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Morlet wavelets do not satisfy the permissibility condition of wavelet analysis, and there are therefore no inverse transformations
for Morlet wavelet transforms. In this paper, we put forward the Yang and Pan transform (YPT), which is an adaptive discrete
analysis method for shock signals. First, we improved the Morlet wavelet so that the centre and radius of the frequency window
can be easily adjusted in the frequency domain. Second, we proposed the extremum frequency concept and analysed the ex-
tremum situation of the improved Morlet wavelet. /ird, combining the improved Morlet wavelet and extremum frequency, we
advanced the theory of the YPT, which does not need to satisfy the permissibility condition. We then continued by using
a smoothing operator that can smooth the potentially distorted signal reconstructed after being analysed by the YPTand filtered
by using the threshold filtering theory. /is operator proved to be simple and efficient. Finally, a noisy signal was reconstructed
after being analysed and filtered using the YPTand threshold filtering, respectively, to verify the validity of the theory, and the YPT
was compared with the discrete wavelet transform (DWT). As a supplement to the theory in engineering, the shock signals about
a gun automatic mechanism were also analysed using the theory in this paper. Good results were obtained, thereby demonstrating
that the YPT can be helpful to further extract the features of shock signals in pattern recognition and fault diagnosis.

1. Introduction

Wavelet transforms are a significant method for analysing
signals, and Morlet wavelets are often used as the kernel
functions of wavelet transforms. In 1982, Morlet first used
them to analyse seismic signals, employing a complex wavelet
using a Gauss envelope and a special case of Gabor wavelets as
well [1]. /e continuous wavelet transform of a signal by
Morlet wavelets can achieve arbitrary high resolution in the
time or frequency domains [2, 3]. /ere is a 90-degree phase
shift between its real and imaginary parts, whichmakes it easy
to obtain the instantaneous frequency and phase of the signal,
and it therefore has a wide range of applications. For example,
Morlet wavelets have been applied to signal filtering and
denoising [4], mechanical fault diagnosis [5–8], the analysis of
medical signals [9], research on river runoff in natural en-
vironments [10], research on rainwater evaporation [11],
problems of polymer pollution [12], the atmospheric system

[13], the influence of cosmic rays on organisms [14], and the
motion of celestial bodies [15].

However, the Morlet wavelet does not satisfy the per-
missibility condition of wavelets, and wavelet reconstruction
therefore cannot be realised. To obtain the inverse trans-
formation of the Morlet wavelet, many scholars have im-
proved the Morlet wavelet and obtained corresponding
reconstruction transforms. Grossmann et al. [16] added
proper correction terms to the Morlet wavelet to satisfy the
permissibility condition and properly set the parameters for
the tuning signal so that the rounding error of the computer
had the same order of magnitude as the correction terms so
that the correction terms could be omitted [17]. Ji and Yan
[17], undertaking research at Northwestern Polytechnical
University in China, improved the Morlet wavelet. /ey
fixed some parameters in the Morlet wavelet and put for-
ward theMorlet and Ji transform (MJT) as well./eMJTcan
reconstruct a signal without needing to meet the admissible
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condition. It is a continuous transformation of a signal and
has a good time-frequency localisation property. Partially
referencing the MJT and on the basis of the Morlet wavelet,
we improved the Morlet wavelet in another way, further
advancing a method for adaptively and discretely analysing
signals.

In this paper, we first summarise the MJT and then
propose another method to improve the Morlet wavelet
cluster. Subsequently, the time and frequency windows of
the Morlet wavelet, which were improved by Ji and Yan [17],
are analysed, as is the Morlet wavelet improved by us. /ird,
the concept of extremum frequency is proposed in this
paper, and the extremum properties of the Morlet wavelet
cluster as improved by us are then analysed. Based on the
improved Morlet wavelet cluster and extremum frequency,
this paper then presents a new method that adaptively and
discretely analyses a vibration signal and simultaneously
yields the YPT, which can completely reconstruct the
original signal. Additionally, we continue by putting forward
a smooth operator that can smooth the potentially distorted
signal reconstructed after analysis using the YPTand filtered
employing threshold filtering theory. Finally, through the
inverse transformation of the YPT, a filter is constructed to
verify the correctness and practicability of the YPT by
combining a signal with high noise. At the same time, the YPT
is compared with the DWT. As a supplement to the theory in
engineering, the shock signals about a gun automatic
mechanism are also analysed by using the theory in this paper,
which can provide help for further extracting the features of
shock signals in pattern recognition and fault diagnosis.

2. MJT and Improved Morlet Wavelet Cluster

/is section first introduces the content of the MJT, and we
then improve theMorlet wavelet cluster in theMJT to obtain
our improved Morlet wavelet cluster and analyse the prop-
erties of the time and frequency windows for the latter im-
proved wavelet cluster.

2.1. MJT. /e analytical expression of the Morlet wavelet is

m(t) � e
−t2/2

e
jω0t

, ω0 ≥ 5. (1)

/e Fourier transform of (1) is

m̂(ω) � 􏽚
+∞

−∞
e

jω0t
e
−t2/2

e
jωt

dt

�
���
2π

√
e
− ω−ω0( )

2
/2

.

(2)

Given a wavelet ψ(t) ∈ L1 ∩L2, the permissibility con-
dition of the wavelet transform is

Cψ � 􏽚
+∞

−∞

|ψ̂(ω)|2

|ω|
dω< +∞. (3)

We know ψ̂(0) � 0 by (3), whereas m̂(0)≠ 0; thus, the
Morlet wavelet does not satisfy the permissibility condition
of the wavelet transform. Following Ji and Yan [17], let
ψ(t) � (1/

���
2π

√
)e−(t2/2)+j2πt, and the modifiedMorlet wavelet

cluster is then obtained by stretching and translating ψ(t).
/eir improved Morlet wavelet cluster is

ψf,τ(t) �
|f|
���
2π

√ e
−f2(t−τ)2( )/2( )+j2πf(t−τ)

, f ∈ R, τ ∈ R.

(4)

Assuming signal h(t) ∈ L2, the expression for the MJT
is [17]

J(f, τ) �〈h(t),ψf,τ(t)〉

� 􏽚
+∞

−∞
h(t)�ψf,τ(t) dt

� 􏽚
+∞

−∞
h(t)

|f|
���
2π

√ e
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� 􏽚
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���
2π

√ e
−f2(τ−t)2( )/2( )+j2πf(τ−t)

dt

� h(τ)∗ψf,0(τ).

(5)

According to (5), the Fourier transformation of J(f, τ)

with respect to τ can be obtained:

Ĵ(f) � 􏽚
+∞

−∞
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−j2πfτ
dτ
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· dte
−j2πfτ

dτ
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−f2(τ−t)2( )/2( )+j2πf(τ−t)
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−j2πfτ

· dτh(t)
|f|
���
2π

√ dt

� 􏽚
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h(t)e
−j2πft

dt

� H(f).

(6)

/erefore, according to (6), the inverse transformation
of h(t) can be obtained:

h(t) � 􏽚
+∞

−∞
H(f)e

j2πft
df

� 􏽚
+∞

−∞
􏽚

+∞

−∞
J(f, τ)e

−j2πfτ
dτ e

j2πft
df.

(7)

Formulas (5) and (7) are, respectively, the positive
transformation and inverse transformation formulas of the
MJT. According to (5), the signal h(t) can be transformed
into the f – τ domain for analysis. /e MJT is a continuous
transformation that has good time-frequency localisation
properties [17], and it is a redundant transformation that
requires large amounts of calculations and storage space.

2.2. Improved Morlet Wavelet Cluster. In this section, we
improve the Morlet wavelet cluster in (4) and analyse the
properties of the time and frequency windows for the im-
proved Morlet wavelet cluster. /e improved Morlet wavelet
cluster, denoted as φf,δ(t), is expressed as (8). Formula (9) is
the Fourier transform of (8):
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φf,δ(t) �
|f| + δ

���
2π

√ e
−(|f|+δ)2t2( )/2( )+j2πft

, (8)

􏽢φf,δ(c) � 􏽚
+∞

−∞
φf,δ(t)e

−j2πct
dt

� 􏽚
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−∞

|f| + δ
���
2π

√ e
−(|f|+δ)2t2/2

e
j2π(f−c)t

dt

�
sgn(|f| + δ)

��
π

√ 􏽚
+∞

−∞
e
−t2

e
j((2

�
2

√
π)/(|f|+δ))(f−c)t

dt

� sgn(|f| + δ)e
− 2π2(f−c)2( )/(|f|+δ)2[ ].

(9)

Cauchy’s theorem on the two-dimensional complex
plane can be used to compute the definite integral in (9), and
it can also be obtained directly from the Poisson integral
formula. φf,0(t) � ψf,0(t) can be obtained by using (4) and
(8). We will now analyse the properties of the time and
frequency windows for φf,δ(t), the centre of which in the
time domain is denoted as t∗, which can be obtained by the
following equation:

t
∗

�
􏽒

+∞
−∞ t φf,δ(t)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
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􏽒
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���
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(10)

In the process of calculating the definite integral in
(10), we obtain 􏽒

+∞
−∞ t|φf,δ(t)|2dt � 0 and 􏽒

+∞
−∞ |φf,δ(t)|2dt �

(|f| + δ)/(2
��
π

√
)sgn(|f| + δ) by utilising the properties of

the Gamma function. Of course, as far as (10) is concerned,
we do not have to calculate the latter in detail if we obtain the
former. We can conclude that t∗ is independent of f and τ
via (10); therefore, the centre of the time domain for ψf,0(t)

is also 0. Furthermore, the radius of the time window, which
is denoted as Δt, can be obtained by the following equation:

Δt �
􏽒

+∞
−∞ t− t∗( )2 φf,δ(t)
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(11)

Obviously, the radius of the time window for ψf,0(t) is
1/

�
2

√
|f|, and f together with δ jointly affects the radius of

the time window for φf,δ(t). When the absolute value of f is
large, the radii of the time windows for ψf,0(t) and φf,δ(t)

decrease, but the latter can be adjusted by using the pa-
rameter δ. Similarly, the centre c∗ and radius Δc of the
frequency window for φf,δ(t) in the frequency domain are
obtained as

c
∗

�
􏽒

+∞
−∞ c 􏽢φf,δ(c)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2

dc

􏽒
+∞
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􏼌􏼌􏼌􏼌􏼌
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2

dc
� f, (12)
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2
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dc

􏽒
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2

�
2

√
π

.

(13)

We can conclude Δt × Δc � 1/4π via (11) and (13),
which as a constant cannot be affected by δ, but it can
be separately adjusted by δ, and the width of the fre-
quency window can be linearly adjusted by f and δ;
what is more, f determines the centre of the frequency
window.

3. Extremum Frequency

In this section, the concept of extremum frequency, which
reflects the average rate of change for a sequence and
provides a method for adaptively analysing signals, is first
proposed. Based on this concept, the extremum and ex-
tremum frequency of the improved Morlet wavelet cluster
are analysed, which paves the way for the adaptive analysis of
signals in the next section.

3.1. -e Extremum Frequency of a Sequence. Assuming
a sequence x(n)|n � 1, 2, . . . , M{ }, if x(n−ml − 1)<
x(n−ml) � . . . , x(n− 1) � x(n) � x(n +1), . . . � x(n +mh)>
x(n + mh + 1) and ml ∈ N, mh ∈ N, we regard 􏼈x(n−ml),

. . . , x(n− 1), x(n), x(n + 1), . . . , x(n + mh)􏼉 as one maxi-
mum aggregate of x(n)|n � 1, 2, . . . , M{ }. Similarly, if
x(n−ml − 1)> x(n−ml) � . . . , x(n− 1) � x(n) � x(n + 1),

. . . � x(n + mh)<x(n + mh + 1) and ml ∈ N, mh ∈ N,
we regard 􏼈x(n−ml), . . . , x(n− 1), x(n), x(n + 1), . . . ,

x(n + mh)􏼉 as one minimum aggregate of x(n)|n � 1,{

2, . . . , M}. To go a step further, assuming that the sequence
x(n)|n � 1, 2, . . . , M{ } contains Ph amounts of maximum
aggregates and Pl amounts of minimum aggregates as well,
the extremum frequency of x(n)|n � 1, 2, . . . , M{ }, denoted
as fe, can be defined as

fe ≜
Ph + Pl

M
. (14)

3.2. -e Extremum of the Improved Morlet Wavelet Cluster.
In this section, we let |f| + δ ≠ 0 and analyse the real part of
φf,δ(t), which is equal to (|f| + δ)/(

���
2π

√
)e−(((|f|+δ)2t2)/2)+j2πft

and denoted as φR(t):
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φR(t) �
|f| + δ

���
2π

√ e
−(|f|+δ)2t2( )/2cos(2πft),

φR′(t) �
|f| + δ
−

���
2π

√ e
−(|f|+δ)2t2( )/2

· (|f| + δ)
2
t cos(2πft) + 2πfsin(2πft)􏽨 􏽩.

(15)

Without loss of generality, let |f| + δ > 0. Some prop-
erties regarding the maximum of φf,δ(t) are now described
as follows:

(1) /ere is only one point ξn ∈ (−(1/4f) + n(1/2f),

(1/4f) + n(1/2f)) that makes φ′R(ξn) � 0 in
the interval (−(1/4f) + n(1/2f), (1/4f) + n(1/2f)),

n ∈ Z.

Proof.

φ′R(t) �
|f| + δ
−

���
2π

√ e
−(|f|+δ)2t2/2

· cos(2πft) (|f| + δ)
2
t + 2πftan(2πft)􏽨 􏽩.

(16)

Let ρ(t) � (|f| + δ)2t + 2πf tan(2πft), then φ′R(ξn) �

0⇔ ρ(t) � 0:

ρ′(t) � (|f| + δ)
2

+[2πf sec(2πft)]
2 > 0. (17)

When f> 0,

lim
t→(−(1/4f)+n(1/2f))+

ρ(t) � −∞,

lim
t→((1/4f)+n(1/2f))−

ρ(t) � +∞.
(18)

ρ(t) is continuous in the interval (−(1/4f) +

n(1/2f), (1/4f) + n(1/2f)), and there is therefore only one
point, ξn ∈ (−(1/4f) + n(1/2f), (1/4f) + n(1/2f)), that
makes ρ(ξn) � 0, that is, only one point, ξn ∈ (−(1/4f) +

n(1/2f), (1/4f) + n(1/2f)), that makes φ′R(ξn) � 0.
When f< 0, similarly, there exists only one point

ξn ∈ (−(1/4f) + n(1/2f), (1/4f) + n(1/2f)) that makes
φ′R(ξn) � 0.

(2) ξn(−(1/4f) + n(1/2f)< ξn < (1/4f) + n(1/2f)) is
the only extreme point in the interval (−(1/4f) +

n(1/2f), (1/4f) + n(1/2f)), n ∈ Z.

Proof. When t ∈ (−(1/4f) + n(1/2f), (1/4f) + n(1/2f))

and f> 0,

φ′R(t) �
|f| + δ
−

���
2π

√ e
−(|f|+δ)2t2( )/2cos(2πft)ρ(t). (19)

(i) Let n be an even number. If t ∈ (−(1/4f) +

n(1/2f), ξn), then φ′R(t)> 0; if t ∈ (ξn, (1/4f) +

n(1/2f)), then φ′R(t)< 0./at is to say, ξn is the only
maximum point in the interval (−(1/4f) + n(1/2f),

(1/4f) + n(1/2f)).

(ii) Let n be an odd number; similarly, ξn is the
only minimum point in the interval (−(1/4f) +

n(1/2f), (1/4f) + n(1/2f)).

When t ∈ (−(1/4f) + n(1/2f), (1/4f) + n(1/2f)) and
f< 0, ξn is similarly the only extreme point in the interval
(−(1/4f) + n(1/2f), (1/4f) + n(1/2f)).

Because φ′R(−(1/4f) + n(1/2f))≠ 0, φ′R((1/4f) +

n(1/2f))≠ 0, and with the information given above, the
property of (2) has been proved.

3.3. -e Discrete Sampling of the Improved Morlet Wavelet
Cluster. We can obtain a sequence, which is denoted as
u(n)|n � 1, 2, . . . , N0􏼈 􏼉, if sampling φR(t) from the start
time ts to the end time te and by sampling interval t0.
Figure 1 shows a schematic diagram for sampling φR(t).

According to the parameters for sampling φR(t), there
exists the following formula:

N0 �
te − ts

t0
+ 1. (20)

According to the parameters for sampling φR(t) and the
analysis of the extremum for the improved Morlet wavelet
cluster in Section 3.2, we can obtain the numbers of the
extreme aggregates for u(n)|n � 1, 2, . . . , N0􏼈 􏼉. Let the
numbers be P, which can be expressed as

P � ⌊2f te − ts( 􏼁⌋

or P � ⌊2f te − ts( 􏼁⌋ ± 1.
(21)

Combining (14) and (20) with (21), the extremum fre-
quency of u(n)|n � 1, 2, . . . , N0􏼈 􏼉, denoted as fem, can be
obtained:

fem �
P

N0
�

t0⌊2f te − ts( 􏼁⌋
te − ts( 􏼁 + t0

or fem �
P

N0
�

t0⌊2f te − ts( 􏼁⌋ ± t0

te − ts( 􏼁 + t0
.

(22)

Furthermore,

lim
f te−ts( )→+∞

te−ts≫ t0

fem � 2ft0.
(23)

/e effect of analysing a sequence whose extremum
frequency is fe may be better when we utilise the improved
Morlet wavelet, if we make fem � fe. Because the Morlet
wavelet, on the condition of fem � fe, will have better
adaptability to the sequence, the following formula is
therefore established:

f �
fe

2t0
. (24)

For a continuous signal h(t) defined in the interval
[ts, te] and containing Pc amounts of extreme points, we can
determine that the extremum frequency of the sequence
obtained by sampling h(t) is fec � (Pct0)/((te − ts) + t0) if
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setting the sampling interval equal to t0. When we utilise the
improved Morlet wavelet to analyse h(t), we set fem � fec.
Formula (25) is therefore established:

lim
f te−ts( )→+∞
te−ts≫ t0

fem � lim
f te−ts( )→+∞
te−ts≫ t0

fec. (25)

It is equal to

f �
Pc

2 te − ts( )
. (26)

On the basis of (26), the improvedMorlet wavelet, whose
parameter f is equal to (Pc)/(2(te − ts)), will have better
adaptability when analysing the signal h(t). According to
(23)–(25), we obtain f � fe/2t0 � Pc/2(te − ts) on the
conditions (te − ts)→ +∞ and te − ts≫ t0.

4. Analysing a Vibration Signal

4.1. Two Adjacent Morlet Wavelets. In this section, we an-
alyse two adjacent Morlet wavelets improved by us. �e
centres of the frequency windows separately are fk−1
and fk, and the radii are Δck−1 and Δck, respectively, where
k≥ 2 and k ∈ N. We made their radii just connect with

each other in the frequency domain, the situations of
which are shown in the following two cases and seen in
Figures 2 and 3.

Let |f| + δ ≥ 0. According to Figures 2 and 3, the fol-
lowing formula must be true if we make the radii of the two
adjacent Morlet wavelets just connect with each other in the
frequency domain:

Δck � Δck−1 − fk−1 −fk
∣∣∣∣

∣∣∣∣
∣∣∣∣

∣∣∣∣. (27)

It is equal to

δk � fk−1
∣∣∣∣

∣∣∣∣ + δk−1 − 2
�
2

√
π fk−1 −fk
∣∣∣∣

∣∣∣∣
∣∣∣∣

∣∣∣∣− fk
∣∣∣∣
∣∣∣∣. (28)

4.2. YPT. Assume that a signal h0(t) ∈ L2(R), de�ned in the
interval [ts, te] and containing Pc amounts of extreme
points, is sampled to form a discrete sequence
v(n)|n � 1, 2, . . . , Nv{ } by setting the sampling interval equal
to t0, and the extremum frequency of the sequence is fe.
According to Section 3.3, we know we should make
f � fe/2t0 � Pc/2(te − ts), when analysing the signal h0(t)
by utilising the improvedMorlet wavelet. We now transform
the signal h0(t) by using the following equations, which are
collectively named the “YPT”:

–1

–0.5

0

0.5

1
φ R

 (t
)

t0(−7/4 f) (−5/4 f) (−3/4 f) (1/4 f) (3/4 f)

ts te
t0

(5/4 f) (7/4 f)

Figure 1: Schematic diagram for sampling φR(t).
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Figure 2: �e �rst situation of two adjacent Morlet wavelets.
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Ypk t;fk, δpk( ) � hk−1(t)∗φfk,δpk(t),

Ynk t; −fk, δnk( ) � hk−1(t)∗φ−fk,δnk(t),

hk(t) � hk−1(t)−Ypk t;fk, δpk( )

−Ynk t; −fk, δnk( ),

(29)

where k ∈ N+ in the formulas in (29). On their basis, to go
a step further, we take the Fourier transforms of the formulas
in (29):

Ŷpk c;fk, δpk( ) � F Ypk t;fk, δpk( )[ ],

Ŷnk c; −fk, δnk( ) � F Ynk t; −fk, δnk( )[ ],

ĥk(c) � F hk(t)[ ].

(30)

�e equations in (29) dispersedly and adaptively
transform the signal h0(t) into the time domain, and on the
contrary, the formulas in (30) dispersedly and adaptively
transform the signal h0(t) into the frequency domain. Taken
together, both constitute the positive transformation of the
YPT. fk and δk are adaptive to hk−1(t). We can also obtain
the inverse transformation of the YPT according to the
formulas in (29) and (30), which can be described by the
following equations:

h0(t) �∑
k

i�1
Ypi t;fi, δpi( ) + Yni t; −fi, δni( ) + hk(t), (31)

h0(t) � F
−1 ∑

k

i�1
Ŷpi c;fi, δpi( ) + Ŷni c; −fi, δni( ) + ĥk(c) .

(32)

For the convenience of our expression in this paper,
Ypk(t;fk, δpk) and Ynk(t; −fk, δnk) are uniformly named
Y(t;f, δ); similarly, hk(t) is designated as h(t),
Ŷpk(c;fk, δpk) and Ŷnk(c; −fk, δnk) are designated as
Ŷ(c;f, δ), and ĥk(c) is designated as ĥ(c). According to
(31), we can directly reconstruct the original signal h0(t) by
adding signals Y(t;f, δ) and h(t), having been analysed and
processed, in the time domain. In addition, we can continue

to further transform signals Y(t;f, δ) and h(t) into signals
Ŷ(c;f, δ) and ĥ(c) in the frequency domain and then
continue to process signals Ŷ(c;f, δ) and ĥ(c) and re-
construct the original signal h0(t) through (32). On a similar
principle, according to (32), we can reconstruct the original
signal h0(t) through signals Ŷ(c;f, δ) and ĥ(c), having been
analysed and processed, in the frequency domain. In ad-
dition, we can continue to transform signals Ŷ(c;f, δ) and
ĥ(c) into signals Y(t;f, δ) and h(t) in the time domain
and then continue to process signals Y(t;f, δ) and h(t)
and reconstruct the original signal h0(t) through (31).
�erefore, (31) and (32) provide us 4 types of YPT inverse
transforms, namely, 2 types of YPT inverse transforms
from the frequency domain to the time domain and 2 types
of YPT inverse transforms from the time domain to the
time domain.

4.3. Smoothing Operator. A reconstructed vibration signal
can be seriously distorted in some local areas after being
analysed and processed. It is usually necessary to properly
smooth the signal for the speci�c transformation, which is
helpful to re�ect the change law of the original signal. In this
section, we propose a smooth operator S that can smooth the
sequence corresponding to the signal. Before introducing the
operator S, three operators, A, B, and L, are introduced �rst.
Assuming that there is a �nite sequenceX � x1, x2, . . . , xn{ },
the operator A can perform the following operation on the
sequence X:

A(X, k)≜ x1, . . . , xk−1,
xk−1 + xk

2
, xk+1, . . . , xn{ },

k � 2, 3, . . . , n.
(33)

In particular,

A(X, 1)≜
xn + x1

2
, x2, . . . , xn{ },

A(X, 0)≜X.
(34)

�e operator B performs the following operation:
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Figure 3: �e second situation of two adjacent Morlet wavelets.
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B(X)≜A(A(A(. . . A(X, 1) . . .), n− 1), n). (35)

/e operator L performs the following operation:

L(X, k)≜ xn−k+1, xn−k+2, . . . , xn, x1, x2, . . . , xn−k􏼈 􏼉, k ∈ Z.

(36)

Obviously, L(X, n) � L(X,−n) � X. On the basis of
operators A, B, and L, we can define the operator S:

S(X, w)≜ L(B(B(. . . B(X))),−w)􏽼√√√√√√√√√√􏽻􏽺√√√√√√√√√√􏽽
w

, w ∈ N
+
. (37)

In particular, S(X, 0)≜X.
/rough a large number of experiments on sequences

obtained by the YPTand the filtering theory that we utilised
in this paper, we found that the operator S can effectively
smooth sequences. However, we cannot excessively smooth
a signal.

4.4. -e Process of Analysing a Vibration Signal. From the
analyses in Sections 4.1 and 4.2, if we analyse the signal h0(t)

through the YPT, the kernel is determining the extremum
frequency of the signal and controlling the radius of the
frequency window. When k≥ 1, fk corresponds to hk−1(t).
If k≥ 2, δk must meet the condition δk � ||fk−1| + δk−1 −
2

�
2

√
π|fk−1 −fk||− |fk|, which has been discussed through

(28) in Section 4.1, and we can let δ1 be 0. /e radius of the
frequency window will be zero if |fk| + δk � 0 in the process
of analysing the signal. However, this matter will make the
process of the YPT stagnate. We therefore let δk � 0 again if
|fk| + δk � 0 to continue transforming the signal until the
transformation reaches the required number of the trans-
formation. We can denote this required number as K0. /e
flow chart of the YPT can be divided into two parts, the first
of which concerns analysing the signal, and the second
concerns reconstructing the signal; both parts are shown in
Figures 4 and 5, respectively.

/e parameter model determines how to reconstruct
a signal. For this paper, we chose model � 4 to reconstruct
a signal.

5. Analysis and Reconstruction of a Signal

In this section, the correctness and practicability of the YPT
are examined from two aspects: signal analysis and recon-
struction. Based on the above research, we analysed a signal
according to the flow chart in Figure 4 and reconstructed it
according to the flow chart in Figure 5, using model � 4. We
first analysed a signal containing high amounts of white
noise, and we then reconstructed the signal after the process
of filtering it. /reshold filtering was adopted as filtering
theory to remove the noise in the signal, while the threshold
filtering established by us is neither hard threshold filtering
nor conventional soft threshold filtering but is rather
a theory established on the probability that an interval signal
belongs to noise. In summary, first, the probability function
that judges the probability that an interval signal belongs
to noise is established on the basis of the characteristics that
the expectation of the noise is zero and that the noise has

a uniform distribution; the threshold is then determined by
the probability function, and at last, the interval signals
belonging to noise are filtered according to the threshold
function. In this paper, this filtering theory is named
“probability filtering” and is not discussed in detail.

5.1. Analysis of a Signal. Noise was added to the ideal signal
h(t) � sin(t) + sin(

�
2

√
t + (π/3)), t ∈ (−10π, 10π), by uti-

lising the random function rand(t) in the Matlab numerical
calculation software environment. /e maximum noise
amplitude was 3, and the noisy signal is therefore expressed
as h(t) � sin(t) + sin(

�
2

√
t + (π/3)) + 3rand(t). /e noisy

signal was sampled into 2048 data points, which are plotted
in Figure 6.

From Figure 6, it is difficult to observe the change
regulation of the noisy signal when we set the maximum
noise amplitude to 3. After calculation, the signal-to-noise
ratio (SNR) of the noisy signal was 3.13 dB. /is noise can
therefore be regarded as high noise. /e signal h(t) was
transformed 6 times using the YPT, and K0 was therefore
equal to 6. For the convenience of calculation, we equally
divided the transformed signal h(K0) into two parts when
we stored the transformed signals in memory. /ere were
a total of 14 transformed signals resulting from the YPT. To
conveniently observe the transformed signals in the time
domain, the real parts of the signals in three-dimensional
space are plotted in Figure 7.

Because the noisy signal is real, the two transformed
signals whose serial numbers are opposite are conjugates and
have the same real part. According to Figure 7, the signals

Compute 

Start

N

Output 

Y

Reconstruct
signal 

hk (t), Yi (t; fi, δi), hk (γ), Yi (γ; fi, δi),
i = 1, 2, ..., k

hk (t), Yk (t; fk, δk), hk (γ), Yk (γ; fk, δk)

Input h0 (t), δp1, δn1, K0, model

k = 1

k = k + 1

k ≤ K0?

Figure 4: /e flow chart for analysing a signal.
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with serial numbers 1 and −1 are noise, and on the contrary,
the signals with serial numbers 2 and −2 are useful signals
and have higher amplitudes when compared with those of
the others. Similarly, the signals with serial numbers 3
and −3 are also useful signals, although they have lower
amplitudes when compared with those of the former. To
observe them clearly, the real parts of the signals on the two-
dimensional plane are plotted in Figure 8. �e other signals
approximate to straight lines in three-dimensional space
because of their lower amplitudes, but they are not straight
lines. From the YPT results, we can conclude that the YPT
can separate noise and useful signals, for which the essential
aspect is that noise is di�erent from the useful signal at the
extremum frequency.

We can obtain the transformed signals in the frequency
domain if continuing to transform the transformed signals
in the time domain into the frequency domain using the
YPT. �e real parts of the transformed signals in three-
dimensional space are plotted in Figure 9. From Figure 9, we
can clearly see that the signals with serial numbers 1 and −1
contain large amounts of noise, which accords with the
characteristics that the expectation of the noise is zero and is
uniformly distributed in the frequency domain. For the
signals with serial numbers 2 and −2, each of them has

a positive impact amplitude and a lower negative impact
amplitude in the frequency domain.

�e real parts of the signals with serial numbers 3 and
−3 are separately plotted on two-dimensional planes in
Figures 10 and 11.�e signals in Figures 10 and 11 and those
in Figure 9 have similar properties. For the convenience of
expression in this paper, the signals whose serial numbers
are opposite to each other are, respectively, named “positive

Reconstruct
signal

Analyze and process Analyze and process 

End

Reconstruct h0 (t) through

Transform signal by
Fourier transform 

Transform signal by
Fourier inverse transform

End

Y Y

N

N

Smooth h0 (t) by
operator S (X, w)

Smooth h0 (t) by
operator S (X, w)

model?
model = 3

or model = 4 
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or model = 2 

model = 2? 

hk (γ), Yi (γ; fi, δi),
i = 1, 2, ... , k

hk (γ), Yi (γ; fi, δi),
i = 1, 2, ..., k

hk (t), Yi (t; fi, δi),
i = 1, 2, ... , k

Reconstruct h0 (t) through
hk (t), Yi (t; fi, δi),

i = 1, 2, ..., k

Figure 5: �e �ow chart for reconstructing a signal.
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and negative signals.” �eir real parts have symmetry if the
signal h(t) is real.

5.2. Reconstruction of a Signal. For this section, we adopted
model � 4 to reconstruct the signal h(t) from Section 5.1.
First, the signals in the frequency domain were �ltered
employing probability �ltering to remove a part of the noise,
and we then transformed the �ltered signals in the frequency
domain into the time domain. After that, we continued to
again �lter the signals in the time domain using proba-
bility �ltering to remove a part of the noise in the di�erent
space. We �nally reconstructed the original signal h(t)
using the �ltered signals in the time domain. �e process
of reconstructing the original signal employed the YPT
inverse transform, the �ltering theory, and the smoothing
operator. In Figure 12, the real parts of the new �ltered
signals in the frequency domain are shown in three-
dimensional space.

Compared with those shown in Figure 9, the signals with
serial numbers 1 and −1 in Figure 12 signi�cantly reduced
the noise and retained a part of the useful signals, as was the
case for the signals with serial numbers 2 and −2. However,
for the serial number 2 signal, the positive impact amplitude
was reduced slightly because the positive impact amplitude
was a�ected by the noise and the di�erent �ltering order
when the threshold function readjusted the values of the
interval signals. To compare with the signals in Figures 10
and 11 and to also observe the e�ects of the YPTand �ltering
theory, the real parts of the new �ltered signals with serial
numbers 3 and −3 are separately plotted on two-dimensional
planes in Figures 13 and 14. From Figures 13 and 14, they
have properties similar to those of the new �ltered signals
with serial numbers 2 and −2.

What follows is to transform the new �ltered signals in
the frequency domain into the time domain, and we can then
continue to �lter them in the time domain by probability
�ltering. �e new �ltered signals in three-dimensional space
are plotted in the time domain in Figure 15. Compared with
the signals in Figure 7, each of the signals in Figure 15
generally has less noise. On the contrary, the new �ltered
signal with serial number 2 lost a large amount of energy in

the �ltering process, which exposes the lack of this �ltering
theory but does not in�uence the validity and practicability
of the YPT.

Finally, according to (31), we reconstructed the original
signal h(t) through the new �ltered signals in Figure 15.
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We then properly smoothed the signal using the smoothing
operator S(X,w), and the parameterwwas 5.�e new signal
processed by the YPT and ideal signal without noise cor-
respond to the B curve and the C curve in Figure 16, re-
spectively. From Figure 16, we can determine that the
amplitude variation of the new signal was not as high as the
ideal signal. Combining Figures 6 and 16, we can conclude
that the e�ect of reconstructing a signal is ideal when uti-
lising the YPT, probability �ltering, and the smoothing
operator. Compared with the noisy signal in Figure 6, the
noise in the new signal was very low, and it clearly re�ected
its own law of change.

To further verify the validity of the YPT, it is compared
with the DWT. We also decomposed the noisy signal into 4
layers by the DWT, and the wavelets for the DWTare 3 order
Daubechies wavelets. For the noisy signal decomposed by
the DWT, after removing the �rst three layers of detail
signals, we can then obtain the best reconstructed signal by
the inverse discrete wavelet transform (IDWT), which
corresponds to the A curve in Figure 16. After calculation,
the SNR of the noisy signal, A curve, and B curve is 3.13 dB,
10.61 dB, and 16.39 dB, respectively, and as far as denoising
and the noisy signal in this paper are concerned, the YPT is
therefore better than the DWT.

6. The Application of the YPT in Engineering

In this section, two types of serious fault cracks on the latch
sheets of a gun automatic mechanism were set by us, and the
shock signals that are obtained by sampling the data, re-
spectively, when the gun automatic mechanism works in
normal and two fault patterns were analysed by utilising the
method in this paper. �e �ring frequency of the gun au-
tomatic mechanism is 10Hz, and the main parameters of the
sensors that we used in this paper are shown in Table 1. To
obtain more details in the time domain, we set the sampling
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Table 1: �e parameters of the sensor.

Performance Value
Sensitivity 1.0mV/g (±15%)
Measurement range ±5000 g pk
Frequency range 0.4 to 7500Hz (±10%)
Electrical �lter cuto� frequency ≥7.5 kHz (−10%)
Resonant frequency ≥50 kHz
Broadband resolution 0.02 g·rms (1 to 10 kHz)
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(1)

(2)

(a) (b) (c)

(d) (e) (f )

Figure 17:�e environment of the experiment. (a)�e positions prone to noise; (b) the place for the experiment; (c) signal collector; (d) the
main measuring point; (e) the �rst kind of cracks; (f ) the second kind of cracks.
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Figure 18: �e original signals and the signals �ltered by the YPT.
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frequency to the maximum sampling frequency (204.8kHz)
of the signal collector, and the sampling time is 5s. On the
contrary, for a shock signal, the sampling frequency should
be as high as possible to utilise the signal near the resonant
frequency of the sensor, although the output of the sensor
may be distorted at high frequency. �e environment of the
experiment is shown in Figure 17, and the main measuring
point is shown in Figure 17(d).

Due to the bad working environment or high overload
of the equipment, a lot of noise is usually contained in the
shock signals. �e noise reduction for the signals therefore
needs to be done to eliminate the e�ect of the noise if we do
pattern recognition or fault diagnosis for the equipment.
For the gun automatic mechanism, there are two main
sources of noise, one of which is at ammunition feeding
mechanism that is numbered (1) in Figure 17(a) and an-
other is at the base of the equipment, numbered (2) in
Figure 17(a). �e former is produced by the irregular
friction and collision between the bullet chain and the body
of the equipment, and the latter is produced by self-excited
vibration on the base that is with the complex structure or
the random vibration of the base such as a gun automatic
mechanism that works on a tank or �ghter plane.�ese two
kinds of noise have the property that the frequency of them
is lower when compared with that of the e¦cient signals

that are produced by the free vibrations of each part of the
gun automatic mechanism.

�e actual e�ective time period of original signals
was intercepted to be analysed. �e original signals and
the signals �ltered by the YPTare plotted in Figure 18. Figures
18(a)–18(c) are the original signals, and Figures 18(d)–18(f)
are the signals that correspond to Figures 18(a)–18(c) and
are �ltered by the method, respectively. To further observe
the e�ects of the method, we transformed them into the
frequency domain, which is shown in Figure 19. From
Figure 19, we can conclude that contrast to original signals,
the amplitude of the part in low frequency is signi�cantly
reduced, relatively to the part in high frequency, and the
shape of the part in high frequency almost does not change.
�e results of the analysis show that the noise in shock
signals is �ltered e�ectively. �e YPT therefore shows good
performance in the analysis of the shock signal in engi-
neering, which can provide help for further extracting
features for shock signals in pattern recognition and fault
diagnosis.

7. Summary and Outlook

Because the Morlet wavelet does not satisfy the permissi-
bility condition of the wavelet transform, it has no inverse
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Figure 19: �e original signals and the signals �ltered by the YPT in the frequency domain.

12 Shock and Vibration



wavelet transform. On the contrary, the Morlet wavelet has
good time-frequency characteristics. In this paper, it was
easy to adaptively adjust the centre and radius of the fre-
quency window for the Morlet wavelet after its improve-
ment. /e essence of the wavelet transform is that it is a type
of filtering. For this paper, the essence of transforming
a signal into the time and frequency domains is also a filter.
/e YPT in this paper can separate noise from the signal, the
essential aspect of which is that noise and useful signals have
different extreme frequencies. On the principle of extreme
frequency, the original signal is decomposed into different
components using the YPT.

In this paper, the noisy signal and the shock signals in
engineering could also be complex or real. /e extremum
frequency is determined by the real part of the signal when
analysing a complex signal. /ere will be two ways for us to
conduct research if further analysing a multidimensional
signal. For the first, we can analyse each dimension of the
multidimensional signal using the YPT alone. For the other,
we can extend the dimension of the improved Morlet wavelet
so that it has the ability to analyse multidimensional signals.
For the latter method, how to determine the centre and radius
of the Morlet wavelet in the frequency domain needs to be
researched more deeply. Matching a multidimensional signal
to the Morlet wavelet in phase is worthy of study.
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