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)e extraction of impulsive signatures from a vibration signal is vital for fault diagnosis of rolling element bearings, which are
always whelmed by noise, especially in the early stage of defect development. Aiming at the weak defect diagnosis, kurtosis of
Teager energy operator (KTEO) spectrum is employed to indicate the fault information capacity of a spectrum, and considering
the accumulative effect of a singular component, accumulative kurtosis of TEO (AKTEO) is firstly proposed to determine the
proper signal reconstructed order during vibration signal processing using singular value decomposition (SVD).)en, a vibration
processing scheme named SVD-AKTEO is designed where an iteration is employed to reflect an accumulative singular effect by
kurtosis of TEO spectrum. Finally, the fault diagnosis results can be extracted from the TEO spectrum output by SVD-AKTEO.
Simulation data and real data from a run-to-failure experiment of a rolling bearing are adopted to validate the efficiency, and
comparative analysis demonstrates the feasibility to detect the early defect of the rolling bearing.

1. Introduction

Rotating machinery is extensively used in modern industry,
and its critical components of the machine, rolling element
bearings (REBs), are easily prone to failure due to heavy load,
long-term, and severe operation environment. )erefore,
condition monitoring and fault diagnosis have been a re-
search shot in recent years. As an essential part to support
rotating components in most rotating machines, the rolling
bearing plays a crucial role in the functioning and overall
performance of machinery [1, 2]. All kinds of REB have wide
applications due to their relatively lower price and easy
installation. However, even a little malfunction of REB may
result in unexpected breakdown or shutdown, and they
account for equipment failures to almost 45–55% [3].
)erefore, the fault diagnosis of REB, especially in the early
period of defects, is under high demand to ensure the safe
operation of rotating machinery and prevents both equip-
ment accidents and maintenance costs.

)ere are various condition-related monitoring in-
formation such as acoustic emission (AE) [4], oil debris
analysis [5], motor current signature analysis [6], vibration
signal [7], and so on, and vibration signal-based techniques
are preferred due to low cost and easy installation of an
accelerometer. In addition, the vibration signal has been
proven accurate enough to capture fault signatures of REB,
and some efficient signal processing schemes based on
vibration signal for bearing fault diagnosis has been de-
veloped recent years [8]. A new bearing fault diagnosis
approach based on vibration signal is proposed by in-
tegrating the fine-to-coarse multiscale permutation en-
tropy, Laplacian score, and support vector machine, and
the entropy-based features are extracted from the bearing
vibration signal [9]. Spall is a common defect of bearing,
and a technique is proposed, which estimates the spall size
by detecting the entry point by variational mode de-
composition (VMD) and the exit point by differentiation
technique [10]. Among the main steps of fault diagnosis,
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feature extraction is critical for fault diagnosis and always
relies on signal processing techniques, and it is crucial to
select an appropriate method to process the vibration
signal. )erefore, kinds of signal processing techniques
have been developed in recent years, and they are reviewed
in detail by Akhand and S. H. [8].

SVD is a traditional signal processing applied in speech
recognition, signal purification, and feature extraction, and
it has drawn increasing attention in rotating machinery fault
diagnosis. )e main fault diagnostic approaches based on
SVD can be assorted into three categories. Firstly, some
indexes are proposed based on the singular values (SVs).
Cong et al. introduced the singular value ratio (SVR) to the
SVD-based vibration signal processing and proved that the
SVR had a good local identification capability to extract fault
features [11]. Zhao et al. proposed the concept of difference
spectrum of a singular value, which was specifically the
forward difference of a singular value sequence to capture
the sudden change status of singular values of a complicated
signal [12]. Secondly, some statistics indexes are employed to
select singular components obtained from Hankel matrix-
based SVD and kurtosis is one of them, which was applied as
a criterion to select fault SCs whose kurtosis values were
greater than 3. By summing up the selected SCs, the weak
fault is extracted clearly in both artificial simulation and
actual experimental data [13]. However, the SVs mainly
reflect the energy of the decomposed SCs, which may ignore
the weak fault caused by an incipient defect. Aiming at
solving this problem, other fault indexes calculated on SC are
put forward, which is the third category of SVD-based defect
diagnosis. A reweighted SVD is put forward based on a novel
information index named periodic modulation intensity
(PMI), which was calculated on each SC, and the SCs with
PMI value larger than 1 are chosen to form the denoised SC,
from that the early fault can be extracted successfully [14]. In
addition, the SVs or features extracted from SCs or com-
bination from both of them can be regarded as feature
vectors fed into convolutional neural network (CNN),
support vector machine (SVM), and other pattern recog-
nition techniques for fault type identification. According to
the decomposition principle of SVD, a vibration signal can
be reshaped into various types of Hankel matrix which are
decided by the matrix order, and the contribution of defect
unrelated components such as background noise is almost
equally decomposed into each SC; in order words, the fault-
sensitive component and the insensitive ones are almost
evenly distributed in each SC, resulting in deficiency in SVD
signal processing. )erefore, some new indexes are under
high demand to efficiently extract the fault-induced or
sensitive component to the most extent.

Considering the singular component accumulative ef-
fect, the accumulative component kurtosis (ACK) is pro-
posed to find out the fault-sensitive singular component
during an iteration where each single SC is added to the
accumulative one [15]. Since fault characteristic frequency is
obtained by the frequency domain of the vibration signal, the
ACK is not a very ideal index to choose fault-sensitive
singular component due to that the ACK is the kurtosis value
of the waveform of accumulative singular component, which

is a statistical indicator not a fault index. Since the fault
diagnosis results are always derived from the envelope
spectrums, indexes from the frequency domain may more
directly reflect the quantity of defect information. Towards
to finding a more direct parameter, the kurtosis of the
squared envelope spectrum (SES) is later employed to assist
the SVD to select the defect-related singular component and
based on that, the SVD-KSES scheme was put forward to
extract the early fault features of the rolling bearing [16]. As
an alternative signal demodulation method, the Teager
energy operator enhances the signal transient characteristics
and is sensitive to the shock components of a signal, which
improves the signal-to-noise ratio (SNR) and makes the
impulse fault features more reliable [17]. Moreover, the TEO
is also a nonlinear energy tracking operator using simple
mathematical method to analyze and track the signal energy
which also avoids the occurrence of negative frequency [18].
Consequently, the TEO is applied here as a good substitute
of Hilbert transform-based signal demodulation to assist
SVD for bearing fault signal processing.

)e vibration signal of malfunctioned rolling bearing
under operation presents lots of impulses due to the colli-
sions between defective area and its mating surface. Kurtosis
is a statistic indictor extensively used to measure the signal
impulsiveness and also a dimensionless parameter that is
sensitive to impact signals. However, the random impacts,
heavy background noise, and rolling element slip make the
impulses not equally spaced in time domain, thus leading to
kurtosis inefficiency in the fault diagnosis [19]. Since to
extract fault characteristic frequency (FCF) in the envelope
spectrum is practical and widely used in fault diagnosis of
REB and TEO spectrum’s superiority over HT-based en-
velope analysis, the TEO spectrum amplitude can provide
easy recognition of FCF, and the fault frequency lines are
equally separated in the spectrum. )e larger the amplitude
of the FCF lines is, the more serious the fault is. Conse-
quently, motivated by the Protrugram [20] proposed by
Barszcz et al., the kurtosis of the frequency domain could be
used as a measuring indicator of the defective information,
and then the kurtosis of TEO spectrum amplitude (KTEO) is
employed here to choose defect-sensitive SC from the view
of the frequency domain.

Based on the above introduction, considering the ac-
cumulative singular component effect during the SVD signal
processing and the superiority of TEO, a fault diagnosis
scheme named SVD-AKTEO is proposed. In the SVD-
AKTEO, the collected vibration signal is firstly fed to the
Hankel-based SVD to obtain a set of SCs, and after that, the
accumulative singular component (ASC) is set during an
iteration where each singular component is added to the
ASC one by one. Afterwards, the TEO spectrum of ASC is
calculated once a new SC is added to ASC. Finally, from the
variation of TEO amplitude kurtosis, the fault-sensitive SCs
can be identified, and their sum can be taken as the fault
characteristic component; from its TEO spectrum, the fault
diagnosis can be finally obtained. )e practicability of SVD-
AKTEO is validated by an artificially simulated signal of a
REB with bearing defective outer raceway, and its perfor-
mance is comparatively analyzed with SVD-ACK and SVD-
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KSES. Subsequently, a public dataset from a run-to-failure
experiment is introduced to verify the feasibility of SVD-
AKTEO; both the simulation and experimental results il-
lustrate the SVD-AKTEO has some superiority over the two
primary methods to extract defective information, especially
the fault in an early stage.

)e rest of this paper is arranged as follows. Section 2
reviews Hankel matrix-based SVD and TEO, respectively. In
Section 3, the performance of KTEO is evaluated, as well as
its superiority over the waveform kurtosis. Subsequently, the
SVD-AKTEO is proposed and illustrated in detail. )en, the
simulation of a REB with defective outer raceway is con-
ducted to verify the SVD-AKTEO by contrastive analysis
with the two previously proposed methods in Section 4, and
Section 5 verifies the SVD-AKTEO with the actual experi-
mental data from NSF I/UCR Center for Intelligent
Maintenance Systems (IMS). Finally, the conclusions are
drawn in Section 6.

2. Theoretical Background

2.1. Hankel Matrix-Based Singular Value Decomposition.
SVD is a conventional matrix decomposition method
which can decompose any real matrixM ∈Rm×n into three
matrices: the left orthogonal matrix U ∈Rm×n, the di-
agonal matrix D ∈Rm×n, and the right orthogonal matrix
V ∈Rm×n:

M � UDV
T
, (1)

where D� (diag (σ1, σ2, σ3, . . ., σL), O), L�min (m, n), and
σ1> σ2> σ3, . . .> σL. σi (i� 1, 2, . . ., L) are the singular values
of the matrix M and listed by descending order by their
value.

)e acquired vibration signal is always collected in time
series on which SVD cannot implement directly, and Hankel
matrix is most extensively applied one among the various
matrix formats such as Toeplitz matrix, cycle matrix, and
Hankel matrix [21] Here, the collected original vibration
signal is assumed to be x= (x(1), x(2), . . ., x(N)), and
according to the phase space reconstruction theory, a Hankel
matrix X can be reshaped from signal x as follows:

X �

x(1) x(2) · · · x(n)

x(2) x(3) · · · x(n + 1)

· · · · · · ⋱ · · ·

x(N − n + 1) x(N − n + 2) · · · x(N)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (2)

where 1< n<N andm=N − n+ 1; then, X ∈Rm×n represents
the reconstruction of the attractor orbit matrix. Since this
matrix is reconstructed by the collected vibration signal
with background noise, X can be expressed as X =D+W,
where D represents the (N − n + 1) × nmatrix of the smooth
signal in the reconstruction space while W represents the
(N − n + 1) × n matrix of the noise interference signal.
Applying equation (1) in equation (2), the trajectory matrix
X can be decomposed into three matrixes according to the
SVD principle:

X � UDV
T

, (3)

U � u1, u2, . . . , un , (4)

V � v1, v2, . . . , vn , (5)

D �

σ1 0
σ2
⋱

0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (6)

where U represents the left singular matrix and V represents
the right one; the value of the diagonal of matrix D is
composed of the singular values list with the descending
order. ui is the ith column vector of the singular U, and vi is
the ith column vector of singular matrix V. )erefore, X can
be summed up as

X � σ1u1v1 + σ2u2v2 + · · · + σmumvm. (7)

Finally, a new Hankel matrix X′ can be obtained by
removing the noise components and defect unrelated
component via setting the singular values corresponding to
the noise components and interference of random impulses
to 0. After removing the noise and the fault unrelated
component, the time series of vibration signal should be
extracted from the matrix one by Hankel principle, and their
two simple approaches can be employed for this purpose.
One is the reverse Hankel reconstruction shown in
Figure 1(a) while the second one is the antidiagonal element
averaging technique shown in Figure 1(b), and its calculating
equation is presented as

xi �
1

β − α + 1


β

j�α
Xi− j+1,j
′ . (8)

2.2. Teager Energy Operator. )e Teager energy operator is
originally proposed for nonlinear speech processing and
latterly introduced into the field of fault diagnosis [22].
Hilbert transform-based envelope analysis processes the
acquired vibration signal into an analytical signal by HT,
while TEO can be implemented directly on the signal by
using a simple mathematical method. For any signal x(t), its
TEO denoted by ψ(·) can be defined as equation (9) in its
continuous case and discrete one is shown in (10),
respectively:

ψ[x(t)] �
dx(t)

dt
 

2

− x(t)
d2x(t)

dt2
� [ _x(t)]

2
− x(t) €x(t),

(9)

ψ[x(n)] � x
2
[n] − x[n − 1]x[n + 1]. (10)

)e output of the TEO is a product of the instantaneous
amplitude of a vibration signal and the square of the in-
stantaneous frequency, which is reported to have a good
potential of tracking the instantaneous energy of the signal,
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and this quality is supposed to be e�ective to enhance the
impulsive features of the vibration signal [23].

3. SVD-AKTEO Method

�e vibration signal of a defective rolling bearing not only
presents a series of impulses in the waveform but also an
equal-spaced frequency lines in the envelope spectrum and
TEO spectrum. �us, the fault signal can be simulated by a
numerical method with the parameters mentioned in Ref-
erence [16]. �e waveforms in Figure 2(a) are the arti�cial
defect-induced periodic impulses in the vibration signal and
the noisy one with SNR − 12, respectively. �en, the series of
nearly equal time interval impulses are employed here to
evaluate defect-indexing performance of the kurtosis of
TEO. Figure 2 shows several TEO spectrums by applying
with di�erent noisy signals to the periodic impulses. �e
SNR varies from − 12 to 10, but only three TEO spectrums
with SNR − 8, − 10, and − 12 are plotted in Figures 2(b)–2(d),
respectively, from which it can be inferred that the FCF lines
are clearer to be observed when the SNR gets higher. In other
words, the more noise will blur the FCF, thus providing little
fault information about the fault recognition. In addition,
the waveform kurtosis along with the KTEO with the SNR
ranging from − 12 to 10 are plotted in Figure 3. From the
overview, the two parameters grow up when the noise SNR
gets higher, but three distinctive range can be partitioned
and labelled by ranges A, B, and C. �e A range donates the
heavy noise during which the two indexes have no obvious
increase while the C range witnesses an interesting trend that
the KTEO varies little, but the kurtosis of waveform grows
up when the SNR improves. However, range C locates in a
very high SNR that there is no necessity to decompose the
signal to improved signal quality. In range B, the KTEO
grows sharp that kurtosis when the noise SNR varies from
− 10 to 0, that is to say, the KTEO has better fault identifying
performance than kurtosis. �erefore, the KTEO is
employed here as an index to �nd out the fault-sensitive
singular components.

On the basis of the analysis above, the accumulative
singular component KTEO (AKTEO), as a fault in-
formation-measuring parameter, is proposed to select the
defect-sensitive SC during the process of Hankel matrix-
based SVD, and a fault diagnosis scheme name SVD-
AKTEO is proposed to extract fault feature automatically.
�e procedure of SVD-AKTEO is presented in Figure 4, and
the detailed process is as follows:

(1) �e vibration signal is collected by the accelerometer
installed in the bearing housing.

(2) �e raw vibration signals are reshaped into Hankel
matrixes and following that, the SVD and reverse
Hankel construction are implemented to decompose
the raw signal into several SCs listed by descending
order of their SV values.

(3) Let the ASC equals the �rst SC, then calculate the
TEO spectrum of an accumulative singular com-
ponent (ASC), as well as the KTEO value. After that,
the TEO spectrum and the KTEO value should be
obtained once a new SC is added into the ASC.
During this process, the KTEO can indicate the
in�uence of each single SC to the �nal accumulative
SC, which is expected to �nd out the appropriate
order to decide the fault-sensitive SC, and removing
the noise component or defect unrelated SC.

(4) Extract the fault characteristics from the TEO
spectrum and defect identi�cation by comparing
with the theoretical frequency lines.

4. Numerical Simulation Analysis

4.1. �e Simulated Signal. To verify the proposed SVD-
AKTEOmethod, an arti�cial fault signal of rolling bearing is
analyzed in this section.�e simulated signal is modelled as a
series of damping oscillation waveforms and reported as an
amplitude-modulated signal in which the fault characteristic
frequency is modulated to a high resonance frequency
carrier. For numerical simulation, the vibration signal col-
lected by the accelerometer can be regarded as a series of
impulses, and each impulse with exponential attenuation
can re�ect the vibration response of signal travelling path
in�uence. �erefore, the simulated fault vibration signal of
outer race defect can be de�ned as follows:

x(t) �∑
M

i�1
Ais(t − iT) + n(t),

s(t) � e− βtcos 2πfrt( ),




(11)

where Ai is the ith shock impulse’s amplitude, T represents
the time period which is in accordance with the charac-
teristic frequency, and n(t) represents the Gauss white
noise. M is the number of impulses. s(t) is de�ned as a
damping oscillation waveform, β is the damping coe�cient,
and fr denotes the modulation frequency, which simulates
the resonance information of the system [24]. T equals 1/
105.5 � 0.0095 s, and sampling time is 0.2 s; the other pa-
rameters are listed in Table 1. �e waveform of the sim-
ulated signal is plotted in Figure 5 by a red line and the
noisy signal with SNR − 13 by the blue color. �e envelope

x(1) x(2) x(n)
x(2) x(3)

X′ =

x(N − n + 1) x(N − n + 2)

...

...

... ...
x(n + 1)

x(N)

...

...

(a)

x(N − n + 2)

x(1) x(2) x(n)
x(2) x(3) x(n + 1)

X′ =

x(N − n + 1) x(N)

...

...
... ... ...

...

(b)

Figure 1: Two approaches to convert Hankel matrix signal to time series one.
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Figure 2: TEO spectrums with di�erent SNRs. �e input signal (a) SNR − 6, (b) SNR − 8, (c) SNR − 10, and (d) SNR − 12.
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spectrum of the noise-contaminated signal is shown in
Figure 5(b) along with the pure signal’ envelope spectrum
as a reference. It is clear that there are no evident frequency
peaks sticking out at the FCF line due to the presence of
heavy background noise.

4.2. 4e Contrastive Analysis of the Proposed Method. In
order to evaluate the fault feature extraction performance of
the proposed method SVD-AKTEO, the noisy signal with
SNR − 13 denoted by the blue line in Figure 5(a) is fed to
SVD-AKTEO, and the SC number is set to 15. Accordingly,
there are 15 SCs, and these SCs undergo the third step of the
procedure: the iteration of ASC. Each TEO spectrum of the
ASC can be obtained as well as the kurtosis values of TEO
spectrum, depicted in Figure 6. )e highest kurtosis appears
when the former two SCs are added together. )erefore,
according to the principle of SVD-AKTEO, the sum of the
two SCs is regarded as the output result, shown in Figure 7.
Apparently, some impact components can be observed from
the waveform of the SVD-KTEO output, and the TEO
spectrum shows the domain characteristic frequency
105.5Hz and its harmonics, which preliminarily demon-
strates the outer ring defect has happened in the rolling
bearings as a result of the characteristic frequency being very
close to the outer raceway defect frequency BPFO. Fur-
thermore, the comparison of Figures 7 and 5 verifies that the
SVD-AKTEO can effectively extract the fault features for
bearing fault diagnosis.

Since SVD-AKTEO is enhanced on the SVD-KSES and
SVD-ACK, the comparative analysis of the third one
could be interesting. )en, the signal shown in Figure 5 is
also fed to other two approaches, respectively. )e kur-
tosis of SES variation is plotted in Figure 8, from which
and according to the principle of SVD-KSES, the first
singular component can be taken as the output result
which is shown in Figure 9. )e fault-induced periodic
impacts are more obvious, and evident characteristic
frequency can be easily observed in its envelope spectrum,
as well as its harmonics. Similarly, the accumulative
component kurtosis is plotted in Figure 10, and the
waveform of SVD-ACK output is shown in Figure 11(a)
and the envelope spectrum in Figure 11(b). In spite of the
prominent characteristic frequency and its harmonics
emerging in Figures 7(b), 9(b), and 11(b), respectively, it
should be noticed that they are plotted with different y
scales and straightforwardly, they are plotted in one figure
with the same dimensions, shown in Figure 12. Un-
doubtedly, the characteristic frequency lines of the SVD-
AKTEO is the lowest one when compared with the other
two approaches, while higher frequency lines companied
by higher noise can be observed from the spectrum lines
denoted by the black and blue colour in Figure 12.
However, the TEO spectrum of SVD-AKTEO output
provides the equivalent fault diagnosis performance by
clearly presenting the characteristic frequency and its
harmonics with the lowest signal energy; from another
point of view, SVD-AKTEO has a better defect feature
extraction performance from low energy signal.

Raw vibration signal x

Hankel construction
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Figure 4: )e framework of SVD-KTEO.

Table 1: Parameter for REB fault signal simulation with outer
raceway defect.

Impulse
amplitude
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speed
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frequency
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frequency

Sampling
frequency

0.5 1772 rpm 2000 (Hz) 105.5 (Hz) 12000
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Figure 5: Simulated vibration signals of outer race fault with and
without noise signal and their envelope spectrums. (a) Waveforms
of the both signals. (b) Envelope spectrum of the two signals.
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5. Experimental Validation

5.1. ExperimentLayout andDescription. To further verify the
proposed SVD-AKTEO scheme, the experimental data
provided publicly by NSF I/UCRC for Intelligent Mainte-
nance System (IMS) [25] are adopted in this section. As
shown in Figure 13(a), there were four bearings with the
same type ZA-2115 installed on a shaft driven by an AC
motor via rub belts, and the rotating speed was kept at 2000
rpm constantly. �e structural parameters of the tested
bearing are listed in Table 2. A radial load of 6000 lbs was
applied on the bearing 2 and 3. Two ICP accelerometers, as
depicted in Figure 13(b), were equipped on each bearing

house and collected vibration signals from x and y di-
rections with a National Instruments DAQ Card-6062E at
sampling rate 20 kHz [16]. In addition, the four bearings
were force lubricated, and a magnet was planted to gather
the wearing or fault-induced debris in the oil circulation.
�e test would be switched down automatically if the
amount of the adhered debris or bearing temperature
reached a preset level. No. 2 dataset is used to verify the
proposed method in this section. Each data �le of the 984
sets was collected every 10min and contains 20,480 data
points. At the end of the experiment, wear-out failure
occurred on the outer ring, and the run-to-failure data had
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Figure 7: Output of SVD-AKTEO. (a) �e waveform of SVD-
AKTEO output. (b) �e TEO spectrum of the signal in (a).
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Figure 9: Output of SVD-KSES. (a) �e waveform of SVD-KSES
output. (b) �e envelope spectrum of the signal in a.
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been acquired. �e fault frequency of the outer ring defect
can be computed according to the equation and arguments
in Table 3.

5.2. Experimental Validation and Contrastive Analysis.
Since root mean square (RMS) is not only a commonly used
statistical parameter to quantify the collected bearing run-
to-failure vibration signals [26] but also a general evaluation
indicator of a system.�erefore, the RMS variations over the
service life of bearing 1 with experimental condition 2 are
plotted in Figure 14, and for a convincing illustration, the
reference threshold is empirically set based on the �rst two

hundred datasets and dotted by the red colour; the threshold
value equals the mean plus three times the standard de-
viation (i.e., threshold� μ+ 3σ) [27]. It is clear that, after the
long term of normal operation, the bearing steps into an
abnormal running stage, indicating some defects occurring
on the bearing. In addition, to make things clearer, two
speci�c dataset number labelled A and B are selected, and the
envelope spectrums of the selected vibration signals are
shown in Figure 15, as well as the waveforms in Figures 15(a)
and 15(c), respectively.

From the envelope spectrum depicted in Figure 15(b), it
can be con�rmed that the bearing undergoes the outer ring
defect by the evident FCF lines. However, the waveform of
signal at time B, presented in Figure 15(c) is not so impulsive
as the one in Figure 15(a), and its envelope spectrum in
Figure 15(d) also fails to determine the fault type. Conse-
quently, the signal plotted in Figure 15(c) with relative heavy
noise should be fed to SVD-AKTEO for extracting some
more fault information.

To verify the SVD-AKTEO, the early faulty signal of
bearing 1 shown in Figure 15(c) undergoes the procedure
described in Figure 4, and the singular order is set to 8.�en,
the kurtosis of TEO spectrum curve is obtained as shown in
Figure 16. According to the principle of SVD-AKTEO, the
�rst accumulative SC should be regarded as the output
result, and its waveform is presented in Figure 17(a) and the
TEO spectrum of the signal in Figure 17(b). �e waveform
presents clearly impulsive, which predicts some incipient
defect occurring internal of bearing 1, and from the TEO
spectrum in Figure 17(b), it can be easily con�rmed that
there is the outer ring defect by the outer raceway fault
characteristic frequency and its three times frequency lines.

To better demonstrate the SVD-AKTEO’s superiority
over the other two methods, the signal of dataset 535 also
experiences the procedure of SVD-ACK and SVD-KSES.
�e ACK curve is plotted in Figure 18; then, the �rst two SC
is selected as the output of SVD-ACK according to the basic
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Figure 11: Output of SVD-ACK. (a) �e waveform of SVD-ACK
output. (b) �e envelope spectrum of the signal in a.
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principle. Similarly, from the KSES curves in Figure 19, the
�rst SC is taken as the output of SVD-KSES.�e comparison
of both approaches is presented in Figure 20; the waveform
in Figure 20(a) and envelope spectrum in Figure 20(b) are
for SVD-ACK, while the waveform in Figure 20(c) and
envelope spectrum in Figure 20(d) are for SVD-KSES.

�e waveform output by SVD-KSES is more impulsive
than the one by SVD-ACK; while both of them clearly
present the outer raceway characteristic frequency and its
two times harmonics, the amplitudes of characteristic fre-
quency lines in the envelope spectrum of SVD-ACK are
higher than the one in Figure 20(d) by SVD-KSES since the

Motor

Bearing 4Bearing 3Bearing 2Bearing 1

�ermocouples

Radial loadAccelerometers

(a)

ICP
accelerometers

(b)

Figure 13: Schematic diagram of the experiment (a) and bearing test rig (b).

Table 2: Structural parameters of a faulty rolling bearing.

Parameters of Rexnord ZA-2115 rolling bearing
Rolling element number nr Contact angle α Ball diameter dr Pitch diameter Dw

16 15.17° 8.4mm 71.5mm

Table 3: Fault characteristic frequency calculation of rolling bearing Rexnord ZA-2115.

Fault type Fault characteristic calculation Rotating speed Sampling frequency Fault characteristic frequency
Outer raceway BPFO � 1/2fs(1 − dr/Dw cos α)nr 2000 rpm 20 kHz 236.4Hz
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Figure 14: Vibration accelerations of bearing 1 during its run-to-failure life.
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SVD-ACK chooses the �rst two SC as its output while the
SVD-KSES just selects the �rst one. From Figures 17(b),
20(b), and 20(d), it can be concluded that though the SVD-
KSES and SVD-AKTEO regard the �rst SC as the output, the

later one presents the rather clear fault characteristic fre-
quency lines with a very low energy signal, which proves the
e�ectiveness of the proposed SVD-AKTEO to detect the
early fault of rolling bearing once again.
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Figure 15: Waveforms of time point label A and B and their corresponding envelope spectrums. (a) and (c) represent waveforms of signals
corresponding to the time point B, and (b) and (d) represent the envelope spectrums of the signal at the time point B, respectively.
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Figure 17: Output of SVD-AKTEO. (a) Waveform of the SVD-AKTEO output. (b) �e TEO spectrum of the signal output by SVD-AKTEO.
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6. Conclusion

�is paper combines the signal decomposition potential of
SVD and the outstanding performance of TEO to extract fault
feature of a defective bearing from the vibration signal.
Considering the more informative SC selection and fault
delivery potential, kurtosis of TEO spectrum is proposed as a
criterion to pick out the SC which has a relatively higher
capacity to extract defective signature. �en, the bearing fault
can be recognized from the TEO spectrums of the output of
SVD-AKTEO. Moreover, the proposed SVD-AKTEO also
evaluates the in�uence of each single SC to the accumulative
SC, which is conducted in an iteration algorithm that each SC
is added to the ASC one by one. �e numerical simulation
validates the e�ciency of SVD-AKTEOwith a signal buried in
a heavy noise environment where the SNR reaches − 13 dB
and the contrastive analysis with our previous works.
Moreover, a run-to-failure experiment in which the bearing
performance deteriorates naturally from normal operation to
its failure is considered here for experimental validation,
which is very close to real industrial application. �e

comparative experimental results verify the e�ectiveness to
detect the bearing outer raceway defect at an early time point.
Finally, the experimental data analysis validates the capacity
of SVD-AKTEO in bearing fault diagnosis. From the present
work, it can be found that the singular order a�ects the signal
decomposition performance of SVD-based methods, which
lays our future research work.

Abbreviations

REB: Rolling element bearing
TEO: Teager energy operator
KTEO: Kurtosis of Teager energy operator
SVD: Singular value decomposition
SC: Singular component
SV: Singular value
SVR: Singular value ratio
VMD: Variational mode decomposition
ASC: Accumulative singular component
ACK: Accumulative component kurtosis
SES: Squared envelope spectrum
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Figure 20: Comparison of experiments on SVD-ACK and SVD-KSES. (a)�ewaveform of SVD-ACK output. (b)�e envelope spectrum of
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CNN: Convolutional neural networks
FCF: Fault characteristic frequency.
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