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When performing flutter analysis through the traditional methods, it is difficult to solve high-order strong nonlinear equations.
For overcoming this difficulty, this paper establishes a double-parameter optimization model for searching the flutter critical wind
speed and frequency. A new hybrid firefly algorithm called the quantum genetic firefly algorithm is presented to search the optimal
solution to the optimization model. )e proposed algorithm is the combination of the firefly algorithm and the quantum genetic
algorithm. )e results of the quantum genetic firefly algorithm are compared with the results shown by the firefly algorithm and
quantum genetic algorithm. Numerical and experimental results of the proposed algorithm are competitive and in most cases are
better than that of the firefly algorithm and quantum genetic algorithm.

1. Introduction

In 1940, the Tacoma Narrows Bridge collapsed due to the
phenomenon called flutter.)e flutter is a kind of aeroelastic
divergence phenomena that can induce structural failure.
)erefore, in the design of the long-span bridges, the critical
flutter state has to be carefully investigated not to excite the
flutter below the designed wind speed [1]. )e semi-retro-
solution method is the most common way to analyze the
critical flutter state. )e traditional semi-retro-solution
methods are required to compare the roots of the flutter
state equations repeatedly [2], as it has high complexity and
large computation amount. It also requires frequent human
intervention to judge the rationality of the calculation re-
sults. Toomuch intervention not only affects the efficiency of
computation but also affects the accuracy and stability of the
algorithm that may lead to the failure of the analysis process.
)erefore, it is necessary to evaluate more efficient and
automated method. For example, Lee et al. [3] calculated the
onset flutter of the aeroelastic bridge system by using the

quasi-steady approach and approximated formula. In these
methods, it is not necessary to resolve highly nonlinear
equations directly, but it needs to set the initial value of the
proposed equation.

To avoid the difficulty of solving highly nonlinear
equations, we transformed it into optimized problem
solution and then established the model to research the
optimal solution. Recently, the firefly algorithm (FA)
has proved that this algorithm can tackle the optimiza-
tion problems effectively. However, the performance
of the traditional firefly algorithm depends on its con-
trol parameters. When the selection of the algorithm is
unsuitable, the search can easily get stuck in a local
optimum [4].

In this paper, the solution to the critical flutter state
problem is converted to an optimization problem, and a
double-parameter optimization model is established. A new
optimization method for searching flutter critical wind
velocity and frequency is presented based on the firefly
algorithm combined with the quantum genetic algorithm.
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)e simulations were performed with three case studies to
observe the quality of the quantum genetic firefly algorithm
and compared with both the traditional firefly algorithm and
the quantum genetic algorithm.

2. Theoretical Background

2.1. Flutter Equation. )e uniformly self-existed aero-
dynamic force and moment of the bridge can be determined
by the following expression with 18 derivative parameters, in
which the first and second portions of the expression rep-
resent the lift and drag forces, and the final portion rep-
resents the corresponding pitching moment [5]:
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where h is the vertical displacement (m); α is the torsional
displacement (nose-up positive) (deg); ρ is the air density
(kg/m3); K � ωB/U is the reduced frequency, in which ω
is the circle frequency; B is the width of the bridge deck; U

is the mean wind speed (m/s); and the parameters of H∗i ,
P∗i , and A∗i (i � 1∼6) are flutter derivatives for the lift,
drag, and moment actions, respectively. )ese three pa-
rameters are related to K and can be obtained from the
wind tunnel test; the dot (·) represents the derivation in
relation to time t.

)e motion differential equations of 3-DOFs under self-
excited forces are as follows:
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On substituting equation (1) in equation (2) and setting
s � tU/B and K � Bω/U, the motion equations can be ob-
tained as follows:
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where m and I are the mass and moment of inertia, re-
spectively; ξh, ξp, and ξα are the damping ratios of the
vertical bending motion, lateral bending motion, and tor-
sional motion, respectively; and ωh, ωp, and ωα are, re-
spectively, the circular frequency of the vertical bending
motion, lateral bending motion, and torsional motion; Fi-
nally, h, p, and α are generalized displacements.

2.2. Determination of the Flutter Optimization Model.
Solving equation (3), we get h � h0e

iωt � h0e
iKs, p �

p0e
iωt � p0e

iKs, and α � α0eiωt � α0eiKs. On substituting
these results in equation (2), in which X � ωh/ω, the fol-
lowing expressions with h0/B, p0/B, and α0 can be obtained
as

−1 + X2 −
ρB2

m
H
∗
4 + 2ξhX−

ρB2

m
H
∗
1􏼠 􏼡i􏼢 􏼣

h0

B
+ −

ρB2

m
H
∗
6 −

ρB2

m
H
∗
5 i􏼢 􏼣

p0

B
+ −

ρB2

m
H
∗
3 −

ρB2

m
H
∗
2α0􏼢 􏼣α0 � 0,

−
ρB2

m
P
∗
4 −

ρB2

m
P
∗
1 i􏼢 􏼣

h0

B
+ −1 +

ωp

ωh

􏼠 􏼡

2

X
2 −

ρB2

m
P
∗
6 + 2ξp

ωp

ωh

X−
ρB2

m
P
∗
5􏼠 􏼡i⎡⎣ ⎤⎦

p0

B
+ −

ρB2

m
P
∗
3 −

ρB2

m
P
∗
2 i􏼢 􏼣α0 � 0,

−
ρB4

I
A
∗
4 −

ρB4

I
A
∗
1 i􏼢 􏼣

h0

B
+ −

ρB4

I
A
∗
6 −

ρB4

I
A
∗
5 i􏼢 􏼣

p0

B
+ −1 +

ωα

ωh

􏼠 􏼡

2

X
2 −

ρB4

I
A
∗
3 + 2ξα

ωα

ωh

X−
ρB4

I
A
∗
2􏼠 􏼡i⎡⎣ ⎤⎦ � 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(4)

2 Shock and Vibration



In case if the above expressions have nonzero solution,
the corresponding coefficients are as follows:
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where Aij is the corresponding coefficient resulted from
equation (4). An example is provided as follows:
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By solving equation (5), the polynomial equation which
represents the parameter X is obtained, which is a real
number in the critical flutter state. )erefore, the real and
imaginary components of the polynomial equation should
be zero. Equation (5) can be resulted as
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where A∗Ri and A∗Ii are the real and imaginary coefficients
which correspond to Xi. From equation (7), ωcr and Ucr can
be obtained for the purpose of the verification of the above
equation. )e parameters of ωcr and Ucr are the critical
circular frequency and critical wind speed, respectively.
Considering a realistic bridge, ωcr ranges between
max ωα,ωh,ωp􏽮 􏽯 and min ωα,ωh,ωp􏽮 􏽯, and Ucr can be ap-
proximately estimated using equation (8) [6]:
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where ε � ωα/ωh (defined as the torsional frequency divided
by the vertical frequency), r is the radius of gyration, μ is the
mass ratio of structure and air, and b is the half width of the
bridge. On the basis of equation (8), the provided results can
be found in equation (9).

Considering the parameter X � [ω, U], equation (7) can
be solved as f(X) �
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condition that is approximately close to zero can be found by
equation (9), which is used to find the ωcr and Ucr values:
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Equation (9) is the flutter optimization model for
searching critical circular frequency and wind speed.

3. Solution Method of Flutter
Optimization Model

In equation (3), parameter ω is semi-implicit, and U is
implicit in A∗i , P∗i , and H∗i . )erefore, the objective function

of the optimization model equation (9) is the implicit
function of X � [ω, U]. For this optimization problem, the
traditional optimization algorithm is not very useful because
the gradient information at the search point is too difficult to
be calculated. )e firefly algorithm is fit for dealing with the
optimization problems of the implicit objective function for
its strong ability for nonlinear mapping. Considering that
the traditional firefly algorithm depends on its control pa-
rameters, sometimes suffer from being trapped in local
optima and low convergence speed in the later period, we
adopted the quantum genetic firefly algorithm to solve the
flutter optimization model to obtain critical circular fre-
quency and critical wind speed.

3.1. FireflyAlgorithm. FA is a relatively newmethod which is
developed by Yang [7]. )is approach is on the basis of the
certain behavioral pattern, particularly the flashing char-
acteristic of fireflies in the tropical summer sky. Fireflies are
beetles members of the family Lampyridae. A firefly is a kind
of insect that utilizes the principle of bioluminescence to
attract mates or prey. )e luminance produced by a firefly
enables other fireflies to trail its path in search of their prey.

Some flashing characteristics of fireflies were idealized so
as to develop a firefly algorithm. For simplicity, only three
rules were followed [7]:

(1) All fireflies are assumed unisex so that one firefly will
be attracted to other fireflies regardless.

(2) )e attractiveness of one firefly to another is pro-
portional to their brightness, which is declined with
increase in the distance between them; consequently,
the ones with less brightness will always move toward
the ones with higher brightness. If there is no firefly
brighter than a given firefly, it will move randomly.

(3) )e brightness or light intensity of a firefly is affected
or determined by the landscape of the objective
function to be optimized. For a maximization
problem, the brightness can be proportional to the
value of the objective function. Other forms of
brightness can be defined similar to the fitness
function in genetic algorithms.

)e brightness of the individual firefly is affected by the
nature of the encoded cost function, simply say, the
brightness of proportion to the value of the fitness or ob-
jective function. )e major issues in FA development are the
formulation of the objective function (attractiveness) and
the variation of the light intensity. As an instance, in the
optimal design problem involving the maximization of the
objective function, the fitness function is proportional to the
brightness or the amount of light emitted by the firefly.
)erefore, decrement of the light intensity due to more
distance between the fireflies will lead to variations of in-
tensity and thereby lessen the attractiveness among them.
Equation (10) can be used to represent the light intensity
with varying distance:

I(r) � I0 exp −c · r
2

􏼐 􏼑, (10)
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where I is the light intensity of the source at distance r from a

re�y; I0 represents the initial light intensity when r� 0; and c is
the light absorption coe�cient, which characterizes the varia-
tion of attractiveness and in�uences the convergence speed and
the overall behavior of FA. c typically varies from 0.1 to 10 [8].
As a 
re�y’s attractiveness is proportional to the light intensity
observed by adjacent 
re�ies, we can represent the attractive-
ness β at a Cartesian distance r from the 
re�y as follows:

β � β0 exp −c · r
2( ), (11)

where β0 is the attractiveness at distance r� 0.�e light intensity
I and attractiveness β are in the same way synonymous. While
the intensity is referred to as an absolute measure of emitted
light by the 
re�y, the attractiveness is a relative measure of the
light that should be seen in the eyes of the beholders and judged
by other 
re�ies. �e distance between any two 
re�ies i and j
at xi and xj can be the Cartesian distance:

rij � xi − xj
�����

�����. (12)

�emovement of 
re�y i as attracted to another brighter

re�y j can be represented as follows:

Δxi � β0e
−c·r2ij xtj −x

t
i( ) + α Nrand − 0.5( ), (13)

where t is the iteration. �e 
rst term that appeared in
equation (13) is because of the attraction. �e second term
α(Nrand − 0.5) represents the randomization, and it can
enlarge the search space. α is a randomization coe�cient,
and it is the random number vector derived from a Gaussian
distribution α ∈ [0, 1]. �e value of Nrand is a random
number generator uniformly distributed in [0, 1]. �e next
movement of 
re�y i is updated as follows:

xt+1i � xti + Δxi. (14)

�e movements of 
re�ies consist of three terms: the
current position of ith 
re�y, attraction to another more
attractive 
re�y, and a random walk that consists of a
randomization parameter α and the random generated
number from interval [0, 1]. When β0� 0, the movement
depends on the random walk only. On the contrary, the
parameter c has a crucial impact on the convergence speed.

Apart from the 
rst step, all performances are repeatedly
carried out until the optimization process ends. �e �ow-
chart of FA is shown in Figure 1.

3.2. Quantum Genetic Fire�y Algorithm. �e quantum ge-
netic algorithm (QGA) is the combination of the genetic
algorithm (GA) and the quantum computing [9]. In
quantum computing, the smallest unit of information in a
two-state quantum computer is called a quantum bit.
Quantum bits (Q-bits) replace general genes, and each in-
dividual is constructed with a string of Q-bits. �e quantum
gate (Q-gate) is used to update individuals. �is algorithm
has good stability robustness and extensive adaptability.
�e quantum genetic 
re�y algorithm (QGFA) is the
combination of the 
re�y algorithm (FA) and the quantum
genetic algorithm (QGA) (Algorithm 1).

�e details of the QGFA are as follows:

(1) Quantum representation of 
re�ies: the positions of
the 
re�ies are represented by binary encoding based
on the Q-bits. �e Q-bits can be in a “0” state, a “1”
state, or any linear superposition of the two.�e state
of a Q-bit can be represented as follows:

|φ〉 � cos θ|0〉 + sin θ|1〉, (15)

where cos θ and sin θ represent state probability
amplitudes, respectively. cos2 θ is the probability that
a Q-bit is observed as |0〉, and similarly, sin2 θ is the
probability that a Q-bit is observed as |1〉. �e use of
a Q-bit to represent an individual in this study was
inspired by quantum computing concepts. QGFA
operates on a population composed of multiple
feasible solutions. Each feasible solution of the
QGFA, which is made up of multiple Q-bits, is the
element chromosome of the population. �e ad-
vantage of the representation is the capability to use
the linear superposition method to generate any
possible solution. As described in equation (15), a
Q-bit can be de
ned as (cos θ, sin θ)T, where each
Q-bit is regarded as a pair of coordinates. �e
quantum bits of the 
re�y i position can be repre-
sented as follows:

Qfi �
cos θi1( ) ∣ cos θi2( ) ∣ · · · ∣ cos θim( )
sin θi1( ) ∣ sin θi2( ) ∣ · · · ∣ sin θim( )

[ ], (16)

Set parameters and initialize

Update position and light intensity

Evaluate new solutions

Stop criterion is
satisfied

Yes

Start

Stop

Read input data

No

Initialize iteration = 1
Iteration + 1

Figure 1: Flowchart of FA.
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where θij ∈ [0, π/2] is the rotation angle. In the initial
search of the algorithm, all states appear with the
same probability, so we set θt�0

ij � π/4 and obtain
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. (17)

(2) Quantummovement according to the firefly algorithm
strategy: the concept of the quantum rotation gate is
introduced into the firefly algorithm, thus improving
the global search capability of the firefly algorithm
further. )e group Q(t) is updated by rotating the
Q-bit toward the direction of the corresponding Q-bit
to obtain a better value. )e state probability ampli-
tudes of the ith Q-bit are updated as follows:
cos χ

sin χ
􏼢 􏼣 �

cos Δθi( 􏼁 −sin Δθi( 􏼁

sin Δθi( 􏼁 cos Δθi( 􏼁
􏼢 􏼣

cos θi( 􏼁

sin θi( 􏼁
􏼢 􏼣. (18)

)e update strategy of the quantum rotation gate is
defined as follows:

θt+1
ik �

θt
ik + β0e

−cr2
ij θt

jk − θ
t
ik􏼐 􏼑 + α Nrand − 0.5( 􏼁, if Bt

ik ≠Bt
ik,

θt
ik + α Nrand − 0.5( 􏼁, otherwise,

⎧⎪⎨

⎪⎩

(19)

where θt
ik is the rotation angle magnitude the ith

firefly’s kth Q-bit after the tth iteration and rij is the
hamming distance [10]. B is the binary solution of
the firefly algorithm.

(3) Introduced crossover and mutation: the goal of
crossover and mutation is to acquire new in-
formation to maintain population diversity. Cross-
over is realized through exchanging part of the Q-bit
encoding. Mutation is realized through the changing
part of Q-bit encoding.

)e flowchart of QGFA is shown in Figure 2.
According to operational processes above, QGFA is

adopted to search the flutter critical point; key steps are
explained as follows:

(1) Initialize all the population Q(t) and t� 0. )e po-
sitions of the fireflies are the solution vectors [ω, U]

of the flutter optimization model.

(2) Select f(X) to be the fitness function in equation (9)
and calculate the light intensity of the population
Q(t).

(3) Update the population Q(t) through equation (19).

3.3.Validation ofQGFA. We applied a commonly employed
test function and compared results to those obtained by
QGFA. Shekel’s Foxholes [11], introduced by Shekel, is a 2D
function with 25 peaks with different heights, ranging
from 476.19 to 499.00. )e global optimum is located at
(−32, −32). Shekel’s Foxholes function is defined as follows:

Z(x, y) � 500−
1

0.002 + 􏽐
24
i�01/ 1 + i +(x− a(i))6 +(y− b(i))6􏼐 􏼑

,

− 65.536≤x, y≤ 65.536,

(20)

where a(i) � 16[(imod e5)− 2] and b(i) � 16[(i/5)− 2].
Due to high modality of Shekel’s Foxholes function, it is

a difficult task to determine its points of local and global
maximum, making it a great challenge for optimization
algorithms. )e QGFA was applied for obtaining the
maximized value of equation (20), by selecting 200 fireflies as
the particle population and also α and c parameters which
was considered as 0.5 and 0.1, respectively. However, the
results of the QGFA algorithm including 10 of best and
worst maximum values with their iteration number are
presented in Table 1. )e global optimal obtained by QGFA
along the number of iteration for the successive independent
10 runs.

As it can be seen from Table 1, results present that the
QGFA can reach to the maximum value in all experiments.
Indeed, using various iteration numbers, the QGFA suc-
cesses to obtain the optimal solution and rejected local
optimal values (local maximums).

4. Case Studies

To further analyze the quantum genetic firefly algorithm
(QGFA) in the next subsections, a brief introduction to three
cases studies is presented. )ree cases studies are related to
the ideal flat plate flutter analysis, the free vibration bridge
flutter analysis, and the force vibration bridge flutter anal-
ysis. )e optimization algorithms were implemented in the
MATLAB (R2014a) program. )e model was performed

(1) Initialize all the population Q(t) and t � 0
(2) Measure each individual of the initial population Q(t) to obtain the binary solution P(t)

(3) Evaluate the binary solution P(t) and calculate individual light intensity of P(t)

(4) Determine whether they meet the terminating conditions: yes, stop; no, continue
(5) t � t + 1; change the position of the populations by the strategy of quantum rotation gate equation (20) to obtain new populations

Q′(t)

(6) Apply quantum crossover and mutation operation
(7) Calculate individual light intensity
(8) Go to (4)

ALGORITHM 1: Process of quantum genetic firefly algorithm (QGFA).

Shock and Vibration 5



using an AMD A8-4500M APU with the Radeon (tm) HD
Graphics 1.90GHz processor computer with 4GB of RAM
memory PC.

�e parameters used in the cases of QGA, FA, andQGFA
are listed in Table 2.

4.1. Case I: Flutter Analysis of a Flat Plate. Consider a uni-
form wind applied on a plate with a half-chord length
b� 0.225m, mass m� 11.25 kg/m, moment of inertia
I� 0.2828 kg·m2, vertical bending frequencyωh � 12.11 rad/s,
torsional frequency ωα � 19.0 rad/s, vertical bending
damping ratio ξh � 0.005, and torsional damping ratio
ξα � 0.008. �e aerodynamic derivatives are obtained from
�eodorsen’s theoretic solutions [14]. �e critical circular
frequency and critical wind speed are in the range of
ωcr ∈ [12, 19] and Ucr ∈ [13, 28], respectively. �e results
that were obtained using QGA, FA, and QGFA in such a case
are provided in Table 3.

Reference [15] obtained the calculation results:
ω� 15.186 rad/s and U� 16.91m/s through the pursuit
method. As shown in Table 3, the calculation results of QGFA
are more agreement with [15], compared with FA and QGA.
Based on the mean values, QGFA is the best in comparison
with that of QGA and FA. For average CPU time, QGFA
needs a little more time than that of FA and QGA.

4.2. Case II: Free Vibration Bridge Flutter Analysis

4.2.1. Experimental Work and Model Description. �e shape
of the deck is considered to represent a realistic highway
bridge in China, but without barriers on the upper surface.
�e deck sectional length is 1.2m. �e geometry and

Table 1: QGFA optimization results for Shekel’s Foxholes.

Experiment Fitness Iteration number
Best results
1 499.01 21
2 499.01 32
3 499.01 24
4 499.01 13
5 499.01 12
6 499.01 14
7 499.01 25
8 499.01 22
9 499.01 25
10 499.01 21
Average 499.01 20.9
Worst results
1 499.01 37
2 499.01 32
3 499.01 51
4 499.01 43
5 499.01 36
6 499.01 43
7 499.01 49
8 499.01 44
9 499.01 40
10 499.01 35
Average 499.01 41

Set parameters and initialize

Update position and light intensity

Evaluate new solutions

Stop criterion is
satisfied

Yes

Stop

Read input data

No

Initialize iteration = 1

Iteration + 1

Obtain binary solution
by quantum measure

Change the population position by the
quantum rotation gate strategy

Quantum crosssover and mutation operation

Start

Figure 2: Flowchart of QGFA.
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dimension of the model are shown in Figure 3. �e ex-
perimental work was performed at Harbin Institute of
Technology, Heilongjiang Province, Harbin, China [16]. �e
wind tunnel is a closed-circuit tunnel having a rectangular
section with a width of 4m wide, high of 3m, and length of
25m. �e wind velocity (U) continuously varies from 2m/s
to 45m/s. �e longitudinal turbulence intensity is less than
0.46%.�e tested model was 
xed by a free vibration device,
and the geometric blockage ratio is approximately equal to
2%, as shown in Figure 4.

4.2.2. Measurement Uncertainty. �e uncertainty of the Re
number (uRe) can be written as follows [17]:

u2Re �
U

Re
zRe
zU

uU( )
2

+
]
Re

zRe
z]

u]( )
2

+
H

Re
zRe
zH

uH( )
2

,

(21)

where u is the uncertainty, v is the kinematic viscosity, and
H is the height of the bridge model. �e uncertain free
stream velocity uU was about 1.5%.�e uncertain model size
uH was 7%. �e uncertain kinematic viscosity of the air uH
was 4%. As a result, the calculated URe give in equation (21)
was 2.9%.�e uncertainty of the accelerometer was obtained
from the calibration chart for the type 4507B accelerometer.
�e expanded uncertainly was 1.0%, as determined in ac-
cordance with [18].

4.2.3. Experiment Results and Analysis. In the experiments,
the wind speed ranged from 4m/s to 16m/s. �e corre-
spondingly reduced wind speed (Ur) wasU/fB, in whichU,
f, and B were de
ned in the previous subsections. �e
MITD method was adopted herein to identify the �utter
derivatives [19]. �e aerodynamic derivatives of the bridge
are provided in Figure 5. �e range of ωcr ∈ [0.6, 1.3] and
Ucr ∈ [60, 120] was considered in the experiment.

�e results obtained through the traditional method
(Scanlan method) [20], QGA, FA, and QGFA for the Case II
are presented in Table 4.

As it can be seen from Table 4, the mean of the three
algorithms is almost equivalent. �e standard deviation of
the QGFA is the lowest of the three algorithms. �e average
CPU time of QGFA, however, is a little bit longer than QGA
and FA. Table 5 provides comparison of the critical wind
speed obtained from QGFA with that of other papers.

From Tables 4 and 5, we can observe that, based on
average values, QGFA is the best in comparison with that of
QGA and FA. �e results of QGFA are very similar with the
others, and it shows that the results of the QGFA can be
accepted. In [24], the damping rate is 0.7%, so the critical
wind velocity is a little higher than that of QGFA.

Figure 4: �e tested model and the free vibration device.

Table 2: FA, QGA, and QGFA parameter settings [12, 13].

Parameter FA QGA QGFA
Population size 50 (75) 50 (75) 50 (75)
Max. iteration 100 (150) 100 (150) 100 (150)
Runs number 50 50 50
Crossover probability — — 0.2
Mutation probability — — 0.1
α 0.2 — 0.2
β0 1 — 1
c 0.1 — 0.1
Convergence indicator 10−5 10−5 10−5

Note: () is for Case III.

Table 3: Comparison of computational results (�at plate).

Algorithm Average CPU time (s)
Critical frequency (rad/s) Critical wind speed (m/s)

Mean Standard deviation Mean Standard deviation
QGA 5.6092 15.16 0.078 16.30 0.065
FA 5.5180 15.17 0.084 16.73 0.077
QGFA 5.7575 15.18 0.050 16.89 0.053

700

850

81
.5

27
.5162.5

Figure 3: Deck section dimensions and shape (unit: mm).
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4.3. Case III: Forced Vibration Bridge Flutter Analysis. A
European bridge sectionmodel is adopted for this case.�e size
of the model is shown in Figure 6. In the test, no appendages
are considered.�e forced vibration method [25] is adopted in
the wind tunnel experiment, as shown in Figure 7. MITD
method was still adopted to identify the �utter derivatives. �e
aerodynamic derivatives of the bridge are summarized in
Figure 8. �e search scope is ωcr ∈ [0.5, 1.2] and
Ucr ∈ [35, 80].

�e results obtained by tthe raditional method (Scanlan
method), QGA, FA, and QGFA to Case III are presented in
Table 6.

As it can be seen from Table 6, on average CPU time,
QGFA needs a little more time. However, QGFA has better
numerical stability. �e standard deviation of the QGFA is
the lowest of the three algorithms. �e result of QGFA and
other people’s results are listed in Table 7.

In Table 7, the barriers are considered in the wind tunnel
experiment of Poulsen et al. [26], so the critical wind speed is
less than those of the others. From Tables 6 and 7, once
again, we can observe that, based on average values, QGFA is
the best in comparison with that of QGA and FA.�e results

of QGFA are very similar with the other references in Ta-
ble 7, and it shows that the results of the QGFA can be
accepted.

Table 4: Comparison of computational results (Case II).

Algorithm Average CPU time (s)
Critical frequency (rad/s) Critical wind speed (m/s)

Mean Standard deviation Mean Standard deviation
Scanlan 1.39 — 86.9 —
QGA 57.0438 1.32 0.035 86.6 1.095
FA 55.1897 1.38 0.043 86.1 1.101
QGFA 57.6702 1.32 0.028 88.1 1.066

0 2 4 6 8 10 12 14 16 18
–5

–4

–3

–2

–1

0

1
H
i∗

U/fB

H1
∗ H3

∗

H2
∗ H4

∗

(a)

0 2 4 6 8 10 12 14 16 18
U/fB

–1.0

–0.5

0.0

0.5

1.0

1.5

2.0

A1
∗ A3

∗

A2
∗ A4

∗

A i
∗

(b)

Figure 5: Flutter derivatives in Case II.

Table 5: Critical wind velocity Ucr (m/s) (Case II).

Parameter QGFA Hua simulation [21] Xin simulation [22] Huang simulation [23] Gu experiment [24]
Ucr 88.1 88.9 94.1 88 96

675

11
0

75
25

475
775

Figure 6: �e size of the model in the forced vibration tests.

Figure 7: Force vibration system.
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5. Conclusions

In this work, the 
re�y algorithm (FA) is improved by
quantum theory integration and is used as an optimization
tool for bridge �utter analysis. �e proposed algorithm is
based on the integration into the 
re�y algorithm of the
quantum genetic algorithm (QGA). �e results obtained by
using the quantum genetic 
re�y algorithm (QGFA) are
compared with FA and QGA for validation.

(1) �e population of the 
re�y algorithm is quantized
through the binary encoding format. We de
ne up-
date strategy of the quantum rotation gate, get a kind
of the hybrid 
re�y algorithm, and give the steps of
searching the optimal solution of the �utter optimi-
zation model with the hybrid 
re�y algorithm. �e
update strategy of the quantum rotation gate is de-

ned to update the population position, and the
quantum crossover and mutation operation are in-
troduced to improve the global search capability of the

re�y algorithm.

(2) Use the quantum genetic 
re�y algorithm, 
re�y
algorithm, and quantum genetic algorithm to ana-
lyze three cases. �e results show that the quantum
genetic 
re�y algorithm has better optimization
results and stability. �e CPU time of the QGFA is
more than FA and QGA.

(3) �e entire computing process of the quantum ge-
netic 
re�y algorithm is without manual in-
tervention. �e algorithm has good numerical
stability, high precision, and good practicality for the
bridge critical state search.

From the results obtained, we can conclude that the
QGFA is an e�cient, reliable, and robust method, which can
be applied successfully to bridge �utter analysis.

Data Availability

�e data used to support the 
ndings of this study are
available from the corresponding author upon request.

Table 6: Comparison of computational results (Case III).

Algorithm Average CPU time (s)
Critical frequency (rad/s) Critical wind speed (m/s)

Mean Standard deviation Mean Standard deviation
Scanlan 1.05 — 41.7 —
QGA 148.0438 1.00 0.041 41.0 0.14
FA 137.2471 1.07 0.044 40.8 0.16
QGFA 170.6702 1.00 0.035 40.6 0.13

0 10 20 30 40

–40

–20
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40
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H4
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(a)
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15
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U/fB

A i∗
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A3
∗

A4
∗
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Figure 8: Flutter derivatives in Case III.

Table 7: Critical wind velocity and critical frequency (Case III).

Parameters QGFA Poulsen experiment [26] Discrete vortex method [27] Zhu simulation [28] Cui simulation [29]
Ucr (m/s) 40.6 36 37.6 40.5 38.0
ω (Hz) 0.162 0.163 0.165 0.160 0.160
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