impact are computed. Taking the loaded
transmission error, measured cumulative pitch error, eccentricity error, time-varying mesh stiffness, and gear mesh impact as the
internal excitations, this paper establishes a 12-degree-of-freedom (DOF) dynamic model of a helical gear pair and uses the
Fourier series method to solve it. In two situations of low speed and high speed, the gear system dynamic response is analyzed in
the time and frequency domains. In addition, an experiment is performed to validate the simulation results. The study shows that

the proposed technique is useful and reliable for predicting the dynamic response of a gear system.

1. Introduction

In the gear machining process, the design deviation,
manufacturing error, and fixing error of the machine cutting
tool can cause a change in conjugate conditions and produce
a tooth profile error, pitch error, eccentric error, etc. These
errors affect the contact characteristics of gears, worsen the
stability and bearing capability of gear transmission, and
cause enormous noise and vibration. Thus, many scholars
pay close attention to the prediction and control of gear
vibration and noise in their transmission designs [1-8]. After
an extensive study, some researchers have used the tooth
profile modification to compensate the elastic deformation
of gear teeth to reduce the gear vibration [9-14]. However,
there are errors remained during the theoretical profile
modification in the machining process. Therefore, the ac-
curacy and efficiency of the tooth profile modification must

be checked to avoid bad working conditions of the gear
trains.

In the related studies, there are some cases which address
the gear errors in the study of gear dynamics analysis. Case
one: the effect of errors is ignored. Case two: although the
errors are considered, the range of every error is estimated in
theory, and errors supposedly change according to a particular
curve. For example, Hu et al. [15] researched the effect of tooth
modification of a high-speed gear system and set the variation
of the tooth profile error and pitch error as a sine function.
Kubo and Kiyono [16] analyzed the effect of tooth form errors
on the helical gear dynamics, and they assume a composite
tooth form error with four types of shape. Wei et al. [17]
established a coupled nonlinear dynamics model which is used
for planetary gear transmission systems in wind turbines and
incorporates the effects of the time-varying mesh stiffness,
dynamic transmission error, gear mesh impact, and input
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varying load; thus, the transmission error changes as a sine
wave with time. Case three: the errors are shown as random
processes. Chen et al. [18] used a stochastic volatility model to
simulate the random wind velocity and analyzed the effect on
the dynamic characteristics of wind turbine gear transmission
system. Wang and Zhang [19] developed a dynamic and
stochastic simulation model to analyze the vibration of the gear
transmission system; they considered the gear transmission
errors as the displacement excitation which was decomposed
into harmonic and random components. They used a second-
order Markov process with time-variant parameters consid-
ering the influence of the rotational speed to simulate a ran-
dom component. Chen et al. [20] proposed a rotational
nonlinear dynamic model of a planetary gear transmission
system, which included the time-varying mesh stiffness and
synthetic mesh error with random fluctuation; the synthetic
mesh error was resolved into a sine signal and white noise.
Nevertheless, the most related studies did not consider the
low-frequency error (such as eccentricity error, cumulative
pitch error, etc.) and hardly showed the real manufacturing
errors of gear, so the simulation results might produce an
obviously different dynamic response from the experiment.
In this paper, the main focus is to investigate the impact of
the measured tooth profile error and cumulative pitch error on
the dynamic response of gear system with tooth modification.
The main objective is to do dynamics analysis of a helical gear
pair based on the real tooth surface (including tooth modi-
fication and tooth profile error) and the measured cumulative
pitch error, so that the transmission performance of the
machined gear system can be predicted. The internal excita-
tions, including time-varying mesh stiffness, gear mesh impact,
loaded transmission error, measured cumulative pitch error,
and eccentric errors, will be considered in the analysis. At the
end, the proposed method is compared with the traditional
method and verified by a noise and vibration experiment.

2. Structure of Real Tooth Surface

A pair of helical gears is used as an example, which parameters
are shown in Table 1. The tooth surface is finish machined by
grinding, and the processing precision is level 6 (adopting the
standard of ISO 1328-1:1997). The pinion (drive wheel) has
profile and lead modification, and the gear (driven wheel) is
a standard involute gear. The theoretical modification curve is
shown in Figure 1. Figure 2 is the actual modification curve
measured by a Klingelnberg P100 gear measuring device. The
gear’s measured surface deviation from the theoretical in-
volute is displayed in Figure 3. The tooth surface deviation of
the gear is notably small; thus, it is considered as the theo-
retical involute in the following calculation, and only the real
tooth surface of the pinion must be structured.

2.1. Fitting of Surface Deviation. Some scholars have applied
the bicubic B-spline method to many studies. Gardner and
Gardner [21] used it to model a magnetohydrodynamic duct
flow and obtained excellent consistency between the numerical
result and the analytic solution even for large values of the
applied magnetic field. Na [22] used the method to fit a complex
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TaBLE 1: Parameters of pair of helical gears.

Parameters Pinion Gear
Number of teeth, Z 19 47
Handedness Right Left
Normal modulus, m,, (mm) 6 6
Normal pressure angle, « (deg.) 20 20
Helix angle, 8 (deg.) -9.911 9.911
Tooth width, b (mm) 79 75
Load torque, T, (N-m) 830
Input speed, rpm 50.8/2104

curved surface, and the fitting surface was C* conforming, This
paper also uses a bicubic B-spline to form the deviation surface.

Before fitting the surface, some discrete points must be
set on the measured modification curve in Figure 2. To
improve the fitting accuracy, we select more discrete points
at both ends of the measured modification curve than in the
middle. Finally, 42 points are selected in the meshing line
direction and 47 points are selected in the lead direction.
Then, the deviations of 42 points in the meshing line di-
rection must be converted into the deviations along the
tooth profile direction. According to the meshing re-
lationship shown in Figure 4, the relationship between the
tooth depth and the length of the meshing line is as follows:

_ 2 2
Yproﬁle - Ymeshing + pr, (1)

where Y 5 is the tooth depth, Y iy, is the length of the
meshing line, and ry,, is the base radius of the pinion.

As shown in Equation (2), the 42 x 47 discrete points are
arranged in a matrix.

POO POI PO

n

PIO Pll Pln
(2)
PmO Pml Pmn
m =41,
n = 46,

Based on the 42 x 47 discrete points, we fit the cubic
B-spline curves in the directions of lead and tooth depth. The
control vertices of the cubic B-spline curve are computed by
using the method of reverse vertices, which is presented in
Appendix [22]. Then, the cubic B-spline curve equations
generated by these vertices are as follows:

The lead direction,

1 4 10 Vi,j
1 -3 0 30 Vi,j+1

Lij(9)=(1s s 53)~g s 63 ol v ,
- i,j+2

-1 3 -3 1]\ Vs

X = X;
V= s
Xip1 — X

x € [xpx), (i=0,1,...,m; j=-1,0,1,...,n-2).

(3)
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F1GURE 1: Theoretical modification curve: (a) profile modification curve along meshing line direction; (b) lead modification curve.
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FIGURE 2: Measured modification curve of pinion: (a) profile modification curve along meshing line direction; (b) lead modification curve.
(In actual processing, only one side of the tooth, which is the right flank, is modified, as shown in Figure 2. Three teeth are measured, namely
tooth 1, tooth 8, and tooth 14. This paper selects tooth 8 to structure the real tooth surface.)
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FIGURE 3: Tooth surface deviation of gear: (a) profile deviation along meshing line direction; (b) lead deviation.
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FIGURE 4: Relationship between tooth depth and length of meshing
line.

The direction of tooth depth,
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(4)

where V; ;j and W(s); ; are the vertex of the cubic B-spline
curve in the direction of lead and tooth depth.

If the expressions of s and v are plugged into (4), the
surface deviation d;; (x,y) can be obtained, which is on the
rotary projection of the tooth surface. When i changes from
—1 to m—2 and j changes from -1 to n—2, we can obtain m x
n patches constituting the deviation surface, shown in
Figure 5.

2.2. Superposition of Deviation Surface and Theoretical Tooth
Surface. Figure 6 shows the coordinates of the skew para-
bolic rack-cutter applied to the machined pinion. Here, M is
a point on the surface of the rack-cutter, which coordinate is
(4, —a.u?, 0) in the coordinate system S, Parameters u
(Figure 6(a)) and I = |0,0,| (Figure 6(b)) are the surface
parameters of the skew rack-cutter [23]. d, is the location
parameter of the parabolic pole.  is the helix angle. The
tooth surface of the pinion is enveloped by the rack-cutter
surface during processing. According to the meshing
principle and enveloping principle [24], the position vector
and normal vector of the theoretical tooth surface can be
derived and denoted as R, (i, [) and n; (u, [). The real tooth
surface is constituted by superposing the deviation surface
and theoretical tooth surface. Then, the position vector and
normal vector of the real tooth surface are [25]

R, (u,1) =& (u,1) - n, (1) + R, (u,1), (5)
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() = OR, (u,1) o OR, (u,]) (OR,(u,]) . 048" (u,1)
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-n, (u,1) + 30 -0 (u,l))x(T
08" (u,1) on, (u,l)
+ FT n, (u,l) + F & (u, l)),

(6)

where 8" (u, [) is the deviation of the tooth surface, which is
converted from the deviation of the rotary projection of the
tooth surface ;; (x, y). The conversion can be realized by the
relation between (u, I) and (x, y) shown in the following
equation:

{ x =R, () + R, (), o

)/ = th (ua l)a

where R (4, 1), Ry, (u, 1), and Ry, (u, I) are the coordinate
components of R, (u, I). Next, the partial derivatives
08’ (u,1)/0u and 38’ (u,1)/3l in (6) can be computed using
the following equation:
08" (u,1) _00(x,y) ox . 06 (x, y) oy
ou  Ox Ou dy ou

(8)
08’ (u,1) 95 (x, ) 0x N 9 (x, y) 0y
ol  ox ol oy ol

3. Internal Excitations

3.1. Time-Varying Mesh Stiffness. Using the TCA [24] and
LTCA [26] on the real tooth surface of the pinion and the
involute tooth surface of the gear, the time-varying mesh
stiffness was computed. Using the TCA, the transmission
error and backlash between teeth were obtained at zero load.
Thus, the LTCA uses the finite element method and nonlinear
programming method to obtain the comprehensive contact
deformations A,, in the normal direction at n contact points of
the tooth surface in a meshing period (the comprehensive
contact deformation A, simultaneously considers the effect of
other meshed teeth). Then, the comprehensive mesh stiffness
k,, is calculated by the following equation:

F
k,, =21,
A}’l
F,=F,- cosf, (9)
T
F =7,
rbg

where F, is the tangent force, T'; is the load torque, 1, is the
base radius of the gear, F, is the normal force, and f3 is the
base helix angle. Finally, the comprehensive mesh stiffness
k,, consists of n discrete values in a meshing period, so it
must be interpolated by the piecewise cubic-Hermite in-
terpolation function and expressed as a periodic function by
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FiGure 5: Deviation from theoretical tooth surface.
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FiGgure 6: Coordinates of skew rack-cutter. (a) Parabolic profile of
rack-cutter in normal section. (b) For derivation of rack-cutter
surface.

the Fourier series. Based on this idea, the comprehensive
time-varying mesh stiffness was computed at 830 N-m of
load torque as shown in Figure 7.

3.2. Gear Meshing Impact. The corner mesh impact mainly
includes the meshing-in and meshing-out impacts. Seireg
and Houser [27] have experimentally verified that the
meshing-in impact had an obviously greater effect of than
the meshing-out impact on the gear transmission behavior.
Thus, we only consider the meshing-in impact.

Wu et al. [28] and Wang et al. [29] solved the meshing-in
impact of unmodified and modified gear pairs, respectively.
This paper refers to the theory and method of these papers to
calculate the meshing-in impact of the practical modified
gear pair. The specific solution steps are shown below.

After the modification, in the initial phase of the meshing
process, the meshing points obtained by TCA do not bear
load in the LTCA. Thus, the actually original position of the
meshing-in contact is nearly the first point which the LTCA-
calculated load sharing factor between teeth is not zero as
shown in Figure 8. Figure 9(a) depicts the principle of the
shock velocity. In the diagram, N;N, is the theoretical

x108
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Time-varying mesh stiffness (N/m)

0 0.05 0.1 0.15

Time (s)

FiGUre 7: Time-varying mesh stiffness of gear pair at low speed
(50.8rpm) (the time-varying mesh stiffness at high speed
(2104 r/min) is identical to that in this figure).
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FIGURre 8: Approximate location of original meshing point (the
contact positions on the curve appear in the process from meshing-
in to meshing-out for a single tooth).
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FIGURE 9: Sketch map of meshing-in impact (on end face): (a) shock velocity principle, (b) dynamic model of meshing-in impact.

meshing line, ignoring the manufacturing errors and the
deformation of tooth; M is the actual original position of the
meshing-in contact; MM, is the instantaneous meshing line
through point M; v, and v, are the tangential speeds of the
pinion and gear; v,, and v, are the normal speeds of the
pinion and gear; r;, and r,, are the theoretical base radii of
the pinion and gear; and 7}, is the actual base radius of the
gear. The shock velocity with v, can be computed using the
following equation:

v, =W, X Ry,

Vg = Wy X Paps
1 Vop = Vp My, (10)

Vg = Vg ' My,

[ Vs = Vop ™ Vng>

where Ry, ny, are the position vector and normal vector of
M, respectively, which can be obtained by the TCA; py, is
the vector from Oy to M, with py; = Ry~ E; E is the vector
from Of to Og; w,,, w, are the angular speeds of pinion and
gear.

Because of the gear mass and inertia, if the shock speed v,
emerges between the pinion and the gear, the impact must be
generated at the meshing point M. As shown in Figure 9(b),
mep and me, are the equivalent masses of particles for the
pinion and gear:

g

I
_ P
mep rT,
bp
(11)
1
_ 8
meg 2
r bg

According to the theory of impact dynamics, the impact
kinetic energy and elastic potential energy are:

E, = %mevs,
) 11, (12)
me = Umg, + 1/myg - Ip"llig N Igﬁz,p’
E, = [ Koxdx = SK,W7,
2 (13)

F =K, W,

where m, is the total equivalent mass of the gear pair; Fj is
the maximal meshing-in impact; W is the deformation
caused by Fg; and K is the stiffness at the original meshing
point M, which value is the single tooth stiffness at M. Based
on the law of conservation of energy, the relation can be
obtained as follows:

Ek = EP' (14)
By solving Equations (12)-(14), the maximal impact
force can be computed as follows:

11 1/2 11 1/2
P g 2 P°8 2
FS:( 2 2K5v5> :<Ir2 +Ir2KSvS> '
IPT bg + Igrbp p'bg g’ bp

(15)

Because the difference between i, and r is small, this
paper uses an approximation solution for the impact force
by substituting r,, for rh,g [28].

We assume that the impact force is a half sine wave; then,
it can be expressed as

fs(#) = F sin(wt),

where w; is the angular frequency, with w, = 1/t t, is the
working time, which is defined as the process of changing
the shock speed from versus to 0. According to the mo-
mentum theorem, the following relation can be obtained:

(0<t<ty), (16)
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tS
J f(t)dt = mAv = m,v,. (17)
0
Using (18), the working time £, [30] can be solved:
p _TmeYs
s 2 Fs . (18)

Thus, the impact force is calculated at 830 N-m of load
torque as shown in Figure 10.

3.3. Error Excitation. We consider the cumulative pitch
error, eccentric error, and loaded transmission error as the
error excitation. Figures 11(a) and 11(b) show the measured
cumulative pitch errors of the pinion and gear, so the relative
cumulative pitch error of the gear pair is equal to the dif-
ference between the gear and pinion. Because the installed
eccentricity of the gear system is difficult to be measured, we
define the eccentric errors of the pinion and gear as 15ym
and 20 ym based on the radial run-out tolerance F, (adopting
the standard of ISO 1328-2:1997). Figure 12 shows the re-
lationship of the eccentric error and the line of action on the
end face for the pinion and gear. E; (i = p, g) is the eccentric
error of the pinion or gear, and ®; is the angle between E; and
the line of action on the end face. As shown in Figure 12, ®;
can be obtained as follows:

<Di:g—[oct+(wit+y,~)—<p], (i=p.9) (19)

gtk Uy, Gy Uy +(km~8+cm~8)- cosf, =—f,- cosﬁb+r—,

T~uzg+kuzg-uzg+cuzg-uzg +(km~8+cm~6)- cosfB, =—f,- cosﬁh+r—,

where «, is the operating pressure angle; ¢ is the position
angle of the center line; w; is the angular velocity of the
pinion or gear; and y; is the initial phase of the eccentric
error. Thus, the equivalent error of E; projected onto the
meshing line direction is

eg = E;- cosD; - cosfy, (i=p,9), (20)
where f3, is the base helix angle. Finally, the relative cu-
mulative pitch error projected onto the meshing line di-
rection, eccentric error, and loaded transmission error
obtained by the LTCA are superimposed, and the result is
the displacement excitation of the gear system, which value
in one period is shown in Figure 13.

4. Dynamic Model and Solution Method

4.1. Dynamic Model. Figure 14 depicts a 12-DOF dynamic
model of a helical gear pair. In this picture, the pinion is left-
handed and rotates about the z-axis counterclockwise. Both
gears are treated as rigid discs, which are connected to each
other by a time-varying mesh spring k,,, in the plane of action
along the normal direction. The displacement excitation e is
shown in Figure 13 on the line of action.

Both gears have radial motions in the x and y directions
and axial motion in the z direction. Moreover, they have the
swinging motion around the x-axis and y-axis and torsional
motion around the z-axis. Thus, the equations of motion of
the gear pair are [31]

p-5ép+kxp~xp+cxp~xp+(km~6+cm~5)- cosfB, - siny =—f - cosp, - siny,
p-yp+kyp~yp+cyp-)'/p+(km~6+cm~5)~ cosfy, - cosy = —f - cosp, - cosy,

itk 2z, v, 2,—(k, 8+c, 0) sinf, = f,- sinB,

J T-iixp+kuxp-uxp+cuxp-1/lxp+(km~8+cm-8)- sinf, - siny =—f,- sinf3, - siny,

T~uyp+kuyp-uyp+cuyp~uyp+(km-6+cm-6)~ sinf, - cosy =—f,- sinf, - cosy,

Tp
bp
(21)

m -5c'g+kxg-xg+cxg-)ég—(km-5+cm~8)- cosfB, - siny = f - cosf, - siny,

mg~yg+kyg'yg+cyg')'/g—(km-5+cm-3)~ cosfy, - cosy = f - cosf - cosy,

my -2tk 2,4y 2y +(ky 8+c, - 0)- sinf, =—f - sinf,

] T~uxg+kuxg~uxg+cuxg-uxg+(km~6+cm~8)- sinf, - siny = —f, - sinf, - siny,

T-uyg+kuyg~uyg+cuyg-uyg+(km-8+cm-5)~ sinf, - cosy =—f,- sinf, - cosy,

Tg
bg
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FIGURE 10: Meshing-in impact force at (a) low speed (50.8 rpm) and (b) high speed (2104 rpm).
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FIGURE 11: Measured cumulative pitch error: (a) pinion; (b) gear.

FIGURE 12: Relationship of eccentric error and line of action on end face.
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FIGURE 14: 12-DOF dynamic model of helical gear pair.

where m; is the mass of gear i (i = p, g); L, I, and I; are the
moments of inertia around the x-, y- and z-axes for gear i;
is the base radius of gear i; §, is the base helix angle; f; is the
impact force; T}, is the driving torque; and T, is the load
torque. k,, and c,, are the time-varying mesh stiffness and
mesh damping of the engagement pair:

EmIszzg

+1 (22)

>

2
2pTbg T Lzg"bp

where & is the mesh damping ratio, which value is 0.07
in this paper; k,, is the mean mesh stiffness of the en-
gagement pair. ky;, kyi, Kzis Kuxis Kuyis kuzi and cyis Cyis C2is Coxis
Cuyi> Cuzi are the support stiffness and support damping in
the directions of the 6-DOF, respectively, for gear i
(i = p, g). In Equation (21), § is the relative displacement

between the gear pair in the direction of the meshing line,
and it is expressed as follows:

0= [(xp—xg) . sint//+(yp—yg) CosY + g, +uzg] - cos fB,
+ [(uxp + uxg) - siny +(uyp + uyg) ccosy -z, + zg]
- sinf, —e,
(23)

where v is the angle between the plane of action and the
positive y-axis, which is defined as

‘/’:““t_q))

&+,
where a, is the operating pressure angle, and ¢ is the position
angle of the center line in Figure 14. Equation (21) is written
in the matrix form as

counterclockwise rotation for pinion,
clockwise rotation for pinion,

(24)
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M-G+(Ky+K,) -q+(Co+Cp)-g=k,-e-V +¢,-é-V — f.- VI +P,

M = diag| m, m, m,

2 2 2
rbp pr rbp

Iyp IZP ng Iyg Izy
_Ep m. m. 9 9 %9

g g g 7’2 7’2 r2 >
bg "bg "bg

T
[xp Yp Zp Uxp Uyp Uzp Xg Vg Zg Uxg Uyg ”29] )

q:
V = [siny - cosf,

cosy- cosf, —sinfl, siny-sinf, cosy-sinfl, cosp,

—siny- cosf, —cosy-cosf, sinf, siny-sinf, cosy-sinf, cosp,l,
K,=k, V -V,
C,=c, -V -V,
K, = diag [kxp Kyp kep Kuxp Kuyp Kuzp kg kyg kzg Kuxg Kuyg Kz ]
C, = diag[ €xp €yp Czp Cuxp Cuyp Cuzp Cxg Cyg Czg Cuxg Cuyg Cuzg |
Cy = diag[cxp Cyp Cop Curp Cuyp Cuzp Cxg Cyg Czg Cuxg Cupg Cuzg )
P:[OOOOO%OOOOO—%T,

(25)

where M is the mass matrix; K, and C, are the supporting
stiffness matrix and supporting damping matrix; K,,, and C,,
are the meshing stiffness matrix and meshing damping matrix;
and V is the projection vector of displacement in the directions
of the 12-DOF, which convert to the meshing line direction.

4.2. Solution Method. There are two main types of methods
to solve the gear system dynamic equation: numerical in-
tegration methods and parse methods. Numerical in-
tegration methods include the Gill method, Runge-Kutta
method, Ritz method, etc. Parse methods include the har-
monic balance method, Fourier series method, mode su-
perposition method, etc. Considering of the low-frequency
error, the computation period of the dynamic equation has n
meshing periods, and # is equal to the smallest common
multiple of teeth number of the pinion and gear. However,
distinctive features of the parse method are the quick cal-
culation speed and the ability to directly obtain the steady-
state solution. Thus, this paper uses the method of Fourier
series to solve the dynamic equations.

The general idea is that the response and exciting force
are expanded as Fourier series; the coefficient of each Fourier
component of the response is ordered to be equal to that of
the exciting force; finally, the stable solution is obtained.

First, let q, k,,,, and e be expressed as follows:

q=q +Aq,
k,, =k, + Ak, (26)
e=e,+Ae,

where qq, k.0, and e, are the mean value of the dynamic
transmission error, time-varying mesh stiffness, and error
excitation; Aq, Ak,,, and Ae are the fluctuating components.

By substituting Equation (26) into (25), we obtain a new
equation:

M-AG+C-AGg+K,-q,+AK:-q, +K; - Aq+AK: Aq
:kmo'eo‘VT+km0~Ae'VT+Akm~e0-VT+Akm
De- V' tc, - 8é- VI - f .V 4P,
(27)
where K():kmo'VT~V+Kb, AK:Akm~VT-V, C=c,
V.V +C,.

Equation (27) is expressed in terms of a time-varying
part and a time-invariant part as follows:

M-Aj+C-AG+K,-Aq=(k,, Ae- VT +c, -Aé-VT)
—AK- (qo +Aq) + Ak, -e- VI - f . VT,

Ky qy=kyg-€-V' +P,
(28)
For the term AK-(qo+Aq) on the right side of Equation
(28), qo can be computed using Equation (28); Aq is un-
known, so it is approximated by the fluctuating component
of the loaded transmission error obtained by the LTCA,

which is denoted as Aq;. Let F be equal to the right side of
Equation (28), that is,

M'Aq+C'Aq+Ko‘Aq:(kmo~Ae-VT+cm-Aé-VT)
-AK- (q + Aq)+
Akm~e-VT—fs.VT=F,
(29)

where F is the exciting force of the gear system. So, the
dynamic equation (25) has been converted to the constant
coefficient differential equation (29).
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Second, the dynamic response Aq and exciting force F
are expanded into n order Fourier series:

n
Aq = Aq, + Z (A, cosiwt + B, - siniwt),
- (30)
F=F;+) (C cosiwt +D; - siniwt),
i=1

where w is the fundamental frequency, with w = 2mn,,/60z ;;
n, is the speed of the pinion; and z, is the number of gear
teeth. The deciding rule of # order is that the exciting force F
that is expanded as a Fourier series should be consistent with
the one before expansion; here, n = 5000.

Finally, by plugging the ith-order (i = 1, 2, ..., n)
expressions of the response and the exciting force into

Ly

rbp

I,

rbg

where e is the sum of the eccentric errors of the pinion and
gear. This paper calculates the relative rotational displace-
ment between the pinion and gear in two cases: case one: the
amplitude of the eccentric error of the pinion and gear is
0 ym; case two: both amplitudes are 10 ym. The results of two
cases are shown in Figure 15.

Figure 15 shows that only the amplitude of the mesh
frequency wave slightly varies between the results of
Fourier series method and Runge-Kutta method, which
illustrate that the gear system dynamic equation can be
solved using the Fourier series method. In terms of
computing time, there is no difference between these two
methods in case one; in case two, the computing time of the
Fourier series method is approximately 5s, whereas, the
computing time of the Runge-Kutta method is approxi-
mately 60s. If the example in Table 1 is solved by the
Runge-Kutta method, the computational cycle will be
approximately 20 times longer than that of the example in
this section, so the computing time will also significantly
increase. To improve the calculation efficiency, this paper
adopts the Fourier series method to solve the system re-
sponse in the following analysis.

5. Example Analysis and
Experimental Validation

5.1. Example Analysis. 'This paper provides two calculation
examples using the proposed method. The example at low
speed (50.8 rpm) shows the computation of the quasistatic
transmission error, and the example at a high speed
(2104 rpm) shows the analysis of the vibration response of
the gear system. The basic parameters of the examples are

—ti, +{cm . [(ap + ng) . cosﬁb—é] + K,

— g +{cm . [(up + Lig) - cos B, —é] +k,,
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Equation (29), the linear algebraic equations can be

obtained.
—w} M +K, w;-C A, C

= , (31)
~w* M +K, || B, D,

_wi‘C

where w; is the frequency of the ith-order harmonic, and w; =
iw. When A; and B; are calculated by Equation (31), the
responses Aq and q can be obtained using Equations (30)
and (26).

4.3. Comparison of Solution Methods. To verify the accuracy
and calculation speed of the Fourier series method, a simple
example is solved using this method and the Runge-Kutta
method. The basic parameters and dynamic equation of the
example are shown in Table 2 and the following equation:

T
[(up+ug). cosﬁb—e]}. cos B, :ﬁ,
P

(32)

T
. [(up+ug)- cosﬁb—e]}- cos f3, =i,
g

shown in Table 1; other system parameters are listed in
Table 3.

Based on the above examples, the equations of motion in
Section 4.1 are solved, and the relative vibratory displace-
ment along the line of action on the end face can be obtained.
The specific results in the time and frequency domains are
shown in Figures 18-25.

5.2. Example Calculation by Using the Traditional Method.
In order to validate the effectiveness and feasibility of the
proposed method, we compare it with the traditional
method. The novelty of the proposed method lies in con-
sidering the measured manufacturing error in the study of
tooth modification. So, in this section, we give two examples
by using the traditional method: one is without regard to the
manufacturing errors and the other is considering the given
value and variation of the manufacturing errors according to
the manufacturing tolerance.

Case 1. Ignoring the effect of the manufacturing errors.

In this case, the gears only have the tooth modification
and eccentric errors. The value of modification is the the-
oretical modification curve in Figure 1. The eccentric errors
are consistent with the above examples in Section 5.1. We do
TCA and LTCA on the theoretical modification tooth
surface fitted by a bicubic B-spline and compute the time-
varying mesh stiffness and meshing-in impact based on the
results of TCA and LTCA. Finally, taking the time-varying
mesh stiffness, meshing-in impact, loaded transmission
error and eccentric errors as the internal excitations, we do
dynamic analysis for the gear system.
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TABLE 2: Parameters of simple example.
Parameters Pinion Gear
Number of teeth, Z 20 40
Handedness Left Right
Normal modulus, m,, (mm) 2.5 2.5
Normal pressure angle, « (deg.) 20 20
Helix angle, 8 (deg.) 25 -25
Tooth width, b (mm) 40 40
Load torque, T, (N-m) — 500
Input speed, rpm 2000 —
Moment of inertia, I (kg-mz) 597 x107* 531%x107°

Case 2. Considering the given value and variation of the
manufacturing errors.

On the basis of Case one, we increase tooth profile error
and cumulative pitch error to the gear system. Refer to the
literature [15], we set the variation of the tooth profile error
and cumulative pitch error as a harmonic function, shown in
the following equation:

Eyg () = Eg- Sin(“’mt + q)ftx) +Efp - Sin(wth + ¢fP2)

—Efp1 . sin(wrlt + (prl)’
(33)

where Ej, is the amplitude of the tooth profile error of
pinion; Eg,; and Ejy, are the amplitudes of the cumulative
pitch errors of pinion and gear. Referring to the standard of
ISO 1328-1:1997, we find out Eg, = 13 ym, Eg,; = 28 um, and
Egyy = 36 um; w,, is the mesh frequency; w,, and w,, are the
rotation frequencies of pinion and gear; and ¢; (i = fa, fp1,
fp2) are the phase angles, which are set as ¢, = 0, ¢,1 = 31/2,
and @p, = /2.

In the process of dynamic analysis, we add the
manufacturing errors to the equations of motion directly like
(22) in reference [15], whereas the proposed method brings
the tooth profile error to the loaded transmission error by
TCA and LTCA.

All the two cases are calculated at 50.8rpm and
2104 rpm. The basic parameters of gears, shafts, and bearings
are consistent with the above examples in Section 5.1. The
results are compared and analyzed in Section 5.4.

5.3. Experimental Validation. A test system in Figure 16 was
assembled to measure the system dynamic response. The test
system can produce a circulating power flow through a close
loop between the test and reaction gears. The test and re-
action gears were connected by flexible shafts and elastic
couplings, respectively, which were used to transmit a torque
to the loop. Circular gratings were installed in the axle end of
each test gear to measure the circumferential turning angle,
which precision was +5". The grating signal was collected
using a data acquisition card and an M + P acquisition
system as shown in Figure 17.

The turning angles of the test gears were converted from
the grating signal, and the gear transmission error along the
line of action on the end face was calculated using the
following equation:

Shock and Vibration

Ax =@y 1yy=¢, Tpp (34)

where ¢, and ¢, were the actual turning angles of the pinion
and gear; 4, and 1, were the base radii. The specific results
in the time and frequency domains are shown in
Figures 18-25.

5.4. Comparison and Analysis

5.4.1. Result Analysis at 50.8 rpm. Figures 18 and 19 show
the quasistatic transmission error of the helical gear pair and
its spectrum for the above three examples and the experi-
ment. The amplitudes corresponding to the fundamental
frequencies in Figure 19 are summarized in Table 4, where
fzgeszgs is the rotation frequency of gear; .., is the rotation
frequency of pinion; and f,,./.s is the mesh frequency.

Comparing the results in Figures 18 and 19, we can see
that the transmission error curves in both experimental and
simulation results include the fluctuations of the rotation
frequency and mesh frequency, and the values of these
fundamental frequencies in the simulation results are largely
consistent with ones in the experimental results.

However, combining Table 4, some other conclusions
can be drawn:

(1) For the case of the given manufacturing errors, the
vibration amplitudes of the fundamental frequencies
are clearly larger than the experimental result, which
indicates that the amplitudes of the given cumulative
pitch error and tooth profile error are so large as to
be not practical. This case’s results are certainly not
desirable.

(2) For the case of no manufacturing errors, the am-
plitude corresponding to mesh frequency is far less
than the experimental result. So, it is also not ad-
visable to predict the transmission performance of
the machined gear system on the basis of the result of
this case.

(3) Only in the case of the measured manufacturing
errors, the amplitudes of the base frequency com-
ponents are close to the ones in the experimental
results. Having some differences between the two
results is because the internal and external excita-
tions in the experiment are more complex than the
simulation. By and large, the proposed method can
serve as an estimate when the gear transmission
experiment cannot be carried out.

Through the above analysis, we learn that the proposed
method is viable and practical. So, using a Chebyshev high-
pass filter, we handle the results of the experiment and the
simulation calculated by using the proposed method. The
new curves and their FFT spectra after filtering are shown in
Figures 20 and 21. The displacement curves for both the
experimental and simulation results in Figure 20 have the
modulation envelope. Table 5 summarizes the sidebands
from the experiment and simulation according to Figure 21.
In  this table’ fme _fzpe +fzge> zfme _fzpe _fzge’ fms _fzp.v
Jins = fagss 2fms = fopsr and 2fys — foos are the lower sidebands;
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—— Fourier series method —— Fourier series method
--- Runge-Kutta method --- Runge-Kutta method

(a) (b)

FIGUure 15: Relative rotational displacement in (a) case one and (b) case two.

TaBLE 3: Parameters of example system.

13

Gear parameters Shaft parameters
m (kg) I, (kg~m2) I, (kg-mz) I (kg-mz) Maximum diameter (mm) Length (mm)
.. 1.62 x 1.62 x 1.13 x
Pinion 8.03 10-2 10-2 102 55 310
2.17 x 2.17 x 3.89 x
Gear 38.99 10-! 10! 10! 70 315
Bearing parameters
. Ky
Stiffness k. (N/m) k, (N/m) k. (N/m) (N/m) kuy (N/m) k.. (N/m)
2 x 108 2 x 108 1 x 108 1 x 107 1 x 107 0
. ) ¢y c, Cux ' .
Damping ¢, (N-s/m) (N-s/m) (N-s/m) (N-s/m) Cuy (N-s/m) €y (N-s/m)
Pinion 4.01 x 10° 4.01 x 10° 2.83 x 107 40.2 40.2 0
Gear 8.83 x 10 8.83 x 107 6.24 x 10 1.47 x 107 1.47 x 107 0

The mass and inertia of pinion and gear include the mass and inertia of the corresponding shaft.

Loader  Test gears

Direct current motor Reaction gears Coupling

Circular gratings

FIGURE 16: Gear transmission test system to implement proposed measurement scheme.

F1GURE 17: Signal acquisition system.
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FIGURE 19: Spectrum and partial enlarged view of quasistatic transmission error: (a) experiment; (b) the measured manufacturing errors;

(d)

(¢) no manufacturing errors; (d) the given manufacturing errors.

Smet2feges frnetfope  2fmet 2fager 2fmetfaper  2fme+ 2fzpes frequency signal of the pinion and gear. However, because of
Sins * fago fms *+ fapss 2fms + frge and 2fys+ fops are the upper the more complex low-frequency excitations in experiment,
the distribution of the sidebands is symmetrical for the

sidebands. According to the results, the mesh frequency and
its harmonic components are all modulated by the rotation  simulation, but not for the experiment.



Shock and Vibration

15

20 T

10

Uf““w
“lll"\l\\

||||.\\

The relative vibration displacement
after filtering (ym)
(=}

Hw“w“‘* MM

0V

|r\||

MMWA

~10 -
-20 L
0 0.5

—— Experiment

—— Simulation

FIGURE 20: Mesh frequency component of quasistatic transmission error.

| 1 H 1 T
! 31.83Hz 32.22Hz ! 322Hz
i 31.85Hz
05t /32 .62Hzl I o5k /32 54Hz
| 30.851;13 33 4HA | 1.35Hz 33,06HZ
— . 4 0 L
HIREE 30 35 40 ! 25 30 35 4
]
'l’ 4 T T " 4 T
~3F 1592Hz |4 = 3Ff i E
g i z g | 15.76Hz ¢'0-1HZ
= L2k /16'31HZ ] e 2 /1645H
) B R T
E | 16.7Hz g | 15 26H> / ’
29l I 1333Hz % || 7 4 E 2t I : ,16.95Hz .
E "o - & PN
s ! 10 15 20 25 3 ! 10 15 20 25
. I -
=AY S Bt I A
i e 1 ‘L L
I i I -
0 L’/kal:_—'JA:\v(/ A 0 P v— e
0 B/t 40 60 0 TT20-- T 40 60
Frequency (Hz) Frequency (Hz)
(a) (b)

FIGURE 21: Spectrum and partial enlarged view of gear frequency component of quasistatic transmission error: (a) experiment

(b) simulation by using the proposed method.

5.4.2. Result Analysis at 2104 rpm. At 2104 rpm, we do the
vibration test and the simulations in three cases mentioned
in Section 5.4.1. Figures 22 and 23 show the dynamic
transmission error and its spectrum for the experiment and
three simulations. Table 6 summarizes the vibration am-
plitudes of the main frequencies for four kinds of results,
where the meanings of f,ge/z¢0 f2pe/zpss AN fry1e/ms are same as

Table 4.
Comparing with the results calculated at 50.8 rpm, we

can see that the vibration amplitudes of mesh frequency and
rotation frequencies opinion and gear increase a lot for the
experiment. However, to the simulations of three cases, only
the vibration amplitude of mesh frequency grows a little.
Next, we analyze these phenomena:

(1) For the simulations of three cases, the cumulative
pitch error at 2104 rpm is same as one at 50.8 rpm,
so the vibration of rotation frequencies is almost

unchanged. With the increase of speed, the meshing-
in impact force grows, which leads to the vibration of
mesh frequency intensified.

(2) For the experiment, because of speed rise, the am-
plitude corresponding to rotation frequency of gear
nearly doubles the one at 50.8 rpm, which may be
caused by low-frequency excitations other than the
cumulative pitch error. About the vibration of mesh
frequency, the extent of increase is much larger than
one in the simulations, which may result from
meshing-in impact and other new high-frequency

excitations.
Based on the above analysis, we can draw some con-
clusions as follows:

(1) For the case of the given measured manufacturing
errors, although the amplitudes corresponding to
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FIGURE 25: Spectrum and partial enlarged view of gear frequency component of dynamic transmission error: (a) experiment; (b) simulation
by using the proposed method.

dynamic force, dynamic load, and assemble error of
gear system, the simulation results would approxi-
mate the experiment results more and more. So the
proposed method is feasible and worth studying.

mesh frequency and rotation frequency of gear are
close to the ones in the experimental results, the
simulation result is still undesirable. This is because
the vibration intensified in the experiment is not
caused by the cumulative pitch error and tooth
profile error. The simulation of this case is distorted.

(2) For the case of no manufacturing errors, the vibration
of high frequency is still far less than one in the ex-
perimental result. So, it is also totally impracticable.

(3) About the case of the measured manufacturing er-
rors, the waveform and trend of the dynamic
transmission error are roughly identical to ones in
the experimental results. In a future study, if we
attempt to consider other factors such as the bearing

We analyze the high-frequency components for the
experiment and the simulation computed by using the
proposed method further on. Figures 24 and 25 show the
relative vibration displacement and its FFT spectra after
filtering out the low-frequency components. The sidebands
around the meshing frequency in the experimental results
are more complex than those in the simulation results. It
suggests that some new low-frequency excitations come into
being in the experiment. Table 7 shows the corresponding

sidebands in the experiment and simulation.
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TaBLE 4: The amplitudes corresponding to the fundamental frequencies in experimental and simulation results at 50.8 rpm.

fager 0.197 Hz (um) fape: 0.786 Hz (um) fme: 15.92Hz (um)
Experimental result 25.21 29.6 3.62
Szt 0.344 Hz (um) Seps: 0.848 Hz (um) fms: 161 Hz (um)
1 2491 16.12 2.42
Simulation result 2 20 15.2 0.90
3 49.63 37.77 12.86

The simulation result 1 is corresponding to the case of the measured manufacturing errors, 2 is corresponding to the case of no manufacturing errors, and 3 is
corresponding to the case of the given manufacturing errors.

TaBLE 5: Sidebands in experimental and simulation results at 50.8 rpm.

Experimental result

Base frequency Sideband

Jme (Hz) Jime = fepe + frge (Hz) Jme+ 2fzge (Hz) Jme+ fope (Hz)

15.92 15.33 16.31 16.7

Second frequency Sideband

mee (HZ) mee _fzpe _fzge (HZ) 2fme + 2fzge (HZ) zfme +fzpe (HZ) zfme + 2fzpe (HZ)

31.83 30.85 32.22 32.62 334
Simulation result by using the proposed method

Base frequency Sideband

fms (HZ) fms _fzps (HZ) fms _fzgs (HZ) fms +fzgs (HZ) fms +fzps (HZ)

16.1 15.26 15.76 16.45 16.95

Second frequency Sideband

2fms (HZ) zfms _fzps (HZ) 2fms _fzgs (HZ) zfms +fzgs (HZ) zfms +fzps (HZ)

32.2 31.35 31.85 32.54 33.06

TaBLE 6: The amplitudes corresponding to the fundamental frequencies in experimental and simulation results at 2104 rpm.

feger 14.22 Hz (um) fepe: 3453 Hz (um) fine: 666.4Hz (um)
Experimental result 45.53 12.86 15.72
frgst 14.23 Hz (ym) fepst 35.08 Hz (um) Jms: 666.2Hz (um)
1 24.66 15.93 5.28
Simulation result 2 20 15.21 1.57
3 49.63 37.78 14.47

The simulation result 1 is corresponding to the case of the measured manufacturing errors, 2 is corresponding to the case of no manufacturing errors, and 3 is
corresponding to the case of the given manufacturing errors.

TaBLE 7: Sidebands in experimental and simulation results at 2104 rpm.

Experimental result

Base frequency Sideband

fme (HZ) fme _fzpe (HZ) fme +fzge (HZ) fme +fzpe (HZ)

666.4 631.7 680.4 700.7

Second frequency Sideband

mee (HZ) 2fme _fzpe (HZ) zfme _ﬁzge (HZ) mee +fzge (HZ) 2fme+ zpe (HZ)

1332 1298 1318 1347 1367
Simulation result by using the proposed method

Base frequency Sideband

fms (HZ) fms _fzps (HZ) fms _fzgs (HZ) fms+ zgs (HZ) fms +fzps (HZ)

666.2 630.8 652.2 680.7 701.5

Second frequency Sideband

mes (HZ) mes _fzps (HZ) mes _fzgs (HZ) mes +fzgs (HZ) mes +fzps (HZ)

1332 1297 1318 1347 1368
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6. Summary

At 50.8 rpm and 2104 rpm, we simulate a helical gear system
by using the proposed method and the traditional method
and perform a test. Through comparative analysis of the
whole results, it could be seen that the proposed method in
this paper is significant and offers a fertile field for study.

7. Conclusions

This paper has incorporated the measured tooth profile
error and cumulative pitch error into a gear dynamics
model and calculated the time-varying mesh stiffness and
meshing-in impact using the TCA and LTCA on an actual
tooth surface. Because the period of the relative pitch error
between pinion and gear is long, the fast and effective
Fourier series method is used. Considering a pair of hel-
ical gears as an example, this paper does simulation and
a verification test at 50.8 rpm and 2104 rpm, and the
simulation results are compared with ones computed by
using the traditional method. Based on the analysis results,
the following conclusions can be drawn:

(1) Because of the quasistatic analysis based on the
actual fitting tooth surface, the vibration amplitude
of mesh frequency for the proposed method is closest
to the corresponding experimental result among the
three cases of simulation.

(2) At2104 rpm, the waveform and trend of the dynamic
transmission error for the proposed method are
roughly identical to ones in the experimental results.
However, the amplitudes of the fundamental fre-
quency components are smaller than that in the
experimental results. It shows that the proposed
method offers a fertile field for study in order to be
pretty approximate to the experiment results at
a high speed.

(3) The traditional methods of either no manufacturing
errors or the given manufacturing errors are too
distorted to predict the actual transmission perfor-
mance of gear system.

(4) In contrast, the proposed analysis method is rea-
sonable, feasible and interesting to study.

Appendix
The method of reverse vertices is as follows:

Assuming n-1 given position vectors P; (i=1,2, ..., n-1),
we need to solve the control apexes of a cubic B-spline curve
passing the n-1 positions, denoted as V; (i = 0,1, ..., n).

Equation (A.1) show the relationship of the position vectors
P; and the control apexes V.

1 2 1 .
gVi + EVm + gVi+2 =P, (i=01...,n-2), (Al

However, in Equation (A.1), the numbers of equations
and unknowns are unequal. So, two end conditions need to
be supplemented.

Case 1. Unclosed curve
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V,=V,,
o (A.2)
Vn—l = Vn’
Case 2. Closed curve
V. =V,
et (A.3)
vV, =V,

In this paper, we join Equations (A.1) and (A.2) to solve
the vertices of a cubic B-spline curve.
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