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To accurately diagnose fine-grained fault of rolling bearing, this paper proposed a new fault diagnosis method combining
multisynchrosqueezing transform (MSST) and sparse feature coding based on dictionary learning (SFC-DL). Firstly, the high-
resolution time-frequency images of raw vibration signals, including different kinds of fine-grained faults of rolling bearing, were
constructed byMSST.)en, the basis dictionary was trained through nonnegativematrix factorization with sparseness constraints
(NMFSC), and the trained basis dictionary was employed to extract features from time-frequency matrixes by using nonnegative
linear equations. Finally, a linear support vector machine (LSVM) was trained with features of training samples, and the trained
LSVM was employed to diagnosis the fault classification of test samples. Compared with state-of-the-art fault diagnosis methods,
the proposed method, which was tested on the bearing dataset from CaseWestern Reserve University (CWRU), achieved the fine-
grained classification of 10 mixed fault states. Meanwhile, the proposed method was applied on the dataset from the Machinery
Failure Prevention Technology (MFPT) Society and realized the classification of 3 fault states under different working conditions.
)ese results indicate that the proposed method has great robustness and could better meet the needs of practical engineering.

1. Introduction

Rolling bearing is not only the core part of the rotating
mechanical transmission device but also the part prone to
failure, whose health state directly affects the performance of
the whole equipment and the safety of staff [1]. To avoid
human casualties and economic losses, it is necessary to
accurately diagnose the fault states of rolling bearing in time
and take corresponding maintenance measures according to
the diagnosis results.

How to acquire well raw signals plays a crucial role in
subsequent fault diagnosis. However, raw vibration signals
of rolling bearing are always nonlinear and nonstationary in
practice. It is necessary to apply proper analysis methods to
process these complex signals. Fortunately, joint time-fre-
quency analysis can identify the signal frequency compo-
nents and reveal their time variant features [2]. )erefore,
various time-frequency methods have widely been used in

fault diagnosis, mainly including short-time Fourier trans-
form (STFT) [3], continuous wavelet transform (CWT) [4],
Wigner–Ville distribution (WVD) [5], S transform (ST) [6],
and Hilbert–Huang transform (HHT) [7]. Unfortunately,
time-frequency images generated by these analysis methods
are very blurry and have serious cross-terms. To address this
shortcoming, researchers havemade some improvements on
above classic time-frequency analysis methods. For instance,
Zhang et al [8] presented a time-frequency analysis method
based on CWT and multiple Q-factor Gabor wavelets
(MQGWs), which adopted Gabor wavelets with multiple
Q-factors to improve the resolution of CWT time-frequency
map. Cai and Xiao [9] introduced generalized S transform
into the fault diagnosis of rolling bearing, which can ef-
fectively enhance the resolution of the vibration signal in the
time-frequency domain. Recently, Yu et al. [10] proposed a
novel time-frequency method named MSST, which employs
an iterative reassignment procedure to improve the energy
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concentration of the time-frequency representation. MSST
has the ability of generating better energy concentration
and suppressing the cross-terms over the time-frequency
plane to effectively deal with the strongly time-varying
signal. However, MSST has not been widely used in fault
diagnosis of rolling bearing. Hence, this paper will utilize
MSST to construct time-frequency images of each raw
vibration signal for fine-grained fault diagnosis of rolling
bearing.

)e other significant factors that affect the performance
of fault diagnosis are effective feature extraction and fault
diagnosis. Intelligent diagnosis methods have been suc-
cessfully applied to identify faults, such as convolutional
neural network (CNN) [3, 4], support vector machine
(SVM) [11, 12], and evolving algorithms (EA) [13]. How-
ever, it is unpractical to directly feed time-frequency ma-
trixes to classifiers because of the high dimension of time-
frequency matrixes. To avoid dimensional cruse, some re-
searchers are dedicated to extracting effective and low-di-
mensional fault features. Yu et al. [14] proposed a supervised
sparse coding (SSC) method to secondly extract time-fre-
quency features on the marginal spectrum acquired from
HHT. Li et al. [15] used two-dimensional nonnegative
matrix factorization (2DNMF) technique to extract more
informative features from time-frequency matrixes obtained
by generalized S transform. Li et al. [16] proposed a feature
extraction and selection scheme, which first used NMF
technology to obtain the candidate feature subset from time-
frequency matrixes gotten from S transform and then ap-
plied a feature selection algorithm based on mutual in-
formation and nondominated sorting genetic algorithm II
(NSGA-II) to secondly select features from the candidate
feature subset. Although these methods obtain well classi-
fication results on their own datasets, they may not be
suitable for fine-grained fault diagnosis to identify where the
fault happened on rolling bearing and how the fault severity
is. )erefore, the effective feature extraction method, which
combines nonnegative matrix factorization with sparseness
constraints (NMFSC) [17] and the solution of nonnegative
linear equations, is proposed to reduce the dimension of
feature matrix and extract the most discriminative features
for fine-grained diagnosis.

Considering the above factors, a fine-grained fault di-
agnosis scheme integrating MSST and sparse feature coding
based on dictionary learning is proposed in this paper.
Within this scheme, MSST is first adopted to deal with the
strongly time-varying signal for obtaining time-frequency
matrixes that can accurately reflect the raw signal in-
formation, and then SFC-DL is proposed to extract low-
dimensional and the most discriminative features on time-
frequencymatrixes. At last, considering the characteristics of
the dataset in this paper and the unique advantages of SVM
in dealing with small samples and high-dimensional and
nonlinear datasets, LSVM is employed to identify sparse
feature coding and effectively realizes fine-grained fault
diagnosis of rolling bearing.

)e flowchart of the fine-grained fault diagnosis method
is displayed in Figure 1, and the detailed steps are described
as follows.

Step 1. Collect the vibration data by data acquisition system
and note their states.

Step 2. Sample the vibration signal and ensure each sample
contains one complete period at least.

Step 3. Perform MSST for signal samples and obtain the
time-frequency images with high resolution.

Step 4. Use SFC-DL to process time-frequency matrixes and
get effective sparse feature coding of each sample.

Step 5. Divide the sparse feature coding set into training set
and testing set and feed the training set into LSVM for
training.

Step 6. Utilize the testing set to verify the feasibility of the
proposed method.

)e rest of this paper is organized as follows. In Sections
2 and 3, the theories about MSST and SFC-DL are de-
scribed, respectively. In Section 4, the proposed fine-
grained fault diagnosis method is applied on the experi-
mental dataset and compared to state-of-the-art methods
on the same dataset. In Section 5, the proposed method is
applied to another dataset and proved to be effective and
robust. And the conclusion is given in Section 6.

2. Time-Frequency Analysis Based on MSST

2.1. MSST. MSST is a time-frequency analysis method
based on synchrosqueezing transform (SST) [18–20],
which not only can generate better energy concentration
and suppress the cross-terms but also can retain the signal
reconstruction ability. )e strongly time-varying signal can
be defined as

Raw signals

Sample signals

Signal segmentation

MSST
Vibration signals

NMFSC

Time-frequency matrixes

Sparse feature coding set

Nonnegative linear
equations

Training set Testing set

Train LSVM Test LSVM

Result of diagnosis

Data acquisition

Time-frequency representation

Sparse feature coding based on
dictionary learning

Fault diagnosis

Figure 1: Flowchart of the presented fine-grained fault diagnosis
method.
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s(t) � 
K

k�1
sk(t) � 

K

k�1
Ak(t)e

iφk(t)
, (1)

where sk(t) is the monocomponent signal, K is the number
of the monocomponent signal, Ak(t) is the instantaneous
amplitude, and φk(t) denotes the instantaneous phase. )e
MSST of s(t) is defined as

Ts[N]
(t, η) � 

+∞

− ∞
G(t, w)δ η − w

[N]
(t, w) dw, (2)

where G(t, w) is the STFTof s(t), w is the angular frequency,
δ() denotes the Dirac delta function,N is the iteration number
which denotes howmany times SST is executed iteratively, the
value of N affects the ability of energy concentration and
corss-term suppression in time-frequency image, which
should be artificially set before operating MSST such that
N≥ 2, and w[N](t, w) is the instantaneous frequency (IF)
estimate for the MSST, which can be defined as

w
[N]

(t, w) � φ′(t) +
φ″(t)2

1 + φ″(t)2
 

N

w − φ′(t)( , (3)

where φ′(t) is the first-order derivative of the instantaneous
phase φ(t) for signal s(t).

A new IF estimate is constructed to reassign the blurry
STFT energy by each iteration procedure. By multiple it-
erations, the IF estimate of the MSST method is closer and
closer to the signal true IF [10] so that time-frequency
images with high resolution of strongly time-varying signals
can be obtained.

2.2. Time-Frequency Analysis of Raw Vibration Signal. To
verify that MSST is superior to other time-frequency analysis
methods, various time-frequency analysis methods are ap-
plied to process strongly time-varying signals. Figure 2(a)
gives the waveform of the actual fault vibration signal, and
Figures 2(b)–2(f) show the time-frequency representation of
the vibration signal by means of STFT, CWT,WVD, ST, and
MSST, respectively, where the time-frequency representa-
tion of the vibration signal by means of STFT, CWT, WVD,
ST, and MSST is, respectively, reproduced by referencing
[3–6, 10] and time-frequency analysis toolbox in MATLAB.

As shown in Figure 2(f), MSST achieves the most sat-
isfactory time-frequency concentration compared with
STFT, CWT, WVD, and ST. Each monocomponent signal
can be clearly detected and separated from others. A sig-
nificant improvement in the energy concentration is easily
noticeable in comparison with other methods. )erefore,
this paper utilizes MSST to process raw signals, which
provides great data basis for further feature extraction.

3. Sparse Feature Coding Based on
Dictionary Learning

As can be seen in Section 2.2, the high-resolution time-
frequency images of raw vibration signals can be obtained by
MSST. However, it is not reasonable to classify those time-
frequency distributions directly since the data dimension is

too high to deal with and there are high noises and irrelevant
or redundant information in those time-frequency matrixes.
In order to eliminate redundant features and avoid curse of
dimensionality, SFC-DL combined NMFSC and the solution
of nonnegative linear equations is proposed, which can not
only reduce the data dimension but also retain the features
that can best distinguish the slight differences between
different fault states. )e algorithm mainly contains the
following two steps.

Step 1. Utilize NMFSC and minibatch gradient descent
algorithm to train the original features to obtain the basis
dictionary.

Step 2. Solve the sparse feature coding corresponding to
each sample by the basis dictionary and nonnegative linear
equations.

)e process of this feature extraction algorithm is shown
in Figure 3.

3.1. Construction of Basis Dictionary Based on NMFSC.
Nonnegative matrix factorization (NMF) [21, 22] is a new
matrix decomposition technique. )e factorization can be
expressed as follows:

Vn×m ≈Wn×rHr×m, (4)

where Vn×m, Wn×r, and Hr×m are all nonnegative matrixes.
)e rank r of factorization is properly chosen to achieve
dimensionality reduction. Vn×m is the set of all the sample
features, in which m is the number of samples and each
column contains an n-dimensional feature. Because each
vector in V can be considered as a linear combination of the
columns of W, weighted by the components of H, W and H
can be regarded as basis dictionary and feature coding, re-
spectively [16]. It is the nonnegativity that makes the
mathematical method more practical. )en, NMF can be
adopted to further extract time-frequency features, and the
decomposition process of the time-frequency matrix is shown
in Figure 4. However, conventional NMF cannot control the
sparse degree of the feature coding so that it is impossible to
remove redundant features effectively. )erefore, SFC-DL is
proposed by adding sparseness constrains to conventional
NMF to make the feature coding sparse on the basis of the
original characteristic. )e objective function and constraint
subject of NMFSC are as follows:

min Vn×m − Wn×rHr×m

����
����
2

s.t. sparseness hi(  � Sh, ∀i,
(5)

where sparseness() denotes the sparse function and Sh is the
desired sparsity of the ith row ofH.)e specific expression of
sparseness() is as follows:

sparseness(x) �

�
n

√
−  xi


 /

����

 x2
i



�
n

√
− 1

, (6)

where n is the dimension of vector x.
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Figure 3: �e �owchart of the feature extraction algorithm.
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Figure 2: Time-frequency representations of di�erent methods: (a) actual signal; (b) STFT; (c) CWT; (d) WVD; (e) ST; (f ) MSST.
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According to equations (5) and (6), these nonnegative
matrixes W and H can be obtained through the minibatch
gradient descent algorithm and a projection operator [17]
which enforces sparseness by explicitly setting both L1 and
L2 norms, that is, each row of H is projected onto the hy-
perplane  hi � L1 and then projected closest point on the
joint constraint hypersphere (intersection of the sum and L2
constraints) by moving radially outward from the center of
the sphere, ensuring all components of hi are nonnegative.
Otherwise, these negative values will be set as zero, and a
new point is found again to satisfy the nonnegative constrain
by iteration. Nonnegative matrix W is the basis dictionary
required for sparse feature coding of each sample. )e
specific training process is as follows:

(a) A small number of samples from each dataset are
randomly selected to form a batch of training
samples Vtrain. 60 samples are randomly selected
from each data in our experiment.

(b) )e desired sparseness of nonnegative matrixes H is
set by a projection operator, and the basis dictionary
W is iteratively updated by the standard multipli-
cative step.

(c) A total of 20 batches are trained to converge to get
the desired nonnegative matrixes W and H, where
the nonnegative matrix W is regarded as the basis
dictionary for solving the sparse feature coding of
each sample.

3.2. Solution of Sparse Feature Coding. In Section 3.1, the
basis dictionary W is obtained by repeated iterative update.
)en, in this section, nonnegative linear equations are
combined with the basis dictionary to solve the sparse
feature coding of each sample. )e specific calculation ex-
pression is as follows:

min vi − Whi
′

����
����
2

s.t. hij
′ ≥ 0,

(7)

where vi represents the ith sample, hi
′ denotes the sparse

feature coding corresponding to the ith sample, and hij
′

indicates that every element in the sparse feature coding is
nonnegative.

)erefore, the vector set [h1′, h2′ , . . . , hm
′ ] solved by (7) is

the sparse feature coding set H′ required for fine-grained
fault diagnosis.

4. First Case Study

To verify the feasibility and effectiveness of the proposed
fault diagnosis method, firstly, the collected vibration data of
rolling bearing are classified and processed by MSST. )en
the rank r and the sparsity Sh are analyzed for the fault
diagnosis performance. Moreover, the completeness and
effectiveness of the sparse feature coding set are verified.
Finally, the proposed method is compared with state-of-the-
art methods. All experiments are carried out with Windows
7, CPU of Intel Xeon E5-2640@2.40GHz and 64GB RAM
and MATLAB R2017a.

4.1. Data Acquisition. )e vibration data of rolling bearing
come from the Case Western Reserve University (CWRU)
bearing dataset [23]. As shown in Figure 5, the experimental
setup mainly consists of a loading motor, a torque trans-
ducer/encoder, a dynamometer, and control electronics.
Single-point faults were introduced to each bearing (6205-
2RS JEM SKF) using electro-discharge machining with fault
diameters of 0.007 inches, 0.014 inches, and 0.021 inches.
)e accelerometer was placed near the drive end to collect
normal signals and fault signals at a sampling frequency of
12 kHz. Fault signals are, respectively, collected at inner race,
ball, and outer race. All tests are under four different motor
loads (0, 1, 2, and 3 hp).

To improve the robustness of the diagnosis method and
meet the needs of practical engineering, the influence of
motor load for fault classification is ignored. )e vibration
signals of the drive end bearing will be divided into 10 kinds
of states: normal state and 9 kinds of fault states that they are
inner race, ball, and outer, race respectively, in the damage
diameters of 0.007, 0.014, and 0.021 inches (N, IR7, IR14,
IR21, B7, B14, B21, OR7, OR14, and OR21), and each type of
data consists of sample data under four different motor
loads. Each state contains 600 samples, and each sample is a
collected vibration signal segment consisting of 800 sam-
pling data points; the experimental dataset with 6000
samples is established.)e data sampling process is shown in
Figure 6. To avoid particularity and contingency, 420
samples of each state are selected randomly for training and
the remaining 180 for testing. More details about the 10
states are listed in Table 1.

4.2. Time-Frequency Representations of Vibration Signals
Acquired from Rolling Bearing Using MSST. Figure 7 shows

V W H

~~ ×

Figure 4: )e NMF of the time-frequency image.
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the waveforms of ten states under different motor loads. It
can be seen that vibration signals are the strongly time-
varying signal, and it is difficult to distinguish them di-
rectly. According to Section 2.2, it can be known that the
clear time-frequency representations obtained by MSST
can more accurately reflect the characteristics of vibration
signals. )erefore, each sample is processed by MSST to
obtain 6000 time-frequency matrixes of 400 by 800. As
shown in Figure 8, 10 kinds of different characteristics of
rolling bearing can be clearly demonstrated in the time-
frequency plane with highly concentrated energy, and it is
easier to identify them.

4.3. Analysis of Main Parameters

4.3.1. Analysis of Different Ranks r. It can be seen in Section
3.1 that rank r should be suitably selected at first for di-
mensional reduction, which directly affects the accuracy and
time required for fault diagnosis. Herein, Control Variates
(CV) is applied to find the optimal value of r. First, the
sparsity of the row of matrixH is set as 0.7 (Sh � 0.7), and the
different values of r are set to generate different feature sets.
)en, the feature set corresponding to each value of r is input
to LSVM to get classification accuracy, which is performed
10 times. At last, to avoid the randomness and contingency,
the average accuracy is calculated after removing the highest
and lowest accuracy. Figure 9 displays the average accuracy
corresponding to the different values of r.

As seen in Figure 9, when the sparsity Sh is 0.7, the
classification accuracy of rolling bearing fluctuates as the
slight change of the value of r. If the value of r is too small, it
will benefit the dimension reduction, but it will make useful
information lost so that the sparse coding set is unable to
reflect the true information of the original time-frequency
matrixes. However, if the value of r is too large, the sparse
coding set still contains redundancy, which also makes us
miss the best classification accuracy. )erefore, considering
the influence of the value of r on the matrix dimension and
the classification accuracy, the value of r is set to 25.

4.3.2. Analysis of Different Sparsity Sh. Likewise, the sparsity
of the row of matrix H is directly related to the quality of
sparse dictionary W and further affects the performance of
the feature set. So CV is also performed on finding the
optimal sparsity Sh to set r as 25 and obtain the classification
accuracy within the range of 0.3–0.9 of sparsity Sh. In order
to prevent the influence of extreme data on the experimental
results, according to each sparsity Sh, the experiment on fine-
grained fault diagnosis is conducted for 10 times. )en the
average accuracy is calculated after removing the highest and
lowest accuracy. Figure 10 displays the average accuracy
corresponding to the different sparsity Sh.

Figure 10 shows that the accuracy fluctuates with the
change of sparsity Sh. If the sparsity Sh is too small, the
matrixHwill still have redundancy, which further leads basis
dictionary W to be less concise so that sparse coding set H′
contains useless information. If the sparsity Sh is too large,
basis dictionary W will not be complete enough, which leads
to loss of important information in the sparse coding set H′.
Above situations both will affect the result of fault diagnosis.
)e experimental results show there are two peaks in the line
chart. However, when the sparsity Sh is 0.7, the average
accuracy is the highest globally, and the basis dictionary W is
sparse but complete and more representative than that when
the sparsity is 0.4.

4.4. Different Feature Extraction Algorithms Based on NMF.
According to Section 4.2, 6000 time-frequency matrixes of
400 by 800 can be constructed by MSST. However, it is
impossible to directly use all the elements in the original
time-frequency matrix as the input vector for classification

Sample signals

Sample length

Figure 6: Data sampling in CWRU.

Table 1: Dataset description in CWRU.

Fault
types

Fault
diameter
(inches)

Motor
load (hp)

Motor
speed (r/min) Samples Fault

states

Normal
(N) — 0/1/2/3 1797/1772/

1750/1730 600 1

Inner
race
(IR)

0.007
(IR7) 0/1/2/3 1797/1772/

1750/1730 600 2

0.014
(IR14) 0/1/2/3 1797/1772/

1750/1730 600 3

0.021
(IR21) 0/1/2/3 1797/1772/

1750/1730 600 4

Ball (B)

0.007 (B7) 0/1/2/3 1797/1772/
1750/1730 600 5

0.014
(B14) 0/1/2/3 1797/1772/

1750/1730 600 6

0.021
(B21) 0/1/2/3 1797/1772/

1750/1730 600 7

Outer
race
(OR)

0.007
(OR7) 0/1/2/3 1797/1772/

1750/1730 600 8

0.014
(OR14) 0/1/2/3 1797/1772/

1750/1730 600 9

0.021
(OR21) 0/1/2/3 1797/1772/

1750/1730 600 10

Figure 5: Bearing test stand used for the experiment.
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Figure 7: Vibration signals acquired from ten states of rolling bearing in CWRU: (a) N, (b) IR7, (c) IR14, (d) IR21, (e) B7, (f ) B14, (g) B21,
(h) OR7, (i) OR14, and (j) OR21.
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because of the high dimension and the existing redundant
information of matrixes. )ere are three algorithms based
on NMF employed to reduce the dimension of time-
frequency matrixes. )e first is conventional NMF, the
second is SFC-DL, and the third is to add max-relevance
and min-redundancy (MRMR) to SFC-DL, trying to select
more superior feature sets from the sparse feature coding
acquired by SFC-DL. Table 2 displays the experimental
results of the above three different feature extraction
algorithms.

As shown in Table 2, it can be known that the perfor-
mance of SFC-DL is obviously superior to the conventional
NMF algorithm, which indicates that SFC-DL not only
reduces the dimension but also removes the redundant el-
ements, and it is the elimination of redundant information
that makes the performance rise from 92.63% to 98.03%.
When addingMRMR to the feature set obtained by SFC-DL,
it is failure to search for more superior feature sets from the
feature set containing 25 features, which manifests the
feature set obtained by SFC-DL without redundant features.
)erefore, compared with the other two algorithms, SFC-DL
can acquire the most discriminative and complete feature set
to effectively realize the fine-grained classification of 10 fault
states under mixed working conditions.

4.5. Comparison with State-of-the-Art Methods. To highlight
the effectiveness of the rolling bearing fault diagnosis
method proposed in this paper, Table 3 displays the different
fault diagnosis methods based on the data from CWRU.

In reference [7], the author applied HHT with CNN
(HHT+CNN) to diagnose fault with 10 mixed working
conditions. In reference [24], Zhang et al. proposed a fault
diagnosis method with multivariable ensemble-based in-
cremental support vector machine (MEISVM) to realize the
classification of 7 kinds of fault bearings under the same
motor load. In reference [25], Li et al. presented a semi-
supervised diagnosis method based on a distance-preserving
self-organizing map (SS-DPSOM) to identify 4 fault states
under mixed working conditions by manually extracting 19
features. In reference [26], the author utilized eight wavelet
packet energy with multifractal features (8WPE-MF) to train
SVMs and to realize 10 fault states diagnosed under mixed
working conditions.

It can be seen in Table 3 that compared with the methods
used in [7, 26], the proposed method in this paper achieves
the highest average accuracy up to 98.03% under the same
complex working conditions. )en, compared with the
methods used in [24, 25], the proposed method can effec-
tively identify where the fault happened on rolling bearing

N

IR

B

OR

(a)

(b) (c) (d)

(g)(f)(e)

(h) (i) (j)

Figure 8: MSSTof vibration signals in Figure 7: (a) N, (b) IR7, (c) IR14, (d) IR21, (e) B7, (f ) B14, (g) B21, (h) OR7, (i) OR14, and (j) OR21.
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and how the fault severity is and has achieved the fine-
grained classification of 10 mixed fault states. )erefore, the
rolling bearing fault diagnosis method proposed in this
paper has more practical engineering significance than the
state-of-the-art methods and can effectively diagnosis the
fault types and fault severities.

5. Second Case Study

5.1. Data Acquisition. In order to further verify the ro-
bustness of the proposed method, another dataset is

provided by the Machinery Failure Prevention Technology
(MFPT) Society [27]. )e test rig was equipped with a NICE
bearing. In total, three baseline conditions, ten outer race
fault conditions, and seven inner race fault conditions were
tracked. To improve the robustness of the diagnosis method
and meet the needs of practical engineering, the influence of
motor load for fault classification is ignored. )e MFPT
dataset will be divided into 3 kinds of states: normal state,
inner race fault state, and outer race fault state (N, IR, and
OR), where three baseline data were gathered at a sampling
frequency of 97656Hz and under 270 lbs of load; seven outer
race fault data were gathered at a sampling frequency of
48828Hz and, respectively, under 25, 50, 100, 150, 200, 250,
and 300 lbs of load, and seven inner race fault data were
gathered at a sampling frequency of 48828Hz and, re-
spectively, under 0, 50, 100, 150, 200, 250, and 300 lbs of
load.

Due to the limited data length, slicing the samples with
overlap is employed. )e data sampling process is shown in
Figure 11, each sample is a collected vibration signal segment
consisting of 4000 sampling data points and the shift is 2000.
Finally, each state contains 500 samples, and a dataset with
1500 samples is established. To avoid particularity and
contingency, random 350 samples of each state are selected
for training and the remaining 150 for testing. More details
about the 3 states are listed in Table 4.

5.2. Time-Frequency Representations of Vibration Signals
Acquired fromRolling Bearing UsingMSST. Figure 12 shows
the waveforms of three states under different motor loads. It
can be seen that vibration signals are strongly time-varying
signals, and it is difficult to distinguish them directly. If each
sample comes from MFPT is processed by MSST, 1500
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Figure 9: )e average accuracy corresponding to the different r
values (Sh � 0.7).
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Figure 10: the average accuracy corresponding to the different
sparsity Sh (r� 25).

Table 2:)e results of different feature extraction algorithms based
on NMF.

Algorithm Sh Feature size LSVM
Average accuracy (%)

NMF — 25 92.63
SFC-DL 0.7 25 98.03
SFC-DL+MRMR 0.7 24 97.55

23 97.49
22 97.40
21 97.24
15 96.37
10 93.72

Table 3: Comparison of the proposed method with state-of-the-art
methods.

Method Considered working
conditions

Diagnosis
accuracy (%)

)e proposed method 10 98.03
HHT+CNN [7] 10 95
MEISVM [24] 7 96.22
SS-DPSOM [25] 4 95.8
8WPE-MF+ SVM [26] 10 88.9
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Sample signals

Sample length Overlap Shift

Figure 11: Data sampling in MFPT.

Table 4: Dataset description in MFPT.

Fault
types

Motor
load (lbs) Motor speed (Hz) Samples Fault

states
Normal (N) 270 25 500 1
Inner race (IR) 0/50/100/150/200/250/300 25 500 2

Outer race (OR) 25/50/100/150/200/250/
300 25 500 3
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Figure 12: Continued.
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time-frequency matrixes of 2000 by 4000 will be obtained,
which will cause the size of time-frequency matrixes to be
too large to compute. In order to unity the parameters in
the proposed algorithm and reduce the computational
burden, the operation of downsample was employed to
process each sample signal. Hence, one of every five sample
points was taken. )en, 1500 time-frequency matrixes of
400 by 800 were obtained. Figure 13 shows the time-fre-
quency representation of three states.

5.3. Experiment Result and Analysis. To further verify the
effectiveness of the rolling bearing fault diagnosis method
proposed in this paper, the dataset fromMFPTis carried into
the model trained by the dataset from CWRU. In order to
simplify the experiment and achieve high classification ac-
curacy, the value of rank r is only adjusted and other pa-
rameters are not changed. As shown in Table 5, when the
value of r is set as 100, the average classification accuracy is
up to 95.83%. Compared with the method used in [28], the
proposed method in this paper achieves better classification
accuracy of three fault states with fewer features in theMFPT

dataset, which indicates the rolling bearing fault diagnosis
method proposed in this paper has great robustness and
effectiveness.

6. Conclusion

In this paper, we combine MSSTwith SFC-DL to realize the
rolling bearing fine-grained classification of different kinds
of mixed working conditions. Raw vibration signals are first
transformed into time-frequency images with high resolu-
tion through MSST to provide detail fault information re-
lated to fault types and fault severities. )en SFC-DL is

0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.040
Time (s)

0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.040
Time (s)

0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.040
Time (s)

0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.040
Time (s)

0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.040
Time (s)

0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.040
Time (s)

0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.040
Time (s)

25lbs

50lbs

200lbs

300lbs

250lbs

100lbs

150lbs

OR

–4
0
4

A
m

p 
(g

)

–4
0
4

A
m

p 
(g

)

–4
0
4

A
m

p 
(g

)

–4
0
4

A
m

p 
(g

)

–4
0
4

A
m

p 
(g

)

–4
0
4

A
m

p 
(g

)
A

m
p 

(g
)

–4
0
4

(c)

Figure 12: Vibration signals acquired from three states of rolling bearing in MFPT: (a) N, (b) IR, and (c) OR.

(a) (b) (c)

Figure 13: MSST of vibration signals in Figure 12: (a) N, (b) IR, and (c) OR.

Table 5: )e average accuracy results of the dataset from MFPT.

Method Sh Feature size Average accuracy (%)

)e proposed method 0.7

80 90.28
90 92.35
100 95.83
110 93.06

HHT+CNN [28] — 32× 32 75.9
96× 96 92.9
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proposed to excavate the most effective and representative
features in time-frequency matrixes as sparse feature coding
to train LSVM for fault diagnosis. Experimental results
indicate that our method is superior to state-of-the-art
methods and realizes the rolling bearing fine-grained clas-
sification of 10 mixed working conditions on the CWUR
dataset. Meanwhile, the rolling bearing fault diagnosis model
proposed in this paper is applied to the MFPT dataset to
realize the classification of 3 fault states under different
working conditions. )ese experimental results indicate that
our method is an effective and robust tool for bearing fine-
grained fault diagnosis and can be applied to other rotating
mechanical fault diagnosis such as gears and rotors.
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