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In recent years, High-G MEMS accelerometers have been widely used in aviation, medicine, and other fields. So it is extremely
important to improve the accuracy and performance of High-G MEMS accelerometers. For this purpose, we propose a fusion
algorithm that combines EMD, wavelet thresholding, and temperature compensation to process measurement data from a High-
G MEMS accelerometer. In the fusion algorithm, the original accelerometer signal is first decomposed by EMD to obtain the
intrinsic mode function (IMF). ,en, sample entropy (SE) is used to divide the IMF components into three segments. ,e noise
segment is directly omitted, wavelet thresholding is performed on the mixing segment, and a GA-BP performs temperature
compensation on the drift segment. Finally, signal reconstruction is implemented. Later, a comparative analysis is carried out on
the results from four models: EMD, wavelet thresholding, EMD+wavelet thresholding, and EMD+wavelet thresh-
olding + temperature compensation. ,e experimental data show that the acceleration random walk change from 1712.66 g/h/
Hz0.5 to 79.15 g/h/Hz0.5 and the zero-deviation stability change from 49275 g/h to 774.7 g/h. ,is indicates that the fusion al-
gorithm (EMD+wavelet thresholding + temperature compensation) not only effectively suppresses the noise of high-frequency
components but also compensates for temperature drift in the accelerometer.

1. Introduction

MEMS accelerometers are fabricated using MEMS technology
[1]. ,e High-G MEMS accelerometer is a general term for
high-range accelerometers. It is a key component in the inertial
testing and control of MEMS technology for fusion intrusion.
,e main application of the High-G MEMS accelerometer is
the measurement and control of speed changes in high-speed
motion carriers during start-up and operation [2, 3]. ,us, the
High-G MEMS accelerometer is widely used in the aerospace
field for the precise control ofmissiles and intelligent projectiles
[4]. ,erefore, research on this type of sensor and the asso-
ciated MEMS system is extremely significant. Many High-G
MEMS accelerometers are the most susceptible component of
the input system and critically affect the accuracy of the system.
,e effects of the accelerometer itself and the signal hardware
acquisition circuit result in the superposition of the acquired
accelerometer signal and a large number of noise signals. Direct
analysis of the output signal inevitably produces an error that
requires corresponding denoising processing [5]. ,e

traditional Fourier transform filter operates on the difference
between the frequency distributions of the signal and the noise.
,us, an undesirable frequency component can be removed by
selecting an appropriate filter in the frequency domain to
achieve denoising [6]. However, a precondition for processing
using Fourier transforms is that the signal satisfies the sta-
tionary assumption. It is often difficult to denoise non-
stationary or transient signals using frequency domain filtering
methods, because the Fourier transform is not applicable to the
nonstationary signals that are encountered in practice [7]. In
empirical mode decomposition, the data themself are used to
adaptively decompose nonstationary signals, such that arbi-
trary nonlinear and nonstationary signals can be processed [8].
In this method, a complex signal is decomposed into several
eigenmode functions arranged in frequency. And, the
decomposed components can be used to reconstruct the
original signal without energy loss [9]. ,e wavelet transform
is a localized analysis in time (space) frequency. It can be
automatically adapted to the requirements of time-frequency
signal analysis. Wavelet thresholding, based on the wavelet
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transform, has become the most commonly used method for
denoising [10]. Conventional denoising methods tend to
remove all of the high-frequency components of a signal that
contain noise, thereby also eliminating the desirable com-
ponents of a signal in the high-frequency range. Wavelet
thresholding can solve this problem [11]. ,erefore, com-
bining EMD with wavelet thresholding is an effective method
to suppress noise. However, the main material that is used in
MEMS acceleration is silicon, which is greatly affected by
temperature. ,us, ambient temperature changes produce
measurement errors in the accelerometer. So, it is very im-
portant to study the temperature characteristics of acceler-
ometers and compensate for temperature drift. At present,
hardware and software methods are commonly used for
temperature compensation. Hardware compensation gener-
ally improves the accuracy of the accelerometer by changing
the material, process, structure, and working environment of
the accelerometer. However, the hardware compensation
process is complicated. In the software compensation, a model
is developed for accelerometer temperature compensation. To
develop this temperature model, it is usually necessary to
design a special temperature control box or complex test
equipment, such as an independent high-precision tempera-
ture control box, an indexing table, or a temperature control
turntable.,e temperature error compensationmodel that has
been developed by numerical analysis of test data for MEMS
accelerometers is economical and practical. It is a part of
a current research trend. Temperature compensation can
improve the accuracy of an accelerometer and its output signal
[12, 13]. For this purpose, we develop a fusion algorithm that
combines EMD with wavelet thresholding and temperature
compensation.,is algorithm is used to process measurement
data from a MEMS accelerometer. In the fusion algorithm,
EMD decomposition is first performed on the original ac-
celerometer signal to obtain the IMF components, which are
then segmented using sample entropy (SE).,e noise segment
is directly rounded off, and themixing segment is processed by
wavelet thresholding. And the drift segment is processed by
the genetic wavelet neural network algorithm (GA-BP) for
temperature compensation. ,e reconstructed signal exhibits
improved the accuracy. Experimental data show that, after
using the fusion algorithm, the acceleration random walk and
zero-deviation stability change from 1712.66 g/h/Hz0.5 and
49275 g/h to 79.15 g/h/Hz0.5 and 774.7 g/h, respectively. ,is
indicates that the fusion algorithm not only effectively sup-
presses the noise of high-frequency components but also
compensates for temperature drift in the accelerometer.

In this paper, we introduce the structure and working
principle of a High-G MEMS accelerometer and develop a fu-
sion algorithm. ,e article is divided into five sections. ,e
algorithm is described in Section 2; an introduction to accel-
erometers is presented in Section 3; the temperature experiment
is described in Section 4 along with an analysis of the exper-
imental results; and the final section serves as the conclusion.

2. Algorithm

2.1. EmpiricalMode Decomposition (EMD). Empirical mode
decomposition (EMD) is an adaptive signal decomposition

algorithm proposed by Cao et al. for nonlinear and non-
stationary signals [14]. ,e signal after EMD de-
composition will generate IMF components with different
time scales. ,e IMF components can intuitively and truly
reflect the characteristics of the signal, whether the signal
itself is linear or nonlinear. ,erefore, EMD method has
better processing effect and greater advantages in non-
stationary and nonlinear signal denoising. ,e basis
function of EMD decomposition is directly generated by
the signal itself. ,e data decomposition has real physical
significance. It also has a high time-frequency resolution.
For the original signal X(t), the empirical mode de-
composition process for generating each IMF component is
as follows [15]:

(1) First, all local maximum and minimum points of
the determined signal are determined. ,en, all
obtained local maximum points are connected
using a cubic spline curve to fit the maximum
envelope Smax(t). All resulting local minimum
points are fitted to the minimum envelope Smin(t).
At this point, all data of the signal are contained
between the maximum envelope and the minimum
envelope.

(2) After fitting the upper envelope line Smax(t) and the
lower envelope line Smin(t), the average of the two is
obtained. It can be known that

m1(t) �
Smax(t) + Smin(t)

2
. (1)

(3) ,en, subtract m1(t) from the original signal X(t) to
obtain a residual component h1(t) with the low
frequency component removed, namely,

h1(t) � X(t) − m1(t). (2)

Determine whether the remaining component h1(t)
meets the conditions defined by the intrinsic modal
function. If so, the remaining component h1(t) is
preserved as an IMF component.

(4) If h1(t) does not satisfy the conditions defined by
IMF, take h1(t) as the original data and repeat steps
(2)∼(3), as follows:

m2(t) �
S1max(t) + S1min(t)

2
,

h2(t) � h1(t) − m2(t),

⋮

mi+1(t) �
Si
max(t) + Si

min(t)

2
,

hi+1(t) � hi(t) − mi+1(t).

(3)

If hi+1(t) meets the condition that the natural modal
function is true, then
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a1(t) � hi+1(t). (4)

(5) r1(t) is obtained by subtracting the first IMF com-
ponent a1(t) from the original signal X(t):

r1(t) � X(t) − a1(t). (5)

r1(t) is taken as the original signal again, and then the
above steps are repeated to obtain a2(t) of the IMF
component of the second X(t), which is repeated n
times until the n-th IMF component an(t) is ob-
tained, or when the residual component rn(t) is
a constant or a monotone function, the EMD de-
composition process is terminated.

(6) Finally, the n-order IMF component and residual
component rn(t) can be fitted to form the original
signal X(t), as follows:

X(t) � 􏽘
n

k�1
ak(t) + rn(t). (6)

2.2. Wavelet -reshold Denoising. Wavelet transform is
a local transform in the time and frequency domains.
Wavelet transform can transcend the limitations of the
traditional Fourier transform by scaling and shifting func-
tions or by a multiscale refinement analysis of signals [16].
,erefore, wavelet transform has become a commonly used
method for signal noise reduction. ,ere are three com-
monly used methods for wavelet transform noise reduction:
wavelet modulus maximum noise reduction, wavelet co-
efficient correlation noise reduction, and wavelet threshold
noise reduction. Among these methods, wavelet thresh-
olding is widely used for noise reduction because of its ease
of implementation. In general, the wavelet threshold
denoising of a signal can be achieved in the following three
steps [17]:

(1) Wavelet decomposition of the signal is performed.
,e wavelet basis function is selected.,e number of
layers to be decomposed is determined.

(2) A threshold is selected to quantify the high-fre-
quency wavelet coefficients that are obtained using
the hard or soft threshold methods.

(3) Wavelet reconstruction is performed. ,e signal is
reconstructed using the low-frequency coefficients of
the lowest layer after wavelet decomposition and the
high-frequency coefficients of all layers after wavelet
decomposition.

,reshold processing methods include hard and soft
threshold methods. In the hard threshold method, the
wavelet coefficients above a given threshold are unchanged.
,e wavelet coefficients below this threshold of each
subspace are set to zero. In the soft threshold method, the
wavelet coefficients are shrunk to zero according to a fixed
quantity and the denoised signal is reconstructed using the
new wavelet coefficients.

,e hard threshold model is as follows:

Sj
′(i) �

Sj(i), Sj(i)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌> thr(j),

0, Sj(i)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌< thr(j),

⎧⎪⎨

⎪⎩

Sj
′(i) �

sign Sj(i)􏼐 􏼑 Sj(i)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 − thr(j)􏼒 􏼓, Sj(i)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌> thr(j),

0, Sj(i)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌< thr(j),

⎧⎪⎪⎨

⎪⎪⎩

(7)

where Sj(i) represents the i-th coefficient of wavelet de-
composition component in the j-th layer; Sj

′(i) represents
the i-th coefficient of wavelet decomposition component in
the j-th layer after denoising. thr(j) is the estimated
threshold value of the j-th layer obtained by the threshold
determination criterion.

,e criterion of threshold determination includes fixed
stein unbiased estimation (iRgrsure), adaptive stein un-
biased estimation (Heusrure), minimax criterion (Mini-
maxi), and fixed threshold criterion (Sqtwolog).

2.3. SE (Sample Entropy). Sample entropy (SE) is a method
for measuring the complexity of a time series that im-
proves upon the approximate entropy (AE) method [18].
SE increases the precision of approximate entropy. It
offers two major advantages over approximate entropy.
First, data segments are not compared in SE, thereby
reducing the dependence on the length of the time series.
,is reduces the error in the approximate entropy and
makes the method insensitive to lost data. Second, SE is
more consistent than AE. ,at is, changes in the pa-
rameters k and h have the same effect on the SE. ,e lower
the value of the SE, the higher is the self-similarity of the
sequence. ,e larger the value of the SE, the more complex
is the sample sequence. At present, SE has applications in
assessing the complexity of physiological time series
(EEG, sEMG, etc.) and diagnosing pathological conditions
[19].

In general, for a signal original sequence x(1), x(2),
. . . , x(T) is composed of T data, and SE algorithm is as
follows:

(1) A sequence of vectors of dimension k, Xk(1), . . . , Xk

(T − k + 1) where Xk(m) � x(m), x(m + 1), . . . ,{

x(m + k − 1)}, 1≤m≤ (T − k + 1). ,ese vectors
represent k consecutive values of x from point m.

(2) ,e distance d[Xk(m), Xk(n)] between the vector
Xk(m) and Xk(n) is defined as the absolute value of
the biggest difference between the two correspond-
ing elements, that is,

d Xk(m), Xk(n)􏼂 􏼃 � maxp�0,...,k− 1(|X(m + p)

− X(m − p)|).
(8)

(3) For a given Xk(m), the number of
n(1≤ n≤T − k, n≠ 2) whose distance between Xk(m)
and Xk(n) is less than or equal to h is counted and
denoted as Bm. For 1 � m≤T − k, we define
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B
k
m �

1
T − k − 1

Bm. (9)

(4) Bk(h) is defined as

B
k
(h) �

1
T − k

􏽘

T− k

m�1
B

k
m(h). (10)

(5) ,e dimension is increased to K + 1. ,e number of
distances between XK+1(m) and XK+1(n)(1≤m≤
N − k, n≠m) that are less than h is computed and
denoted as Cm. Ck

m(h) is defined as follows:

C
k
m(h) �

1
T − k − 1

Cm. (11)

(6) Ck(h) is defined as follows:

C
k
(h) �

1
T − k

􏽘

T− k

m�1
C

k
m(h). (12)

,us, Bk(h) is the probability of two sequences matching
k points for a similarity tolerance h. Ck(h) is the probability
of two sequences matching k + 1 points. ,e SE is defined as

SampEn(k, h) � lim
N⟶∞

− ln
Ck(h)

Bk(h)
􏼢 􏼣􏼨 􏼩. (13)

When N takes a finite value, the following equation can
be used to estimate the SE:

SampEn(k, h, T) � − ln
Ck(h)

Bk(h)
􏼢 􏼣. (14)

,e value of the SE depends on the values of k and h,
making these values highly significant calculation parame-
ters. According to research results that have been presented
in the literature [20], the SE that is calculated using k� 1 or 2
and h� 0.1∼0.25 std (std is the standard deviation of the
original data) exhibits relatively reasonable statistical
characteristics. In this study, we take k� 1 and h� 0.1 std.

2.4. Establishment of Temperature Compensation Model of
GA-BP Neural Network

2.4.1. BP Temperature Compensation Model. A back-
propagation (BP) neural network is trained according to the
error backpropagation algorithm. ,is multilayer feedfor-
ward neural network is the most widely used neural network
[21].,e learning process of the BP neural network consists of
two stages: the forward propagation of the signal and the
backpropagation of the error. ,ese two stages occur cycli-
cally, during which the weights of the layers are continuously
adjusted. ,e learning process does not end until the error in
the network output is acceptable or proceeds to a preset
number of loops.,e neural network algorithm does not need
to know the specific relationship between the input vector.
,e output only needs to determine the input vector factor to

obtain the target output through network training and
learning. ,erefore, the scale factor and the zero-bias tem-
perature compensation model can be used with a three-layer
structure network. ,at is, the temperature and the adjacent
temperature difference are taken as input variables, the
number of hidden layers is one, and the scale factor and the
zero-bias voltage value serve as network outputs. ,e to-
pology of the network structure topology is shown in Figure 1.

,e corresponding transformation relationship of each
layer is as follows.

Input layer to the hidden layer:

yi � f netj􏼐 􏼑, j � 1, 2, . . . , m,

netj � 􏽘
m

i�0
aijxi, j � 1, 2, . . . , m.

(15)

Hidden layer to the output layer:

Bk � f netk( 􏼁, k � 1, 2, . . . , l,

netk � 􏽘
m

j�0
bjkyj, j � 1, 2, . . . , l.

(16)

Network error F:

F �
1
2

􏽘

k

i�1
dl − f 􏽘

l

j�0
bjkf 􏽘

n

0
aijxi

⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭

2

, (17)

where xi is the temperature and temperature difference of
the input variable; aij and bjk are the connection weights of
each layer; Bk is the network output value of the scale factor
and zero offset; d is the expected value of the scale factor
and zero offset. ,e transfer functions f(x) are sigmoid
function and linear transfer function purelin, respectively.
,e learning function accelerates the network convergence
speed for the Levenberg–Marquardt algorithm, thus
establishing a scale factor and zero-bias BP network model.

2.4.2. GA-BP Temperature Compensation Model. In view of
the fact that genetic algorithm (GA) is a probabilistic
adaptive iterative optimization process, it has good global
search performance and is not easy to fall into local mini-
mum. Even if the defined fitness function is discontinuous
and irregular, it can find the overall optimal solution with
the greatest probability. It is suitable for parallel processing.
,e search does not rely on the characteristics of gradient
information. So, GA can be used to optimize the initial
weight and threshold of BP neural network and search in
a large range instead of the random selection of general
initial weights. ,en, the BP algorithm is used to fine-tune
the network in the solution space to search for the optimal
solution or approximate optimal solution. ,is not only
achieves the complementary advantages of the two but also
exerts the extensive nonlinear mapping ability of the neural
network and the global search ability of the genetic algo-
rithm. It accelerates the network learning speed and im-
proves the approximation ability and generalization ability
in the whole learning project [22].
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(1) Determining the sample number of input factor
temperature, temperature difference, and output
factor scale factor/zero deviation, and setting the
fitness function, generate the weight value, and
threshold value randomly to generate the initial
population and code.

(2) ,e network output of the corresponding chromo-
some is obtained through the network calculation of
the scale factor and zero-deviation input sample.

(3) Calculating the fitness of the chromosome using the
fitness function.

(4) Regenerating, crossing, and mutating to produce
a new generation of population.

(5) ,e termination condition is reached, and the global
optimal network weight and threshold are obtained;
otherwise, the above step (3) is returned.

,e GA-BP temperature compensation model of the High-
G MEMS accelerometer was completed by the above method.

,e design flow chart of BP neural network optimization
by GA is shown in Figure 2:

In this study, according to the empirical formula
m � 2n + 1, the number of hidden layer nodes can be de-
termined to be 5, wherem is the number of hidden layer nodes
and n is the number of input variables. ,e learning rate will
affect the training times and network oscillation, so the
learning rate Lr is 0.6 and the network accuracy is 0. 0001, thus
completing the BP neural network structure parameter setting.

,e size of the population determines the complexity of
the chromosome. To adapt to chromosomal evolutionary
ability, the group size is set to 30; the chromosome coding is
in the binary form. A chromosome coding length of 15 is
selected to improve the optimization efficiency. ,e ad-
vantages and disadvantages of the operator limit the search
scope of the feasible domain.,e law of survival of the fittest
in nature is simulated. ,e roulette method is used to select
the offspring. To truly reflect the impact of nature on
populations, the crossover operator uses 0.7. To ensure
population diversity to avoid malformation of the pop-
ulation which can affect the searchmechanism, the crossover
operator is set to 0.01. ,us, all of the parameters are set for
the entire network model of GA-BP.

2.5. EMD, Wavelet -reshold, and Temperature Compensa-
tion Fusion Algorithm. When a signal has a very small useful
signal amplitude and is largely annihilated by noise, using

wavelet analysis for denoising is not ideal. ,e temporal and
spatial filtering algorithm used in EMD simply removes one or
more of the IMF components. It results in the deletion of
corresponding useful signals. ,erefore, EMD is a very ap-
proximate denoisingmethod that can result in significant signal
distortion. Here, we combine EMD with the wavelet thresh-
olding to offset the respective disadvantages of each method. In
addition, since the MEMS accelerometer is greatly affected by
temperature, we include temperature compensation in the
denoising method. In this paper, we combine EMD, wavelet
thresholding, and temperature compensation into a single
method. ,e algorithm for this method is given as follows:

(1) ,e original signal is decomposed by EMD to obtain
the modal components

(2) ,e SE algorithm is used to divide the IMF com-
ponents into three segments: a noise segment,
a mixing segment, and a drift segment

(3) ,e noise segment is directly rounded off, the mixing
segment is processed using wavelet thresholding, and
temperature compensation is performed on the drift
segment

,e two segments perform signal reconstruction to obtain
the final signal. ,e flow of the fusion algorithm is shown in
Figure 3.

Initialize the code 
with GA to generate 

the initial 
population

Calculate the fitness 
values of all 

individuals in the 
current population

Select high fitness 
individuals to save

Crossover
operation

Mutation operator

Satisfy termination 
conditions

Select the best 
individual

Output neural 
network prediction

Meet the termination 
condition

Update weights 
and thresholds

Calculate the error

Get the optimal 
weight and 
threshold

Initialize the weight 
length and 

threshold length of 
the neural network

Initialize the 
network topology

Y Y

N N

Figure 2: BP neural network optimization by the genetic
algorithm.
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Figure 1: Temperature compensation model of BP neural network.
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Figure 3: ,e process of the fusion algorithm.
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Figure 4: High-G MEMS accelerometer structure diagram and size.
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3. Structure and Structural Parameters of the
High-G MEMS Accelerometer

,e original signal collected in this paper comes from
a newly designed and manufactured High-G MEMS ac-
celerometer [23]. Its structure is in the form of four-beam
islands. ,e beam and mass are rectangular and easy to
manufacture.,e beam and mass structure are supported by
a frame and connected to the bottom [24, 25]. Its structure
diagram and size are shown in Figure 4.

,e length and width parameters of the beam were
optimized using the MATLAB simulation method. ,e
software is used to analyze the relationship between de-
flection, stress, mechanical sensitivity, and resonant fre-
quency versus the length and width of the accelerometer.
And Figure 5 is drawn. After comprehensive consideration

of various factors, the structural parameters were modified
and optimized, as shown in Table 1:

,e first-order mode is simulated and analyzed by
ANSYS software, as shown in Figure 6. ,e first mode mass
moves along the Z axis, and its resonant frequency is
408 kHz, which is the working mode.

,e structure of the High-G MEMS accelerometer is made
of silicon and bonding on glass, and the SEM photos and CCD
photos of the accelerometer structure are shown in Figure 7.

4. Experiment and Result Analysis

4.1. Temperature Experiment. ,e equipment that is used in
the temperature experiment consists of a temperature-controlled
oven. AGWINSTEKGPS-4303C power supply provides a +5V
voltage to the High-G MEMS accelerometer, which is placed in
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Figure 5: Characteristic diagram of the High-G MEMS accelerometer. (a) Stress. (b) Deflection. (c) Sensitivity. (d) Frequency.

Table 1: Structural parameters of the High-G MEMS accelerometer.

Mass Beam
Parameters Length (a1) Width (b1) Height (c1) Length (a2) Width (b2) Height (c1)
Size (μm) 800 800 200 350 800 80
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the oven. ,e thermal resistance method is used to obtain the
real-time temperature in the body of the accelerometer, and this
value is synchronized with the High-G MEMS accelerometer
output. ,e device is shown in Figure 8. ,e temperature of the
oven can be accurately controlled from − 50°C to +150°C. ,e

temperature experiments are carried out over this range and
high-speed data acquisition systems. Computers are used to
collect the High-G MEMS accelerometer output signals. First,
the temperature range on the oven is set from − 10°C to 60°C.
,en, data are collected continuously for the oven temperature
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Figure 10: EMD decomposition diagram.
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and the output value of the accelerometer. �e curves for these
two data sets are shown in Figure 8.

4.2. Result Analysis. It can be seen from Figure 9 that the
output of the accelerometer changes signi�cantly with
temperature. First, we use three noise reduction models to
compensate for the output of the accelerometer in the
temperature experiment: EMD, wavelet thresholding, and
EMD+wavelet thresholding. �e EMD decomposition
diagram is shown in Figure 10. It is well known that these
signals are characterized by high-frequency noise and
low-frequency drift. �erefore, after the EMD de-
composition is completed, the SE algorithm is used to
calculate the SE values of the decomposed 15 IMF
components. �en, the 15 IMF components are seg-
mented by the SE values. �e 15 IMF components are
decomposed into three segments [26]. In this paper, based
on the characteristics of the 15 IMF components, we
analyze that the signal sequence with SE greater than 1 is
very complicated. It contains a lot of noise and belongs to
the noise segment. Between 0.2 and 1 is a mixed segment
of noise and signal and less than 0.2 is a noiseless drift
segment.

�e �rst segment contains the �rst and second IMF
components and is the noise segment C1; the second seg-
ment contains the third and fourth IMF components and is
the mixing segment C2; and the third segment contains the
�fth to �fteenth IMF components and is the drift segment
C3, as shown in Figure 11.

It can be seen from the Figure 11 that the noise segment
is very rough, but the trend is stable. �is indicate that this
segment contains only a large amount of noise, and there is
no drift phenomenon regardless of temperature. �e mixing

segment noise is signi�cantly less than the noise segment but
still contains noise. Its trend is smooth and there is no drift.
�e drift segment is no longer rough. We think it is only
a�ected by temperature, causing drift and no noise.

After SE strati�es the signal, noise reduction models are
developed. In EMD noise reduction, the �rst and second
intrinsic mode functions are directly discarded because they
are noise segments and are random and independent of
temperature. �e remaining components are used to re-
construct the signal. In wavelet threshold denoising, the
“db5” wavelet is selected as the wavelet generating function.
�e decomposition scale is set to 5. And, wavelet threshold
denoising is performed on the entire signal. In the
EMD+wavelet thresholding method, the noise segment is
discarded, the mixing segment is subjected to wavelet
threshold processing, and the drift segment is left un-
changed. Finally, the signal is reconstructed. �e results
from the three noise reduction models are shown in
Figure 12.

�e results for each model are calculated.�ey show that
all of the three models approximate the original data well. Of
the three models, EMD and wavelet threshold have almost
the same e�ect on noise suppression. �e EMD+wavelet
thresholding exhibits the best noise suppression.�en, using
the results from noise reduction by the EMD+wavelet
threshold method, GA-BP temperature compensation is
implemented for the drift segment of the signal. So, an
EMD+wavelet thresholding + (GA-BP) temperature com-
pensation model is developed. Finally, C2 and C3 are
reconstructed to obtain the �nal signal, as shown in
Figure 13.

Allan variance [27, 28]is used to evaluate the noise re-
duction e�ect and temperature compensation e�ect of the
four methods (Figure 14).
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,e results for the acceleration random walk (which
represents the noise characteristics) and zero-bias stability
are shown in Table 2. ,e data show that the values for
the acceleration random walk that are obtained using the
EMD, wavelet thresholding, and EMD+wavelet thresh-
olding methods are 338.184 g/h/Hz0.5, 338.02 g/h/Hz0.5, and
207.518 g/h/Hz0.5, respectively.,e corresponding values for
the zero-deviation stability are 49275.9 g/h, 49274.7 g/h, and
49275.5 g/h, respectively. When temperature compensation
is added, the values for the acceleration randomwalk and the

zero-bias stability are 79.15 g/h/Hz0.5 and 774.7 g/h, re-
spectively. It indicates that the accelerometer noise has been
sufficiently suppressed and the temperature drift has been
well compensated for. ,e main content of this paper is to
propose a new signal processing method, which is a software
processing method. ,e limitation of this method is that it
cannot be processed in real time and must be completely
collected before processing. Processing speed depends on
how fast the computer software is running. ,e faster the
computer runs, the faster the results will be processed. Our
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Figure 12: Contrast diagram of the noise reduction effect.
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goal is to provide a more efficient signal processing method
for the same or similar scholars refer to. In the future, we will
continue to strengthen research in this field and strive to
develop more effective and effective methods.

5. Conclusion

In this paper, a fusion algorithm of EMD+wavelet
thresholding + (GA-BP) temperature compensation is
studied to improve the accuracy of a newly developed
High-G accelerometer. ,e fusion algorithm first per-
forms EMD decomposition on the original accelerometer
signal to obtain IMF components. ,en, IMF components
are segmented by SE. ,e noise segment is directly
omitted, wavelet thresholding is performed on the mixing
segment, and a GA-BP performs temperature compen-
sation on the drift segment. Finally, signal reconstruction
is implemented. In the fourth part of this paper, EMD,
wavelet thresholding, EMD+wavelet thresholding, and
EMD+wavelet thresholding + temperature compensation
results are compared by Allan variance calculation. And,
the fusion algorithm is found to be the best. As shown by

data, the acceleration random walk and zero-deviation
stability change from 1712.66 g/h/Hz0.5 and 49275 g/h to
79.15 g/h/Hz0.5 and 774.7 g/h, respectively. ,is indicates
that the fusion algorithm not only effectively suppresses
the noise but also compensates for temperature drift in the
accelerometer.
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Table 2: Results of Allah’s analysis of variance.
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