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Dynamic mode decomposition (DMD) has certain advantages compared with the traditional fault signal diagnosis method. By
exploiting the strength of DMD algorithm in signal processing, this paper proposes a joint fault diagnosis scheme to extract the
spatial and temporal patterns and evaluate them for the complexity to diagnose the fault for one-dimensional mechanical signal.
(e multiscale method is adopted to decompose the reconstructed matrix of standard DMD modes into multiple scales with a
given level parameter. Total least squares DMD algorithm is performed on each level to solve the noise sensitivity problem.
Approximate entropy (ApEn) is performed on the grouped multiscale spatiotemporal modes that represent the dynamic
characteristic information of the original signal. ApEn values are used as a fault recognizer to identify fault types. By applying the
algorithm on three experimental mechanical vibration data, we verify the effectiveness of the proposed method. (e result
demonstrates that the proposed scheme can effectively recognize different fault forms as a fault diagnosis method.

1. Introduction

Fault diagnosis, an important technology to promote the
development of national advanced manufacturing level,
plays a vital role in structural health monitoring, service
life evaluation, product quality assurance, and production
efficiency improvement [1]. Mechanical equipment fault
has incalculable potential danger for safe and reliable
operation of large continuous rolling mill, aero-engine, gas
turbine, and other large mechanical equipment. Due to the
characteristics of complex structure, variable operating
conditions, and long-term online service, early fault sig-
nals usually have the characteristics of nonlinear, non-
stationary, non-Gaussian, potentiality, weak dynamic
response, and multifactor coupling [2, 3]. Generally, the
collected amplitude-modulated and/or frequency-modu-
lated (AM-FM) multicomponent signal is inevitably in-
terfered with background noise. Signal analysis methods of

one-dimensional vibration noisy signal play a decisive role
in fault diagnosis.

In the last few decades, researchers have done a lot of
work on nonlinear and nonstationary fault signal di-
agnosis. (e short-time Fourier transform (STFT), de-
veloped by Gabor [4], compensates the deficiency of
Fourier transform (FT) and is capable of analyzing non-
stationary signals. However, STFT cannot adapt to the
change of time and frequency due to its constant sliding
window [5]. Wavelet transform (WT), which was pro-
posed by Mallat [6], overcomes the shortcoming of STFT.
Regrettably, the effect of WT is closely related to the choice
of wavelet basis function [7]. Wigner–ville distribution
(WVD), introduced by Ville [8], shows good time-fre-
quency aggregation in signal processing; however, there is
a problem of cross-term interference for multicomponent
signals [9]. Subsequently, in order to completely eliminate
the limitations of the time-frequency analysis and to
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obtain an effective result in allusion to the local time and
frequency characteristics of nonlinear and nonstationary
signal, Huang et al. [10] proposed empirical mode de-
composition (EMD), which has the advantages of or-
thogonality and completeness. While EMD has been
widely applied in biomedical, mechanical fault diagnosis,
seismic signal analysis, and other fields [11–13], there are
still some imperfect problems which need to be solved and
improved, such as over-envelope, under-envelope, and
modal confusion and endpoint effect [14]. In response to
the above problems, Smith [15] proposed local mean
decomposition (LMD), which performs better than EMD
in reducing the number of iterations and inhibiting the
endpoint effect. (ough LMD has been well applied in the
field of mechanical fault diagnosis [16, 17], it has the
imperfections of low efficiency and pattern confusion [16].
Variation mode decomposition (VMD), proposed by
Dragomiretskiy and Zosso [18], decomposes the non-
stationary signal into intrinsic mode functions (IMFs)
adaptively and nonrecursively [19]. As a decomposition
method based on spectrum segmentation [20], VMD
overcomes the problem of mode aliasing and achieves
more effective separation between the IMFs. (e selection
of initial parameters (e.g. moderate bandwidth constraint
parameter, number of modes, and tolerance of conver-
gence criterion) is the prior problem in the practical ap-
plication of VMD [19]. Proper orthogonal decomposition
(POD) [21], a method of the model order reduction
technique which is closely related to principle component
analysis (PCA), can extract modal contents from nonlinear
dynamical systems by generating an orthonormal set of
spatial basis functions. Although POD has been widely
used in the field of fluid and PCA in the field of mechanical
signal diagnosis, they are confronted with the defects of
orthogonal basis [22].

As a new nonlinear and nonstationary signal processing
method, dynamic mode decomposition (DMD) has already
gained fruitful achievements in the field of nonlinear dy-
namics, especially in the fluid field. In 2009, Schmid [23]
firstly proposed the standard DMD (sDMD) method, which
can extract the spatiotemporal coherent characteristics by
decomposing the complex flow field signal into a series of
simple expressions. DMD can decompose the time series
into a series of single-frequency modal components [24],
avoiding the modal aliasing problem in EMD and LMD. At
the same time, because of its nature of being equation-free
and data-driven [25], DMD has strict mathematical and
theoretical foundation, avoiding the drawbacks of EMD.
DMD does not depend on any prior assumptions [23] and
avoids the advance selection of WT wavelet basis functions.
In the algorithm implementation process of sDMD and
VMD excepting the parameter of decomposition modes’
number, VMD needs to preset other parameters while
sDMD does not. It is more meaningful in physics compared
with traditional signal processing methods because DMD
decomposes the nonlinear and nonstationary time series
into nonorthogonal modal components corresponding to
the eigenvalues, and the modal components are related to its
inherent spatial and temporal patterns [26]. For a nonlinear

and nonstationary system, there is a set of Koopman modes
(kernel of DMD algorithm) that can fully characterize its
dynamic characteristics [27]. (erefore, DMD avoids the
FT’s drawbacks in characterizing the system by harmonic
signals. With the advantage of describing the dynamic
characteristics in a series of single nonorthogonal frequency
modes [24], DMD maximizes the complexity of the original
system, while POD decomposes data into a series of multiple
orthogonal modal components, lacking the variability in
structure and the concept of freedom in signal expression.
As a whole, DMD has certain advantages compared with the
traditional fault signal diagnosis method. By exploiting the
strength of DMD algorithm in signal processing, this paper
proposes an improved algorithm to extract the spatial and
temporal patterns, and evaluate them the complexity to
diagnose the fault type for one-dimensional mechanical
signal.

Since the sDMD algorithm was proposed, it has been
widely applied in the fields of fluid domain [25–30], video
processing [31, 32], biometrics [33, 34] and neuroscience
[35, 36]. A major issue with sDMD is that the algorithm is
sensitive to noisy data. Hemati et al. [37] found there is a
systematic bias in the eigenvalue spectrum with the addition
of sensor noise in the testing data, and the bias will not be
eliminated when increasing the sample size. (e influence of
small noise on DMD has been carefully explored and
characterized in [38]. (ere are two dominant solutions to
denoise or debias the noise’ effect. In the first method, by
Dawson et al. [39], the systematic bias was removed by
averaging the data in forward and backward time, and it is
known as fbDMD. In the second method, by Hemati et al.
[37], the DMD algorithm is solved by applying total least
squares algorithm instead of the standard least-squares al-
gorithm, and it is known as tlsDMD. Dawson et al. [39]
carried out a comprehensive discussion and accessible
comparison with the above two methods. Both fbDMD and
tlsDMD do not require knowledge of noise characteristics
and come to very similar results; however, fbDMD might be
an ill-conditioned operation for some data. In this paper,
tlsDMD algorithm for mechanical fault signal diagnosis is
proposed, solving the noise sensitivity problem of sDMD.

More broadly, mechanical vibration signals are often
comprised of multiscale temporal and/or spatial features of
interest. A significant challenge is making effective and ef-
ficient connections between microscale and macroscale ef-
fects, such as extracting the magnitude of the complex
system’s dynamic modes by orders in space and/or time.
STFT and WT are structured to perform such multi-
resolution analyses. STFTdefines a function acting as a time
filter for localizing the processing signal over a specific
window in time [4]. Frequencies are obtained at each in-
stance of time with the method of integration over the
parameter τ, which slides the time filtering window down
the entire time domain of the signal. STFT proposes two
main principles for time-frequency analysis: translation and
scaling of a short-time window. WT firstly splits a signal up
into a collection of a series of smaller signals by translating
the mother wavelet with translation parameter b over the
entire signal, and secondly, WT processes the signals at

2 Shock and Vibration



different frequency resolutions by scaling the wavelet win-
dow with the dilation parameter a [6]. As previously
mentioned, DMD can decompose a dynamic model into a
series of single-frequency nonorthogonal modes, which are
regarded as the slow and fast modes and also regarded them
as foregrounds and backgrounds. We are inspired to classify
the DMD modes in a recursive modality, as the STFT and
WT perform the multiresolution analyses. Multiresolution
DMD (mrDMD) is developed in this paper to separate the
mechanical vibration signal into grouped spatiotemporal
DMD modes, we say, multiscale spatiotemporal modes. It is
worth noting that in the process of mrDMD algorithm,
tlsDMD algorithm is appropriate for eliminating the noise
sensitivity.

(eoretically, the fault characteristics of a given me-
chanical vibration fault signal are concealed in one or more
mrDMD modes. Careful observations are needed to identify
the failure type according to the frequency domain of each
mrDMD structure, which brings about great inconvenience.
For different vibration signals, the entropy values are also
different due to different time complexity [40]. (erefore, the
entropy values of mrDMD modes can be used to distinguish
different fault types. Here, we take approximate entropy
(ApEn) [41] as a vibration signal fault pattern recognizer and
setting the entropy values as the input vector of the back
propagation neural network (BPNN) [42] to perform fault
classification. In summary, a fault diagnosis scheme based on
mr-tlsDMD and ApEn is presented for one-dimensional
mechanical vibration signal’ fault diagnosis.

(e layout of this paper is as follows: Section 2 in-
troduces the basic theory, including the algorithm of
tlsDMD, mrDMD, and ApEn. Section 3 summarizes the
current fault diagnosis methods and results based on the
public vibration signal datasets and puts forward the
technical route of the proposed method. Analysis results of
three different experimental mechanical vibration fault
signals are described in Section 4. Conclusions are sum-
marized in Section 5.

2. Methodology

In this part, three algorithms adopted in this paper are
outlined in detail for mechanical vibration signal fault di-
agnosis. In terms of the algorithmic solutions, tlsDMD is
used to eliminate the effect of sensor noise, mrDMD is
outlined to define a hierarchical application of mechanical
fault signal, and ApEn is employed to calculate the entropy
values of the mr-tlsDMD modes which are the inputs of
BPNN.

2.1. tlsDMD Algorithm for Mechanical Vibration Signal
Processing. DMD stems from the fact that it is an equation-
free, data-driven method capable of providing potential
dynamic characteristics of a complex high-dimensional
system [23]. Essentially, it is a kind of order reduction
methods based on the theory of singular value de-
composition (SVD) and mode decomposition. (e detailed
algorithm process of sDMD is described in [23, 24].

Currently, DMD algorithm and multiple variations of DMD
algorithm have been successfully applied in fluid dynamics,
enhancing the capabilities for predication, state estimation,
and control of complex system [26–29, 31, 37–39, 43].
Among that, tlsDMD showed its better ability to extract real
and accurate dynamic features from noise-corrupted data.
As we introduced in the introduction, Dawson et al. [39]
proposed the tlsDMD algorithm and proved that it is in-
sensitive to noise in the fluid domain. Here, we generalize
the tlsDMD algorithm framework for one-dimensional
mechanical vibration signal processing to eliminate the ef-
fect of sensor noise.

Suppose that a one-dimensional time series of N sample
points is collected from amechanical system at equal interval
intervals. S � [x1, x2, . . . , xi, . . . , xN], xi ∈ R, while the pa-
rameter of the given time interval Δt is defined as
Δt � ti+1 − ti. (erefore, the sampling frequency of the
mechanical system is typically calculated as Fs � 1/Δt. We
transformed the 1 × N observed signal S into m × n shift-
stack Hankel matrix S′ by

S′ �

x1 x2 . . . xn

x2 x3 . . . xn+1

· · · · · · · · · · · ·

xi xi+1 . . . xn+i− 1

· · · · · · · · · · · ·

xm xm+1 . . . xm+n− 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

� %⎡⎣

| | |

S1 S2 . . . Sn

| | |

%, S′ ∈ R
m×n

.

(1)

It is possible to divide the matrix S′ into two m × (n − 1)

data matrices X and Y.

X �

| | |

S1 S2 . . . Sn− 1

| | |

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

Y �

| | |

S2 S3 . . . Sn

| | |

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

X, Y ∈ R
m×(n− 1)

.

(2)

DMD is algorithmically a regression by assuming the so-
called Koopman operator A, mapping the current data X to
the subsequent data Y, defined as Y � AX. (ough the
Koopman operator A is a linear, infinite-dimensional op-
erator, it can represent the action of a nonlinear dynamical
system in the Hilbert space [44]. Apparently, the evolution of
the sequencesX andY is determined by the eigenvalues ofA.

Vibration signals of the mechanical system collected by
sensors are inevitably mixed with noises [11]. In other
words, the above matrices X and Y both contain noise
components. (e algorithm of sDMD takes the influence of
noises in the matrix X into consideration, assuming that the
first r-order eigenvalues of X represent the actual vibration
signals and the subsequent m − r order eigenvalues as noises.
Here, we consider that m≤ (n − 1), and X is a full rank
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matrix, which is consistent with the actual mechanical vi-
bration noisy signal. (at is, sDMD identifies dynamics with

A : Y � A X+EX( ,

argmin
A

EX
����

����F
,

(3)

where X and EX, respectively, represent actual vibration
signals and noise components of the matrix X. ‖·‖F repre-
sents the Frobenius norm.

While tlsDMD performs a single algorithm that finds
total least squares solutions for the noise error on bothX and
Y, we seek

A : Y+EY � A X+EX( ,

argmin
A

EX
EY

��������

��������F

.
(4)

Similarly, Y and EY represent actual vibration signals
and noise components of the matrix Y, respectively.

In what follows, we outline the core steps of tlsDMD
algorithm for signal processing:

(1) Firstly, construct an augmented matrix Z �
X
Y 

and compute the SVD on Z � UV∗, where Z ∈
R2m×(n− 1).
U and V are orthonormal and are called the left and
right singular vectors, respectively. U∗U � I, V∗
V � I. (e symbol ∗ denotes the complex conjugate
transpose.  ∈ Rp×p contains a number of nonzero
singular values σ1, σ2, . . . , σp  by descending se-
quence in its diagonal, p � min(2m, n − 1).
It is well known that when the noisy matrix Z is close
to the square matrix, the maximum characteristic
frequency components can be obtained with SVD.
For the sake of obtaining the maximum spatial and
temporal complexity of the original noisy signal, the
product of 2m and n − 1 should be as large as
possible. According to the principle of inequality, the
product achieves the maximum when 2m and n − 1
are equal or close to each other. (en, the dimension
m of Equation (1) is defined as follows:

m �

N

4
, if N � 2z,

N − 1
4

, if N � 2z − 1,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(5)

where z ∈ R is the positive integer sequence that
z � 1, 2, 3, . . ..
We choose a given number of truncated ranks r and
retain the first r columns of V. Similarity matrices X
and Y can be obtained by projecting Vr onto proper
orthogonal decomposition modes. (en, the solu-
tion of the total least squares problem comes to two
“corrected” matrices to account for noise.

X � XVrV
∗
r ,

Y � YVrV
∗
r ,

(6)

where X, Y ∈ Rr×r. Vr
∗ is the complex conjugate

transpose of the matrix Vr.
(us, tlsDMD identifies the mechanical signal sys-
tem’s dynamics with

A : Y � AX,

argmin
A

EX

EY

���������

���������F

,
(7)

where A is the similarity matrix of A, defined as
A � UrAU∗r , A ∈ Rr×r.
(e eigenvalues and eigenvectors of A are then
represented by those of A as they process the same
dynamical features.

(2) (e matrix A of Equation (4) may be obtained by the
pseudoinverse of X after applying SVD on it.

A � YX− 1
� YVr 

− 1

r

U∗r . (8)

(3) Eigenvalue decomposition is applied on the simi-
larity matrix A:

A � WΛW− 1
, (9)

where W � [ω1,ω2, . . . ,ωr] ∈ Rr×r is the eigenvec-
tor, and Λ � diag([λ1, λ2, . . . , λr]) ∈ Rr×r is the
corresponding diagonal eigenvalue matrix.

(4) Compute the approximate solution of the re-
construction matrix SDMD, representing the dynamic
information of the original mechanical signal.

SDMD � 
r

i�1
ϕi exp ϖiΔt( bi � Φ exp(Ωt)b,

SDMD ∈ R
m×(n− 1)

,

(10)

where Φ is a matrix consisted of DMD modes ϕi,
ϕi � YVi

− 1
i Wi.Ω is a diagonal matrix whose entries

are the dynamic system’s eigenvalues ϖi, ϖi � ln(λi)/
Δt. t is a time series t � [Δt, 2Δt, . . . , N∗Δt]. b is a
vector containing the initial amplitude of each mode
bi, b � ΦΓX, and Γ denotes the Moore–Penrose
pseudoinverse.
Similar to sDMD algorithm, tlsDMD is based on
SVD. Determining how many singular values to
select (truncated rank r) is of the most choice. In fact,
the selection depends on a number of factors in-
cluding the quality of the signals collected by the
sensor, the signal-to-noise ratio (SNR), and the
energy level excited by the fault characteristics. In the
early stage of mechanical signal failure, the excited
energy is low, leading to the fault characteristics that
are not obvious. Moreover, it is usually unavoidable,
and the experimental mechanical signal may be
corrupted with noise, making it unclear to determine
where to truncate. In the past, many researchers have
done a lot of work in the field of truncation criteria.
(e proposed methods include hard threshold [45],
soft threshold [46], and the nonconvex optimization
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algorithm [47]. (e above methods either need to
know the SNR in advance or add additional pa-
rameters. In this paper, we take the mechanical early
failure signal into consideration, and choose the
truncated rank r by retaining 99% of the singular
value energy. In other words, the mechanical signal is
slightly denoised to ensure that the fault signals are in
the reconstructed matrix SDMD. (e implementation
process of tlsDMD for one-dimensional simulation
signal is shown in Figure 1.

2.2. mrDMD Framework. (e reconstructed matrix SDMD
contains all the dynamic characteristic information of the
original system, including the increased/decreased in-
formation. In fluid and image processing, the dynamic
information is usually divided into two separations:
foreground and background [29]. (e background refers
to the invariant inherent characteristic, and we say, it
represents slow modes in a mechanical signal. (e
foreground refers to the additional dynamic character-
istic, which represents the fast modes in a mechanical
signal. It is unclear that the fault signal accounts for the
energy level for a given system. (at is to say, in the series
of single-frequency modes Φ, the fault characteristic
frequency may exist in the slow modes component or/and
in the fast modes component, making the fault extraction
more difficult. In this paper, multiscale method is adopted
to decompose the reconstructed signal into multiple
scales with different levels and different time-frequency
resolutions.

In Equation (10), the reconstruction matrix of SDMD is
obtained by a superposition of ϕi exp(ϖiΔt)bi. Every single
ϖi corresponds to a DMDmode ϕi. It becomes apparent that
any period of the signal, which does not change or changes
very slowly with time, must have an associated Fourier mode
with the frequency ‖ϖi‖⟶ 0. We regard the slowest-rank
components as background modes by setting a threshold ξ1
and producing a representation of the reconstructed matrix
SDMD into the background modes reconstruction matrix
S
11

‖ϖi‖≤ξ1
DMD

and the remaining modes reconstruction matrix

S
12

‖ϖi‖>ξ1
DMD

. Equation (10) can be expressed as

SDMD � S
1DMD

� S
11

ϖi| |≤ξ1
DMD

+ S
12

ϖi| |>ξ1
DMD

� 

ϖi| |≤ξ1

ϕi exp ϖiΔt( bi

+ 

ϖi| |>ξ1

ϕi exp ϖiΔt( bi.

(11)

Mathematically, we divide the solution of SDMD into slow
modes S

11
|ϖi|≤ξ1
DMD

and fast modes S
12

|ϖi|>ξ1
DMD

, where the symbol 1 at

the bottom of the capitalized letter S represents the first level
of reconstruction, the symbol 11 represents first re-
construction level’s slow modes, and the symbol 12 repre-
sents first reconstruction level’s fast modes. (e tlsDMD
algorithm outlined in the previous section can now be
performed once again on the data matrix sm/2′ . (us the

matrix sm/2′ can be separated again into slow modes and fast
modes by setting another threshold ξ2.

S
2DMD

� S
21

ϖi| |≤ξ2
DMD

+ S
22

ϖi| |>ξ2
DMD

� 

ϖi| |≤ξ2

ϕi exp ϖiΔt( bi

+ 

ϖi| |>ξ2

ϕi exp ϖiΔt( bi.
(12)

(is recursive process continues repeatedly until a de-
sired termination. (e dynamic characteristics of the orig-
inal signal are represented by multiple levels of
spatiotemporal modes. Accordingly, a hierarchical DMDhas
been introduced to split the original reconstructed signal
matrix SDMD with several levels. After applying arbitrary
L-th level with mrDMD, the matrix SDMD can then be
reconstructed as follows:

SDMD � X
L1DMD

+ X
L2DMD

+ · · · + X
L2L− 1DMD

. (13)

Figure 2 illustrates the process in terms of the mrDMD
solution. Multiple scale signals jointly represent the dynamic
characteristic information of the original signal.

2.3. Basic:eory of ApEn. So far, 2L− 1 modes with different
spatiotemporal resolutions are obtained by performing
tlsDMD in each decomposition level. (ese multi-
resolution modes are considered similar to the IMFs of
EMD. All the modes together represent the dynamic
characteristics of the original one-dimensional signal, and
each scale mode represents part of the inherent charac-
teristics. Fault features may be concealed in one and/or
more modes, making it inconvenient to identify fault types
efficiently. For different mechanical vibration signals, due
to different time complexity, their entropy values are also
different. So, different signal types can be distinguished
according to entropy values. In this paper, ApEn values of
the 2L− 1 modes are used as a fault recognizer to identify the
fault types.

ApEn, proposed by Pincus [41] in 1991, is an algorithm
to measure the complexity and regularity of time series
without coarsening. Owing to its advantages of strong
anti-interference ability and short required data (least
1000 data), ApEn has been widely used in either me-
chanical signal or medical signal processing [48, 49]. One
disadvantage of ApEn is that it measures the complexity of
time series on a single scale. Considering that we have
conducted multiscale decomposition of the original one-
dimensional mechanical signal, multiscale entropy is not
performed in this work for simplifying the overall algo-
rithm. Here, we make full use of ApEn’s short requirement
for time series and briefly describe its algorithm process
[41, 50].

For a given time series Xk, k � 1, 2, . . . , N , firstly de-
termine the pattern dimension τ and extract the elements in
Xk sequentially, forming a set of vectors.

% Xi � xi, xi+1, . . . , xi+τ− 1 , i � 1, 2, . . . , N − τ + 1.

(14)
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And determine the distance between any two vectors Xi

and Xj by calculating the absolute value of the maximum
difference between their corresponding elements.

d Xi,Xj  � max xi+k − xj+k



, k � 0, 1, . . . , τ − 1; i,

j � 1, 2, . . . , N − τ + 1; i≠ j.
(15)

Current matrix

Subsequent matrix

Mode 1

Mode 2

Characteristic
frequency

Mode r

Y

X

One-dimensional signal tlsDMDShi�-stack Hankel matrix

x1(t) = 0.2(0.2 + 0.3cos2πf1t)sin(2πf2t)
x2(t) = 0.5sin(2πf3t); x3(t) = 0.2 cos(2πf4t)
S(t) = x1(t) + x2(t) + x3(t) + noise

SDMD = 

Z = X
Y

X = XVrV∗

r
~

Y = YVrV∗

r
~

A: Y = AX
~ ~ ~~

A = YVr
~

Z = U V∗

r
i=1 ϕi exp(ϖi∆t)bi = Φ exp(Ωt)b

r
–1U∗

r
~

1
0.8
0.6
0.4
0.2

0
–0.2
–0.4
–0.6
–0.8

–1
–1

–0.5 0 –0.5 –1

...

Figure 1: tlsDMD implementation process for one-dimensional simulation signal.

X1

X2

Xm

X1

X2

Xm/2

X1

X2

Xm/4

Slow modes

X11 DMD

Fast modes

.
.

.

.
.

.

.
.

.

X21 DMD X22 DMD

Figure 2: Illustration of mrDMD solution. Here, the slow modes and fast modes are divided by splitting the number of ϖi at its median.
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Secondly, count the number of statistical distance which
is smaller than a certain threshold c, and calculate the ratio
with the number of vector Xi.

C
τ
i (c) �

η
N − τ + 1

, (16)

where η is the number of d[Xi,Xj] which is smaller than the
threshold c. And c, the similarity tolerance, needs to be
defined in advance, the same as the parameter τ.

Subsequently, define the self-correlation degreeΦτc of the
sequence Xi.

Φτc �
1

N − τ + 1


N− τ+1

i�1
lnC

τ
i (c). (17)

(en, repeat the above steps by changing the pattern
dimension τ into τ + 1, getting another self-correlation
degree Φτ+1

c .
Finally, ApEn is defined for the original given time series.

ApEn(τ, c) � Φτc − Φτ+1
c . (18)

(e value of ApEn is related to the data length N, pattern
dimension τ, and similarity tolerance c. When τ � 1 or 2 and
c � (0.1 ∼ 0.25)SD, (SD is the standard deviation of the
original data sequence), the ApEn calculated has a rea-
sonable statistical characteristic [41, 50]. In this paper, we
choose τ � 2 to obtain more information during the joint
reconstruction. For the similarity tolerance, too much sta-
tistical information will be lost and too little will result in
unsatisfactory statistical effect [41]; therefore, we set
c � 0.2SD.

3. Fault Diagnosis Methods for Mechanical
Vibration Signals

3.1. A Brief Overview of Previous Approaches to Fault
Diagnosis. (ere are many types of vibration signals in the
field of mechanical industry, especially in the vital equip-
ment with an online monitoring system. Usually, trans-
mission system, which is prone to failure, is the main
monitoring object. (erefore, the vibration signals usually
come from the rolling bearings or/and the gears. Fault di-
agnosis is an important research field with the development
of intelligent information technology, and a large number of
research reports based on bearing and gear vibration signals
fault diagnosis are published every year. Here, we present a
part of the review literatures [51–55] on fault identification
of mechanical vibration signals reported in the last three
years. Support vector machines (SVM) [56] and artificial
neural networks (ANN) [57] have been reported as the most
popular techniques used as fault diagnosis methods in the
view of the review literatures.

However, due to the lack of general and public me-
chanical databases, it is difficult to compare the fault di-
agnosis techniques proposed in the literatures [58].
Currently available open source datasets include the NASA
Prognostics Data [59] and Case Western Reserve Uni-
versity (CWRU) bearing signals [60]. Accordingly, the
fault diagnosis methods and the algorithm performance

based on SVM and ANN for the two datasets are shown in
Table 1.

Intelligent fault diagnosis methods usually include three
key steps: (1) data preprocessing; (2) feature extraction and
selection; and (3) fault classification. Data preprocessing is
typically processed to eliminate outliers [70], such as sensor
noise. Traditional feature extraction methods are performed
on the basis of time domain characteristics [63, 72], fre-
quency domain characteristics [64, 67, 70], time and fre-
quency domain characteristics [62, 66], and mode
characteristics [10, 61, 65, 66, 73]. Feature selection tech-
nology, significantly reducing feature dimension and im-
proving diagnosis efficiency while retaining important and
representative features, plays a crucial role in the following
step of fault classification [70]. In terms of the fault clas-
sification method, Kankar et al. [74] compared the perfor-
mances of ANN and SVM for fault diagnosis of rotor bearing
systems: the experimental results indicate that ANN has a
higher classification accuracy than SVM in the cases con-
sidered in the study.

3.2. Fault Diagnosis Method in :is Paper. As stated in
Section 2, a novel feature extraction and selection ap-
proach is defined with mr-tlsDMD. A hierarchical ap-
plication of the one-dimensional mechanical fault signal is
adopted to achieve multiple scale DMD modes in different
spatial and temporal resolutions. In each layer of de-
composition, tlsDMD is performed to eliminate the effect
of sensor noise. (en, ApEn is implemented on each
multiresolution mode, and a vector of 2L− 1 number of
entropy values can be obtained. (is fault extraction and
selection method is similar to the main features of the
literatures [61, 65, 66, 68], in which the dynamic char-
acteristics of the original mechanical system were obtained
by EMD/LMD/VMD and entropy algorithm. Supposing
that there is a bunch of one-dimensional fault signals with
different types, we take a part of the ApEn vectors for
which we knew the fault type (actually they can be ob-
tained through industrial field accumulation) as the input
vectors of the BPNN for training and take the remaining
for testing to perform fault classification.

In the implementation of our proposed algorithm,
several parameters need to be defined in advance, including
the truncated rank r in tlsDMD, the decomposition layers L

and the thresholds of slow modes and fast modes in each
layer of mrDMD, pattern dimension τ, and similarity tol-
erance c of ApEn. For a given number of n periods of
mechanical signals, the flowchart of the proposed algorithm
is shown in Figure 3. (e procedure of the fault diagnosis
method proposed in this paper is as follows:

(1) Each period of the mechanical signal is decomposed
by mrDMD in the decomposition layer l � 1, 2,

. . . , L, and in each decomposition level, tlsDMD is
firstly applied to eliminate noise interference with
the method r rank truncating in SVD (as in Equation
(8)). A total number of 2L− 1 multiresolution modes
characterizing the dynamic information of the
original signal are obtained (as in Equation (13)).
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(2) ApEn with the parameters τ and c is performed on
each multiresolution mode, resulting in an entropy
value. �e multiresolution modes of each signal
correspond to 2L− 1 entropy values, forming a fault
feature vector. �us, there are totally a number of n
fault feature vectors for the n periods of mechanical
signals.

(3) Based on the fault feature vectors, the condition of
the rolling bearings is identi�ed by BPNN. All the
vectors are randomly divided into two parts, one part
is taken as the training data of BPNN and the
remaining as testing data to perform fault classi�-
cation. A comparison with other previous fault di-
agnosis methods is made in terms of classi�cation
accuracy.

4. Fault Diagnosis of Experimental Mechanical
Vibration Signals

Next, we implement three experiments to verify the eec-
tiveness of the proposed method. �e �rst two sets of rolling
bearing’s signals come from CWRU and NASA, and the
third set of gear’s signal comes from the data tested by
authors’ research team.

4.1. Fault Diagnosis of Rolling Bearing Signals of CWRE.
�e rolling bearing fault simulation systems of CWRU
mainly consists of a motor, a torque transducer, couplings,
electronic control equipment, and other related devices.
Please refer to [60] for details of the bearing experimental

Table 1: Fault diagnosis methods and performance for NASA and CWRU signals based on SVM and ANN.

Ref. Main features Database,
bearing states Classi�er Accuracy (%), state samples

[61] EMD energy entropy of the �rst
eight IMFs NASA, seven ANN

93. Total 5394 records divided into �ve
folds, training: Four folds, test: one

fold

[62] Time and frequency domain
features NASA, seven Linear SVM and quadratic SVM 99.4 of linear SVM, 99.3 of quadratic

SVM. Training: 80%, test: 20%

[63] Time domain features NASA, two Classical SVM (CSVM), incremental
SVM (ISVM)

Outer: 91.1 CSVM and 98.7 ISVM,
inner: 92.0 CSVM and 94.5 ISVM.

Training: 70, test: 30

[64] FFT NASA, two 1D convolutional neural networks
(1D CNN) 97.1 of 1D CNN, 94.5 of FFT-SVM

[65] LMD, sample entropy, and
energy ratio CWRU, four SVM 100. Training: 60, test: 20

[66] Time and frequency, EMD
energy entropy CWRU, even Adaptive neuro-fuzzy inference

system (ANFIS) 94.7 (average). Training: 140, test: 70

[67] DWT (cluster-based feature
extraction) CWRU, ten Probabilistic neural network 98.2 (maximum). Training: 168, test:

60

[68] EMD sample entropy of the �rst
ten IMFs CWRU, six Improved shu¡ed frog leaping

algorithm (ISFLA)
100 for H, others 95.4 (maximum).

Training: 140, test: 70

[69] LMD-SVD CWRU, ten BPNN SVM, extreme learning
machine (ELM)

97.7 (average) for BP, 98.8 (average)
for SVM, 99.3 (average) for ELM. Test:

228

[70] Continuous wavelet transform
(CWT) CWRU, ten Convolutional neural network (CNN) 99.7 of CNN, 99.7 of CNN, 85.1 of

BPNN training: 200, Test: 200
[71] Transfer learning CWRU, six Neural networks 91.8 (total). Total: 4832, training: 1208

[72] Time domain features CWRU, ten Hierarchical adaptive deep CNN
(ADCNN) 99.7 (average). Training: 500, test: 500

[73] SVD, the singular values CWRU, four ANN 95.1, training: 336, test: 144

tlsDMD

Slow modes of level i – 1
i = 2, 3 ... L – 1

Fast modes of level i – 1
i = 2, 3 ... L – 1

mrDMD

ApEn

Training

Testing

Training on BP
neural network

Testing on BP
neural network

Fault recognition
S(n) ApEn vector of 2L–1 values

S(i) ApEn vector of 2L–1 values

S(2) ApEn vector of 2L–1 values

S(1) ApEn vector of 2L–1 values

S(n)

S(1)

S(2)

S(i)

Training
signal

Testing
signal

...

...

...
...

...
...

tlsDMD

Figure 3: A £owchart of the proposed algorithm.
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device and the test vibration signal. From the point that the
signals adopted in this paper of view, four different forms
(normal, inner race fault, ball fault, and outer race fault) of
SKF bearings 6205-2RS were installed at the motor drive
end. (e fault bearings are machined with a single point of
failure using the electro discharge technique with different
sizes. A sensor, which is marked in blue triangle, was placed
on the pedestal with a magnetic base. Digital data was
collected by sampling with the frequency of 48 kHz in
normal vibration and 12 kHz in fault vibration. Both the
motor rotation speed was 1750 r/min. We used the test
signals with motor power of 2 HP and bearing failure size of
diameter 0.021″ to verify the effectiveness of the proposed
algorithm.(e normal bearing signal, inner race fault signal,
ball fault signal, and outer race fault signal come from the
database of 99, 211, 224, and 236, respectively. (e sampling
time of each group lasts for 10 seconds. A total of 120,000
data points were adopted in our experiment. Each time series
is divided into 50 sections at intervals of 0.2 second, with the
duration of 0.5 second.(at is to say, the first section is taken
from 0 to 0.5 seconds, the second from 0.2 to 0.7 seconds,
and so on.(erefore, the total number of bearing state is 200
with four bearing states, and the number of data points per
bearing state is 24,000.

All bearing states were firstly decomposed by mr-
tlsDMD. We define the parameter of r by setting that the
energy of the truncated rank orders reaches to 99% of the
total energy in the algorithm of tlsDMD.(e decomposition
layers L is set to 4, and the threshold ξl, (l � 1, 2, . . . , L) of
slow modes and fast modes are defined by splitting the
number of ϖi at its median (the number of slow modes
equals the number of fast modes). In other words, there are
eight ApEn values for each bearing state when applying the
algorithm of ApEn on the multiresolution modes later.
Figure 4 shows the original one-dimensional signals with
only one representation per bearing state listed. Here, we
plot the signals with the first line of Hankel matrices, by
using Equations (1) and (5). Figure 5 shows the FTspectrum
of the signals in Figure 4. (e specific parameters of the
experimental bearing 6205-2RS are shown in Table 2, and
the calculated frequency characteristics of the fault (refer to
the formulas in [35]) are shown in Table 3. Multiscale de-
composition modes of each signal are shown in Figures 6–9,
and their FT spectrums are shown in Figures 10–13.

Subsequently, ApEn algorithm (τ � 2, c � 0.2SD, and SD

is the standard deviation of data sequence) is applied on the
multiresolution DMD modes, and a total of 200 vectors are
obtained. Each vector contains eight elements corre-
sponding to each bearing state. 30 vectors of each bearing
state were randomly selected as the training data of BPNN
and the remaining 20 vectors as the test data. Numbers of
records per bearing state and ANN outputs are summarized
in Table 4. (e parameters of the classifier are set as follows:
the input layer has 20 nodes, the hidden layer has 30 nodes,
and the output layer has 4 nodes. (e classification results of
the training and testing signals are shown in Figure 14. (e
category labels 1, 2, 3, and 4 represent normal, inner race
fault, ball fault, and outer race fault, respectively. Note that
the classification accuracy is the ratio between the total

numbers of correctly classified test samples to the total
number of test samples. It is clear that the accuracy of the
proposed algorithm is 100%, indicating that its performance
is significant.

classification accuracy

�
(Number of correctly classified samples)

(Total number of classified in testing samples)
× 100.

(19)

4.2. Fault Diagnosis of Rolling Bearing Signals of NASA.
In Section 4.1, although we have successfully classified and
identified four kinds of bearing faults, which proved the
effectiveness of the proposed algorithm, the fault types can
also be obtained from the spectrum diagram of the original
signals. Next, we apply the algorithm on the early signals
from NASA’s run-to failure bearing experiment to show the
proposed algorithm’s effectiveness on weak fault signal.

(e used signals were generated by Intelligent Mainte-
nance Systems of Cincinnnati, and the data set is available on
the NASA website [59]. Four Rexnord ZA-2115 double row
bearings were installed on a shaft, which was driven by an
AC motor at the speed of 2,000RPM via sever rub belts. (e
specific parameters of the experimental bearing are shown in
Table 5, and the calculated frequency characteristics of the
fault are shown in Table 6.

High sensitivity quartz ICP accelerometers (PCB
353B33) were installed on the bearing housing, receiving the
vibration signals, and NI DAQ Card 6062E was used to
collect the signals. Each data set consists of individual files
that are one second vibration signal snapshots. Each
snapshot, recorded at every 10 minutes’ interval, consists of
20,480 points with the sampling frequency 20 kHz. (ree
tests were made. (e first test was carried out for 35 days
until inner race defect occurred in bearing 3 and roller el-
ement defect in bearing 4. (e whole experiment was dis-
continuous, and the continuous running time of the
bearings from normal to severe failure was about 15 days.
Senanayaka et al. [62] calculated the root mean square
(RMS) values of the whole snapshots. (ey concluded that
the first 12 days of the bearings’ running duration were the
normal service period, since then the bearing 3 (inner race
fault) was subjected to a 2.5 days’ predegradation period, and
severe failure of the bearing occurred in the last 6 hours. In
our experiment, we use the first channel data of bearing 1 as
normal bearing signals and the fifth channel data of bearing
3 as inner race fault signals.(e normal bearing signals come
from the snapshot 2003.10.31.08.59.46 (the snapshot after
the bearings running for 2 days) and the following 100
snapshots of the “1st_test.” (e inner fault signals come
from the snapshot 2003.11.22.11.06.56 (the snapshot after
the bearings running for 12.5 days) and the following 100
snapshots of the “1st_test.” (e second test was carried out
for 8 days until outer race failure occurred in bearing 1.
Senanayaka et al. [62] concluded that the first 3.5 days of the
bearings’ running duration were the normal service period,
since then bearing 1 (outer race fault) was subjected to a 3.5
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days’ pre-degradation period, and the severe failure of the
bearing occurred in the last 3.5 hours. We use the �rst
channel data of the snapshots from the snapshot of

2004.02.15.10.32.39 (the snapshot after the bearings run-
ning for 3 days) and the following 100 snapshots of the
“2st_test” as outer fault signals. Hence, there are totally 300
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Figure 4: �e time domain diagram of CWRU signals, where (a)–(d) represent normal bearing signal, inner race fault signal, ball fault
signal, and outer race fault signal, coming from 99, 211, 224, and 236 of CWRU, respectively. Each signal is listed with the sample number
6000.
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samples representing three types of incipient failures
(normal bearing, inner race fault, and outer race fault).
Figure 15 shows the three kinds of signals with the �rst
line of the Hankel matrix, derived from the snapshots
2003.10.31.08.59.46, 2003.11.22.11.06.56, and 2004.02.15.10.
32.39, respectively. Figure 16 shows the FT spectrum of the
signals in Figure 15. Multiscale decomposition modes of
each signal are shown in Figures 17–19, and their FT
spectrums are shown in Figures 20–22.

ApEn algorithm (τ � 2, c � 0.2SD) is applied on the
multi-resolution DMDmodes, and a total of 300 vectors are
obtained for the three bearing fault states. 60 vectors of each
state are randomly selected as the inputs of BPNN, the

remaining 40 vectors are selected for testing. Numbers of
records per bearing state and ANN outputs are summarized
in Table 7.�e parameters of the classi�er are set as the same
as 4.1. �e classi�cation results of the training and testing
signals are shown as in Figure 23. �e category labels 1, 2,
and 3 represent normal bearing, inner race fault, outer race
fault, respectively.�e average test accuracy of our algorithm
is 98.7%.

4.3. Fault Diagnosis of Gear Vibration Signals. Figure 24
demonstrates the gear signal testing device consisting of
an ACmotor, couplings, dynamometers, a magnetic powder

Table 2: Rolling element bearing parameters of 6205-2RS.

Inner diameter Outer diameter Ball number Ball diameter Contact angle Pitch diameter
25mm 52mm 9 7.9mm 0 rad. 46.4mm

Table 3: Calculated characteristic frequencies of 6205-2RS (Hz).

Rotation frequency fr Inner race fi Outer race fo Ball frequency fb Cage frequency fc

29.53 159.92 105.87 139.20 11.69
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Figure 6: Multiresolution DMDmodes of a normal roller bearing signal. Here, we select the �rst column ofX
ijDMD

that represents the fourth

layer slow or fast modes. (a)–(h) represent the modes of X
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, respectively. �e
symbols in the Figures 8–10 share the same meaning.
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brake, and a gearbox. A pair of meshing gears is internally
�tted in the gearbox. �e numbers of teeth for the driving
and driven wheel are 20 and 37, and the gear modulus is
equal to 3. �e motor speed is maintained at 1154 r/min. A
sensor is displayed on the upside of the gearbox cover.
Vibration signals of four dierent faults (normal gear,
broken teeth fault, pitch errors fault, and wear fault) are
collected with the sampling frequency 2000Hz. 19 group
data for each meshing pair were gathered under the brake
load of 10N/m, and each data sample has 12,000 data points.

Figure 25 shows the signals with the �rst line of Hankel
matrices, with only one representation per fault form listed.
Figure 26 shows the FT spectrum of the signals in Figure 25.
Multiscale decomposition modes of them are presented
from Figures 27–30, and their FT spectrums are shown in
Figures 31–34. All parameters in the computational process
are selected the same as the roller bearing’s signal experi-
ment, except for the sample numbers.

As in Figure 26, although the spectrums of the four gears’
fault signals are visually dierent, it is di©cult to identify the
characteristic frequencies of dierent faults with the per-
spective of amplitude and AM/FM components. In
Figures 31–34, the gear meshing frequencies are distributed
in multiple multiresolution modes, and similarly, the series
of AM/FM components cannot be distinguished. It is hard to

judge the gear fault type either by the FT spectrums or the
multiresolution DMD modes. �erefore, we apply ApEn on
the multiresolution modes to calculate their complexity, and
take the ApEn vector as the characteristic information of
each signal.

ApEn algorithm (τ � 2, c � 0.2SD) is applied on the
multiresolution DMD modes, and a total of 76 vectors are
obtained for the four gear states. 9 vectors of each gear state
type are randomly selected as the inputs of BPNN, the
remaining are selected for testing. Numbers of records per
gear state and ANN outputs are summarized in Table 8. �e
parameters of the classi�er are set the same as the parameters
of the roller bearing’s experiment. �e classi�cation results
of the training and testing signals are shown as in Figure 35.
�e category labels 1, 2, 3, and 4 represent normal gear,
broken teeth fault, pitch errors fault, and wear fault, re-
spectively. �e average test accuracy of our algorithm is
97.5%.

4.4. Result Discussion. Table 1 summarizes the fault di-
agnosis methods and the algorithm performance based on
SVM and ANN using data from the CWRU and NASA
bearing databases. Since mr-tlsDMD is essentially an al-
gorithm based on SVD and mode decomposition, we only
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Figure 7: Multiresolution DMD modes of roller bearing’s inner race fault signal (CWRU).
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compare the proposed method with the literatures that
adopted mode decomposition algorithm in the step of
feature extraction and selection. �e comparisons of the
CWRU database are shown in Table 9. In Ref. [65], LMD and
sample entropy were used to extract features and SVM was
applied to classify the four bearing states, and �nally 100%
accuracy was achieved. Tian et al. [69] integrated LMD,
SVD, and BPNN/SVM/ELM to distinguish ten bearing states
and got the testing accuracy with 97.7% (BPNN), 98.8%
(SVM), and 99.3 (ELM), respectively. Zhao et al. [68] used
EMD sample entropy of the �rst eight IMFs to get features
and ISFLA to classify six bearing states and achieved 94.7%
accuracy. Lei et al. [66] proposed a method combining time-
frequency domain features and EMD energy entropy to
extract features and ANFIS to diagnose faults, obtaining a
classi�cation accuracy of 95.4% for faulty bearing and 100%
for healthy bearing. �e comparisons of the NASA database
are shown in Table 10. Jaouher et al. [53] introduced a
feature extraction method based on EMD energy entropy.
�e �rst eight IMFs’ energy entropies were used to extract
features, ANN was applied to classify seven bearing states,
and �nally 93% accuracy was achieved.

Ge et al. [75] present a joint fault diagnosis scheme via
tensor nuclear norm canonical polyadic decomposition
(TNNCPD) and multiscale permutation entropy (MSPE) to

classify four gear states. BPNN isused to perform fault
classi�cation. �e results illustrate that their proposed
scheme can accurately recognize dierent gear working
conditions, while the performance of WT is worse. It is
worth noting that Ge et al. [75] adopt the same set of signals
in the experiment as we used in this paper. �e comparisons
between the performance in [75] and our proposed method
are shown in Table 11.�e test accuracy of our result is not as
perfect as that in [75], nevertheless it is signi�cantly better
than WT.

�e computational e©ciency is as important as the
result’s accuracy for an emerging algorithm, especially
when the algorithm is adopted on the online monitoring
system. �erefore, the computational e©ciency of the
proposed algorithm is compared with that of other mode-
based methods. Only the computation time of mode
extraction procedure is concerned, without considering
the computation time of ApEn and BPNN. �e experi-
ments were completed on a desktop computer with
Matlab version 2014a, and the basic con�guration of the
computer was Intel® core™ i7-4770, CPU, 3.4 GHz, and
memory capacity 32G. In the process of experiments, all
comment language and result processing statements were
removed. Table 12 shows the computational e©ciency of
several mode-based algorithms for NASA snapshot
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Figure 8: Multiresolution DMD modes of roller bearing’s ball fault signal (CWRU).
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Figure 9: Multiresolution DMD modes of roller bearing’s outer race fault signal (CWRU).
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Figure 10: Continued.
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2003.10.31.08.59.46, which was used as a normal bearing
signal in Section 4.2. It can be seen from the table that the
calculation time of EMD and LMD is signi�cantly
shorter, that of VMD is 51.67 seconds, while that of mr-
tlsDMD is 445.23 seconds. It is obvious that the proposed
method is not superior in computational e©ciency. In the
conclusion part, we will analyze the reasons for the long
calculation time.

�ree experiments are implemented to recognize the
fault type of mechanical vibration signals with the

proposed algorithm. �e �rst two sets of experiment’s
signals come from CWRU and NASA, which are public
bearing database, and the third come from a gear test
bench. Experiments, particularly on the early bearing fault
signals of Section 4.2 and complex gear fault signals of
Section 4.3, show that the proposed fault diagnosis method
has excellent classi�cation performance. �e proposed
algorithm is robust whether dealing with bearing signals or
gear signals; however, it is not as e©cient as other modal
decomposition algorithms.
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Figure 10: �e frequency domain diagram of multiresolution DMD modes of the normal roller bearing signal, where (a)–(h) are cor-
responding to signals in Figure 6, respectively.�e characteristic frequencies of the normal bearing signal are distributed in multiple modes,
and these multiple modes jointly represent the features of the normal signals.
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Figure 11:�e frequency domain diagram of multiresolution DMDmodes of the inner race fault signal, where (a)–(h) are corresponding to
signals in Figure 7, respectively.
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Figure 12: �e frequency domain diagram of multiresolution DMD modes of the roller fault signal, where (a)–(h) are corresponding to
signals in Figure 8, respectively.
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Figure 13: Continued.
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5. Conclusions

�is paper proposes a joint fault diagnosis scheme for fault
classi�cation, which exploits the strengths of DMD’s nature
of being equation-free and data-driven. Multiresolution
DMD algorithm decomposes the original signal into mul-
tiscale spatiotemporal modes. �ese slow and fast modes
jointly represent the dynamic characteristics of the original
system. ApEn is performed to calculate the complexity of the
multiscale spatiotemporal modes. In processing mechanical
signals of dierent fault forms, part of entropy vectors is

randomly selected as training data for the categorizer of
BPNN and the rest as test data. �e proposed algorithm was
applied to the roller bearing signals of CWRU, NASA, and
the gear signals of authors’ apparatus, and the total test
accuracy of the proposed algorithm was 100%, 98.7%, and
97.5%, respectively. �e results show that the proposed
algorithm has excellent performance in fault diagnosis.

�is paper proposes an algorithm for fault diagnosis
based on mr-tlsDMD and ApEn. In the implementation of
the algorithm, multiple parameters need to be de�ned in
advance, such as the number of multiscale decomposition
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Figure 13:�e frequency domain diagram of multiresolution DMDmodes of the outer race fault signal, where (a)–(h) are corresponding to
signals in Figure 9, respectively.

Table 4: Number of records per bearing state and BPNN outputs.

Bearing state Normal Inner race fault Ball fault Outer race fault
Total records 50 50 50 50
Training records 30 30 30 30
Testing records 20 20 20 20
BPNN outputs 1000 0100 0010 0001

Table 5: Rolling element bearing parameters of 6205-2RS.

Roller number Roller diameter Contact angle Pitch diameter
16 8.407mm 0.265 rad. 71.5mm

Table 6: Calculated characteristic frequencies of 6205-2RS (Hz).

Rotation frequency fr Inner race fi Outer race fo Roller frequency fb Cage frequency fc

33.73 300.6 236.4 141.6 14.8
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Figure 14: �e classi�cation results of roller bearing signals.
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Figure 15: �e time domain diagram of the training signals, where (a), (b), and (c) represent normal bearing signal, inner race fault signal,
and outer race fault signal come from the snapshots 2003.10.31.08.59.46, 2003.11.22.11.06.56, and 2004.02.15.10.32.39, respectively. Each
signal is listed with the sample number 5120.
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Figure 16: �e frequency domain diagram of the signals in Figure 15.
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Figure 17: Multiresolution DMDmodes of the normal roller bearing signal (NASA, snapshot 2003.10.31.08.59.46). Here, we select the �rst
column of X
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41DMD
, X
42DMD

, X
43DMD

, X
44DMD

, X
45DMD

,

X
46DMD

, X
47DMD

, and X
48DMD

, respectively. �e symbols in the Figures 18 and 19 share the same meaning.

–0.4
–0.2

0
0.2

A
m

pl
itu

de

1000 2000 3000 4000 50000
Sample number

(a)

–0.4
–0.2

0
0.2

A
m

pl
itu

de

1000 2000 3000 4000 50000
Sample number

(b)

–0.5

0

0.5

A
m

pl
itu

de

1000 2000 3000 4000 50000
Sample number

(c)

–0.4
–0.2

0
0.2

A
m

pl
itu

de

1000 2000 3000 4000 50000
Sample number

(d)

1000 2000 3000 4000 50000
Sample number

–0.4
–0.2

0
0.2

A
m

pl
itu

de

(e)

–0.5

0

0.5

A
m

pl
itu

de

1000 2000 3000 4000 50000
Sample number

(f )

Figure 18: Continued.
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Figure 18: Multiresolution DMD modes of roller bearing’s inner race fault signal (NASA, snapshots 2003.11.22.11.06.56).
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Figure 19: Multiresolution DMD modes of roller bearing’s outer race fault signal (NASA, snapshot 2004.02.15.10.32.39).
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Figure 20: Continued.
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Figure 20: �e Frequency domain diagram of multiresolution DMD modes of normal roller bearing signal, where (a)–(h) are corre-
sponding to signals in Figure 17, respectively.
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Figure 21:�e Frequency domain diagram ofmultiresolution DMDmodes of the inner race fault signal, where (a)–(h) are corresponding to
signals in Figure 18, respectively.
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Figure 22:�e Frequency domain diagram ofmultiresolutionDMDmodes of the outer race fault signal, where (a)–(h) are corresponding to
signals in Figure 19, respectively.

Table 7: Number of records per bearing state and BPNN outputs.

Bearing state Normal Inner race fault Outer race fault
Total records 100 100 100
Training records 60 60 60
Testing records 40 40 40
BPNN outputs 100 010 001
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Figure 23: �e classi�cation results of roller bearing signals.
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Figure 24: Gear signal testing device. (a) Physical object of the device and (b) structure diagram of test device: (1) AC motor; (2) coupling;
(3) gearbox; (4) dynamometers; and (5) magnetic powder brake.
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Figure 25: �e time domain diagram of the collected signals, where (a)–(d) represent normal gear signal, broken teeth fault signal, pitch
errors signal, and wear gear signal, respectively. Each signal is listed with 3000 points.
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Figure 26: Continued.

Shock and Vibration 23



–0.2

0

0.2

A
m

pl
itu

de

500 1000 1500 2000 2500 30000
Sample number

(a)

–0.2

0

0.2

A
m

pl
itu

de
500 1000 1500 2000 2500 30000

Sample number

(b)

–0.2

0

0.2

A
m

pl
itu

de

500 1000 1500 2000 2500 30000
Sample number

(c)

–0.1

0

0.1

A
m

pl
itu

de

500 1000 1500 2000 2500 30000
Sample number

(d)

–0.2

0

0.2

A
m

pl
itu

de

500 1000 1500 2000 2500 30000
Sample number

(e)

–0.2

0

0.2

A
m

pl
itu

de

500 1000 1500 2000 2500 30000
Sample number

(f )

–0.2

0

0.2

A
m

pl
itu

de

500 1000 1500 2000 2500 30000
Sample number

(g)

–1

0

1

A
m

pl
itu

de

500 1000 1500 2000 2500 30000
Sample number

(h)

Figure 27: Multiresolution DMDmodes of the normal gear signal. We select the �rst column of X
ijDMD

that represents the fourth layer slow

or fast modes. (a)–(h) represent the modes of X
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Figures 28–30 share the same meanings.

FGM

2FGM

0

0.02

0.04

0.06
A

m
pl

itu
de

200 400 600 800 10000
Frequency (Hz)

(c)

FGM

2FGM

0

0.02

0.04

0.06

A
m

pl
itu

de

200 400 600 800 10000
Frequency (Hz)

(d)

Figure 26: �e frequency domain diagram of the signals in Figure 25, where FGM is the gear mesh frequency.
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Figure 29: Multiresolution DMD modes of the pitch error gear fault signal.
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Figure 28: Multiresolution DMD modes of the broken teeth fault signal.
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Figure 30: Multiresolution DMD modes of the wear gear fault signal.

FGM 2FGM

0

20

40

A
m

pl
itu

de

200 400 600 800 10000
Frequency (Hz)

(a)

FGM

200 400 600 800 10000
Frequency (Hz)

0

20

40

A
m

pl
itu

de

(b)

FGM

0

10

20

30

A
m

pl
itu

de

200 400 600 800 10000
Frequency (Hz)

(c)

FGM

0

20

40

A
m

pl
itu

de

200 400 600 800 10000
Frequency (Hz)

(d)

FGM

0

10

20

30

A
m

pl
itu

de

200 400 600 800 10000
Frequency (Hz)

(e)

FGM

0

20

40

A
m

pl
itu

de

200 400 600 800 10000
Frequency (Hz)

(f )

Figure 31: Continued.

26 Shock and Vibration



FGM

200 400 600 800 10000
Frequency (Hz)

0

20

40

A
m

pl
itu

de

(g)

2FGM

0

50

A
m

pl
itu

de

200 400 600 800 10000
Frequency (Hz)

(h)

Figure 31: �e frequency domain diagram of multiresolution DMD modes of the normal gear signal, where (a)–(h) are corresponding to
signals in Figure 27, respectively.
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Figure 32:�e frequency domain diagram of multiresolution DMDmodes of the broken teeth fault signal, where (a)–(h) are corresponding
to signals of Figure 28, respectively.
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Figure 33: �e Frequency domain diagram of multiresolution DMD modes of the pitch errors signal, where (a)–(h) are corresponding to
signals in Figure 29, respectively.
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Figure 34: �e frequency domain diagram of multiresolution DMD modes of and wear gear signal, where (a)–(h) are corresponding to
signals in Figure 30, respectively.
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layers, the selection of truncated rank, and the frequency
threshold in the process of each layer’s decomposition. In
order to minimize manual intervention, we adopt �xed

parameters. �e proposed algorithm with the chosen pa-
rameters was demonstrated to be eective. Dierent pa-
rameter selection methods according to dierent signal

Table 8: Number of records per gear state and BPNN outputs.

Bearing state Normal Broken teeth Pitch errors Wear gear
Total records 19 19 19 19
Training records 9 9 9 9
Testing records 10 10 10 10
BPNN outputs 1000 0100 0010 0001
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Figure 35: �e classi�cation results of gear signals.

Table 9: Classi�cation comparisons of CWRU database-adopted mode decomposition algorithm.

Ref. Main features Bearing states Training
samples

Testing
samples Test accuracy (%)

[65] LMD, sample entropy, energy ratio + SVM Four 60 20 100
[69] LMD-SVD+BPNN/SVM/ELM Ten 172 228 97.7, 98.8, 99.3
[68] EMD sample entropy of �rst ten IMFs + ISFLA Six 140 70 100 for health, others 95.4
[66] Time and frequency, EMD energy entropy +ANFIS Even 140 70 94.7
Proposed mr-tlsDMD, ApEn+BPNN Four 120 80 100

Table 10: Classi�cation comparisons of NASA database-adopted mode decomposition algorithm.

Ref. Main features Bearing states Training samples Testing samples Test accuracy (%)
[53] Eight IMFs of EMD, energy entropy + SVM Seven 2728 2666 93
Proposed mr-tlsDMD, ApEn+BPNN �ree 180 120 98.7

Table 11: Classi�cation comparisons of the gear database (brake load: 10N/m).

Ref. Main features Bearing states Training samples Testing samples
Accuracy (%)

Train Test
[75] TNNCPD, MSPE+BPNN Four 5 14 100 100
[75] WT, MSPE+BPNN Four 5 14 90 76.8
Proposed mr-tlsDMD, ApEn+BPNN Four 10 9 100 97.5
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characteristics are the primary research direction in the
future study. We have started to study the application of the
algorithm to the piezoelectric ceramic signal and acoustic
emission signal in the health monitoring of bolted structure,
and the work of signal acquiring is in progress.

Since DMD algorithm is essentially based on SVD and
mode decomposition, the process of matrix decomposition
with SVD is time consuming. Furthermore, mrDMD de-
composition is proposed to obtain the dynamic character-
istic information of the original mechanical signal with L-th
SVD algorithm. (erefore, the method proposed in this
paper does not have an advantageous computational time.
Another future research may focus on the acceleration al-
gorithm-based mr-tlsDMD, such as adopting the method of
compressed sensing and sub-Nyquist sampling.

Last but not the least, as it was stated in the introduction,
DMD algorithm is a mode decomposition technique, similar
to the algorithm of EMD/LMD/VMD. (e remarkable
advantage of DMD is that it can obtain a series of single-
frequency modes corresponding to time scale. (ere is
determinately no mode aliasing in DMD. However, in the
practical application of the algorithm, it needs some strat-
egies to identify the fault frequency in the series of modes,
especially when the geometric parameters of bearings or/and
gears are inaccurate. (is paper adopts the multiresolution
representation strategy to decompose the original one-di-
mensional signals into multiple groups of signals according
to certain rules, then calculate the complexity (ApEn) of the
multiple groups, respectively, and finally take the ApEn
vector as the statistical characteristics of the original signals
to distinguish the fault type by BPNN. Research on the more
efficient strategy to make full use of the series of single-
frequency modes is the core problem to adopt DMD in fault
diagnosis, especially in early fault diagnosis.
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(ere are five folders provided by us, and their functions are
as follows: (1) (e [mrDMD] data are used to support the
findings of Section 2.2. (mrDMD framework). (2) (e
[ApEn] data are used to support the findings of Section 2.2.
(mrDMD framework). (3) (e [CWRU_bearing signals]
data are used to support the Section 4.1. (Fault diagnosis of
rolling bearing signals). (4) (e [gear signals] data are used
to support the findings of Section 4.2. (Fault diagnosis of
gear vibration signals). (5)(e [bp_toolbox] data are used to
support the findings of Sections 4.1 and 4.2 for the purpose
of fault diagnosis. (Supplementary Materials)
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