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In state analysis of rolling bearings using collaborative representation theory, how to construct an excellent redundant dictionary
to collaboratively represent the acquired normal or abnormal data has been being a significant issue. ,us, a new method for fault
detection and classification of rolling bearings is proposed in this paper. ,e proposed algorithm mainly consists of three
components. First, a wavelet transform is employed to extract features, which takes advantage of the observation that vibration
signals under different conditions have similar frequency spectra.,is similarity ensures that we can collaboratively represent any
test sample by using training samples. Second, under the similarity assumption, a dictionary pair learning strategy is employed to
build an overcomplete dictionary pair, which is used to realize an optimal representation of the vibration signal. Meanwhile, the
sparse constraint is also taken into account during dictionary training to enhance the robustness of the classification. Finally, the
learned dictionary combined with collaborative representation is used to intelligently perform pattern classification of rolling
bearings. ,e effectiveness and superiority of the method are verified by applying the proposed algorithm on the simulated and
real vibration signals. ,e results show that, for different fault categories generated from different fault size and motor loads, our
method can rapidly and accurately identify the fault category to which the input sample belongs.

1. Introduction

Among the majority of rotating machines, fairly important
and frequently encountered components are rolling bear-
ings, and the operating efficiency of an entire machine or an
entire system is directly affected by their operating state.
,erefore, the state detection and classification of rolling
bearings have always been and will still be a research hotspot
because of their low-cost maintenance and the reduction of
unpredictable influences in some cases [1]. In the past few
years, the state diagnosis of bearings has been intensively
studied with respect to vibration and acoustic measurement
analysis and the research has achieved many satisfactory
results [2–4]. However, due to environmental noises and the
shaft rotational speed, the acquired vibration signals of
rolling bearings are always more complicated. ,us, how to
determine the state of bearings via obtained vibration signals
is still an important issue worth studying.

In the early stage of fault diagnosis, some statistics (e.g.,
the root mean square and kurtosis) were extensively used to
extract the fault characteristics of the original signals in time
domain. Although these statistical parameters can be
computed using fairly simple methods [5, 6], they can not
completely represent the fault information features due to
the existence of unknown periods or frequencies when
analyzing vibration signals with complex faults, which may
lead to low classification precision. To obtain more detailed
fault information, many new methods were developed in
recent years. As most popular methods in fault detection,
feature-based algorithms assume that each fault of a rolling
bearing produces a specific vibration that can be measured
and has a unique characteristic. Currently, with respect to
state detection, a variety of feature-based detection tech-
niques (e.g., frequency-domain methods and time-fre-
quency methods) [7–10] have been studied and successfully
applied in practice. In general, feature-based fault diagnosis
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methods mainly involve feature extraction and pattern
classification. First, a distinct feature can improve accuracy
rate and reduce the complexity of the classifier. In [11],
Wang et al. extracted a distinct feature (i.e., the singular
values of a feature matrix) from the considered data using
singular value decomposition (SVD) and empirical mode
decomposition and employed a very simple classifier called
the Mahalanobis distance to accomplish fault clustering. In
[12], a characteristic information vector is extracted using
the wavelet package transform, and then the modified
features (after dimensionality reduction) are fed into twin
support vector machine (SVM) for fault detection. Second, a
good classifier can provide excellent predictions for both
training samples and testing (or query) samples and have
good compatibility with the extracted features. For example,
an SVM can produce high accuracy classification and di-
agnosis due to its excellent generalization performance
[13–15]. In addition, Wang [16] constructed redundant
statistical features using a binary wavelet packet transform
with a wavelet called the Daubechies 44 and then employed
the simple Kankar nearest neighbors to identify the features,
which achieved high prediction accuracies. However, in
spite of the theoretical correctness of these methods, the
selection of features needs a wealth of prior knowledge and
the features vary greatly in practice, which complicates the
adaptivity. Meanwhile, for some classifiers, the parameter
selection and optimization of larger samples are also chal-
lenging tasks, which may increase the complexity of the
model.

To improve the diagnostic accuracy rate, sparse rep-
resentation (SR) theory has been proposed to resolve the
problem of fault diagnosis. ,e SR uses a dictionary that is
predefined or learned from the underprocessed data to
represent the signal, which has greater flexibility and
adaptivity than the traditional orthogonal transform.
More importantly, the identifying information in the SR
vector is convenient for pattern classification. Since the
advent of SR, it has been intensively studied and widely
used in signal processing (e.g., image processing [17, 18],
compression sensing [19], and fault diagnosis [20, 21]).
Meanwhile, the sparse characteristics of dictionary-based
SR are also applied in various classification tasks. In [22], a
classification model named the SR-based classification
was devised and achieved an exciting result for face
classification. However, the investigation shows that the
sparsity of SR classification may experience the leakage of
weak fault features, which leads to bad classification
performance in the case of complicated data with multiple
features.

To capture the weak features, collaborative represen-
tation (CR) was devised by Zhang et al. to conduct clas-
sification in a more effective way than the ℓ1 norm sparsity
(i.e., the SR classification), and it is less sparse than SR
classification [23]. Since the birth of CR, it has been widely
applied, and a great number of methods based on CR have
been devised and successfully employed in visual classifi-
cation [24–28]. Nevertheless, CR-based algorithms that are
used for fault classification are few and far between. ,e
success of CR classification lies in the fact that the acquired

images with natural similarity could be directly used as
samples to produce a redundant dictionary [29], and the
samples belonging to other classes can also be employed to
express any test example. ,e dictionary is elaborately
designed to make the atoms collaborate together to obtain
optimal coefficients that can yield the minimum residuals
for the classification. In the framework of CR classification,
dictionary learning is considered to be more important
than similar feature extraction; therefore, it can also be
viewed as a learning method based on similar features.
However, there are no such similarities in the raw vibration
signals of rolling bearings, and thus a specific class of signal
may not be accurately represented by all the samples that
are contained in the dictionary. Fortunately, some artificial
similarity can be generated by using some available feature
extraction methods such as fast Fourier transform and
wavelet transform. In this work, wavelet transform was
employed to build similar features, and a feature matrix
whose columns are formed using the wavelet coefficients
was also constructed. Since the features are obtained di-
rectly from the signals, the learned dictionary has great
flexibility. However, in the case where the training matrix
contains plenty of similar samples, the traditional learning
method will lead to a redundant dictionary with high
correlation, which will result in poor signal reconstruction
performance, and the ability of CR is largely affected by the
capacity of the trained dictionary. ,erefore, to achieve
perfect signal reconstruction, a new strategy called dic-
tionary pair learning (DPL) that was proposed in [30] is
used to train a pair of dictionaries to analyze and synthesize
the signals.

Inspired by the DPL and the traditional CR classification,
we proposed an improved CR classification method to di-
agnose bearings in this paper. ,e main novelty of our work
consists of two aspects: (1) the features are directly extracted
from the input raw signals using the wavelet transform, and
the feature matrix is trained by the DPL; and (2) in the fault
diagnosis phase, the sparse and projection coefficients are
combined to enhance the robustness of the CR classification
and accuracy. Since the CR represents a query sample using
the dictionary that comes from all of the raw samples
without undergoing training, the CR-based classification
method lacks robustness. After combining DPL and CR, the
performance of the CR classification is improved and the
collaboration between different categories is further en-
hanced. By using the proposed method, the problem of
classification with small samples can also be properly re-
solved. Under the trained DPL, the case in which a query
sample is represented using an incomplete subdictionary can
be avoided, which will have a positive effect on the results of
the fault diagnosis. ,e complete flow chart of the proposed
diagnostic model is shown in Figure 1. Since the process of
dictionary learning is time-consuming when the samples are
highly dimensional, the PCA technique is employed to re-
duce the dimensionality before dictionary training, which
can reduce the computational costs while maintaining the
main features of the data. In fact, the function of PCA is
mainly to remove the redundant components of the feature
vectors.
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,e rest of the contents of this paper will be structured as
follows. In Section 2, the principles of the SR and CR
classification are reviewed, and the details of the improved
augmented CR classification algorithm based on DPL are
also described. In Section 3, quantitative evaluations and
comparisons are presented on the basis of experimental
results from the simulated and real vibration signals. Finally,
we summarize the paper in Section 4.

2. CR Classification Based on DPL

2.1. Brief Introduction of CRClassification. SR is an effective
signal representation method which represents a sample
using a linear combination of training samples that be-
long to the same type. Suppose that the all samples in
training set T are arranged to form an initial dictionary
C′, that is,

C′ � C1′, . . . , Cj
′, . . . , Cm

′  � A1,1, . . . , Aj,1, . . . , Am,nj
 ,

(1)

where Cj
′ � [Aj,1, . . . , Aj,i, . . . , Aj,nj

] ∈ Rr×nj comes from the
j-th class that contains n samples and has r dimensions;m is
the number of classes, and the total number of samples is


m
j�1nj.,us, for any one test example q belonging to the j-th

class in test setQ, it can be faithfully expressed by using those
samples coming from the j-th class:

q � aj,1Aj,1 + aj,2Aj,2 + · · · + aj,nj
Aj,nj

, (2)

where a � [aj,1, . . . , aj,nj
] is the coefficient vector. However,

in most cases, the number of training samples in any dataset
T is limited and the representation of q only using Cj

′ is not
optimal. ,us, it is a wise strategy to represent q using Cj

′
combined with other classes.

,e innovation of CR is that it applies all samples in a
dictionary to achieve an optimal representation for q, which
can subsequently obtain a minimum reconstruction residual
to determine the given query sample to which a category
belongs. ,erefore, to achieve the minimum reconstruction
residual, the CR uses the ℓ2 norm as the regularization term
instead of the ℓ1 norm. ,us, the CR problem can be for-
mulated as

α � argmin
α

q − C′α
����

����
2
2 + ρ‖α‖

2
2, (3)

where ρ is used for balancing the residual and the sparsity of
the solution, the coefficient vector α � [α1; . . . ; αj; . . . ; αm]

corresponds to the training samples that are located in all
categories, and ‖ · ‖2 denotes the ℓ2 norm that introduces
some sparsity and achieves a steady solution. Since the
objective function in (3) is a quadratic and derivable
function, it has a closed-form solution α � (C′

T

C′ + ρ · I)− 1

C′
T

q and the computational complexity is low. ,en, the
residual ‖q − Cj

′αj‖
2
2 that is generated from the j-th class can

be directly calculated using α, and the class that produces the
minimum residual is considered as the category to which the
q belongs. ,erefore, the CR classification algorithm can be
presented as Algorithm 1.

2.2. Dictionary Learning for DPL

2.2.1. Dictionary Learning Model. ,e collected vibration
signals are always contaminated by noise, and the noise is
superimposed on every point of the underlying vibration
signal. Since the frequencies of noise mainly focus on the
high-frequency band, they can be separated from the main
content of the underlying vibration signal after wavelet
decomposition, and the low-frequency coefficients of each
sample will be more similar than their original forms. In this
paper, we construct the feature matrix Cj ∈ Rr×nj (subdic-
tionary) using the coefficients of the wavelet transform
computed directly from the raw bearing signals. Even
though the dictionary C is better than that of the one formed
by original raw samples, it is only a predefined nonadaptive
subdictionary. ,us, to obtain better results, we expect to
construct a synthesis dictionary C � [C1, . . . , Cj, . . . , Cm]

∈ Rr×k (k> r) and an analysis dictionary D � [D1; . . . ; Dj;

. . . ; Dm] ∈ Rk×r by employing the DPL learning strategy,
where Cj ∈ Rr×nj is the learned subdictionary that is used to
reconstruct the raw signal, and Dj ∈ Rn×r is the learned
projection subdictionary that is used to analyze the raw
signals from the j-th class.

Under each synthesis subdictionary Dj, the coefficient
matrix of corresponding dataset is DjAj. ,en, the DPL
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Figure 1: Flowchart of the proposed diagnostic model.
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model can be obtained by solving the following optimization
problem:

〈C, D〉 � argmin
C,D



m

j�1
Aj − CjDjAj

�����

�����
2

2
+ μ DjAj

�����

�����
2

2
, (4)

where Aj is the complementary matrix of Aj. ,is dictionary
learning model (4) is different from most of the current
dictionary learning methods, where the term


m
j�1‖Aj − CjDjAj‖

2
2 is the reconstruction error and the

other term is a regularizer that is used to penalize the
projection coefficients that are not related to Aj.

2.2.2. Optimization. On the basis of obtaining the features of
the raw signals, a dictionary pair C and D can be found by
using an appropriate optimization method. Since the ex-
pression of the objective function in (4) is nonconvex, we
introduce a variable matrix V to obtain a closed-form so-
lution. ,us, the optimization problem in (4) can be
reformulated as

〈C, V, D〉 � arg min
C,V,D



m

j�1
Aj − CjVj

�����

�����
2

2
+ λ DjAj − Vj

�����

�����
2

2

+ μ DjAj

�����

�����
2

2
.

(5)

Obviously, the converted optimization problem in (5)
has a closed-form solution. As with general multivariable
optimization problems, it can be resolved iteratively through
two alternative optimization steps. At the beginning of it-
eration, the corresponding parameters that are involved in
the objective function need to be initialized. In this paper,
the columns of dictionary pair C and D are randomly ini-
tialized using the ℓ2 norm. In addition, to reduce the un-
necessary time consumption, a stopping criterion is set; that
is, when the residual is less than a very small positive value
(e.g., 10e− 5), the iterative operation terminates. When C and
D are fixed, the optimization problem in (5) can be sim-
plified to the following form:

V � argmin
V



m

j�1
Aj − CjVj

�����

�����
2

2
+ λ DjAj − Vj

�����

�����
2

2
. (6)

Since the objective function in (6) is separable, the
variable V can be obtained by solving m suboptimization
problems and each Vj has the following expression:

Vj � C
T
j Dj + λ · I 

− 1
λDjA

T
j + C

T
j Aj . (7)

Similarly, when V is fixed, C and D can be obtained as
follows:

C � argmin
C



m

j�1
Aj − CjVj

�����

�����
2

2
,

D � argmin
D



m

j�1
λ DjAj − Vj

�����

�����
2

2
+ μ DjAj

�����

�����
2

2
.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(8)

In addition, the optimal value of C and D can be solved
class by class as follows:

Cj � AjV
T
j VjV

T
j 

− 1
, j � 1, 2, . . . , m,

Dj � λVjA
T
j λAjA

T
j + μAjA

T

j + cI 
− 1

, j � 1, 2, . . . , m,

⎧⎪⎪⎨

⎪⎪⎩

(9)

where c is a very small positive value. According to the above
analysis, we know that both C and D have closed-form
expressions that can be efficiently computed in each itera-
tion. Once C and D are obtained, we can use them to
collaboratively represent the test samples. To assess the
convergence of the DPL method, the relation between the
value of objection function and iteration is illustrated in
Figure 2.

2.3. Proposed Classification Algorithm. A classification al-
gorithm based on collaborative representation using DPL is
proposed in this subsection. ,e analysis dictionary D can
produce a coding coefficient vector x � Dq for the given
sample q. In addition, the samples from the j-th category can
be reconstructed via the synthesis subdictionary Cj using the
coding coefficient vector xj with a fairly small residual
‖q − Cjxj‖

2
2. Now, according to the CR classification, we can

discriminate the fault classes by using the minimum re-
sidual. Since there are some correlations among the atoms in
C, more than one linear combination can be used to rep-
resent the corresponding x with the same residual. ,us, to
find the appropriate (or correct) linear combination that
coincides with the actual situation (i.e., the sample belonging
to the j-th class should be represented by using the atoms
from the j-th class), we introduce the sparsity of the coding
coefficient vector into the CR representation to augment the
dense representation to improve the performance of CR-
based classification [31].

Input: dictionary C′ and threshold ρ
Main procedure:

(1) Normalize the columns of C′ to make them regularize (ℓ2 norm)
(2) Let q be encoded on C through α � (C′

T

C′ + ρ · I)− 1C′
T

q

(3) Calculate residuals rj(q) � ‖q − Cj
′αj‖

2
2/‖αj‖

2
2, j � 1, . . . , m

(4) Identify the class of q by using TD (q) � argminjrj(q), where TD (q) is the label of identified class to which the sample q belongs.
Output: identified class to which q belongs.

ALGORITHM 1: Classification algorithm.
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To find a sparse representation, the orthogonal matching
pursuit (OMP) [32] is used to perform the following
optimization:

�x � min
x

‖q − Cx‖2,

s.t. ‖x‖0 ≤ k0.
(10)

In general, �x contains large positive coefficients whose
indexes are related to the right category, and it has either
small positive or negative coefficients for other indices.
,us, if x and �x are properly fused, the probability of
finding the correct linear combination will be greatly
enhanced. For simplicity, the improved CR coefficient is
written as follows:

x �
�x + x

‖�x + x‖2
. (11)

Obviously, x amplifies the coefficients of the correct
classes and reduces the relative energy of the unamplified
coefficients; thus, Cx can effectively approximate the test
sample. Meanwhile, this strategy also enhances the stability
of CR classification. Subsequently, we can calculate the
residuals corresponding to all the classes as follows:

rj(q) � q − Cjxj

�����

�����
2

2
, j � 1, 2, . . . , m. (12)

,e test example is classified using TD (q) � argminjrj

(q), where TD (q) is the label of the identified class to which
the sample q belongs. To study the adaptiveness of the
dictionaries learned from DPL to the test samples, the re-
lation between training accuracy and each iteration of DPL
training is shown in Figure 3. It can be seen that the accuracy
rate gradually rises with the increase in iterations.

2.4. Computational Complexity. ,e complexity of the
proposed algorithm is investigated in this subsection. Since
the final classification step is a simple computation of the
residuals, the vast majority of the computational complexity
of the proposedmethod comes from the training process of a
pair of dictionaries. Recall that C,D, and V have closed-form
solutions, and the computational costs of updating Cj, Dj,
and Vj are O(d3 + rmd + d2r), O(r3 + rmd + dr2), and

O(d3 + rmd + d2m) (where r denotes the dimension of the
features, m is the number of samples in each class, and d is
the number of atoms in each subdictionary), respectively,
in each iteration. Among Cj, Dj, and Vj, the largest
computational cost is the update of Dj because the cal-
culation of an r × r matrix is involved in the training of Dj

and the number of subdictionary atoms and training
samples in each class are smaller than r. Fortunately, the
factor (λAjA

T
j + μAjA

T

j +cI)− 1 in Dj can be precomputed
before the training process since it only relates to Aj and
the other predetermined parameters, which can greatly
reduce the training time. In summary, the complexity of the
proposed algorithm is O(r3).

3. Experiments

In this section, one set of simulated vibration signals, three
sets of laboratory bench signals, and one set of real-operating
signals were constructed to evaluate the performance of the
proposed algorithm. To exhibit the advantages of the pro-
posed algorithm, four other comparison classification
methods which include the SVM [13], k nearest neighbor
(KNN) [33], decision tree (DT) [34], and back-propagation
neural network (BPNN) [35] are also employed to conduct
the experiments.,e wavelet used in our method is the Haar
wavelet, and the reason is that (1) the Haar wavelet has the
shortest filter length which can avoid excessive smoothing of
the low-frequency component of signal and effectively en-
sure that the main features are not lost; and (2) Haar wavelet
transform has the character of easy calculation, which en-
sures that the construction of feature matrix using wavelet
coefficients is very efficient. Since the parameters have
important impacts on the performance of a given method,
the parameters involved in the proposed algorithm were
optimized by hand to obtain the best results in the exper-
iments; that is, the corresponding values were set as λ � 0.05,
c � 0.003, μ � 0.001, ρ � 10e− 3, and k0 � 50, respectively.
Moreover, 70 atoms were chosen in each subdictionary,
which are randomly selected from all the samples in each
class. For the four other machine learning algorithms that
were used for the comparison, the optimal values of the free
parameters were taken from the reference papers.
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As to the evaluation of performance of the proposed
method, an indicator called the accuracy (Acc) is adopted in
this paper, which is defined as

Acc �


N
i�1I IDi � TLi( 

N
× 100%, (13)

where N denotes the number of test samples, I(·) represents
the indicator function, and IDi and TLi represent the pre-
dicted label and the true label of the i-th test sample, re-
spectively. In general, the Acc is calculated by using a
confusion matrix [36].

3.1. Experiment Using Simulated Data. In this subsection, a
set of simulated signals are generated to test the proposed
method. In general, when a rotating bearing has a fault in
some key components, the vibration of the bearing will be
intensified and impact the performance, which results in the
instantaneous high-frequency resonance of the bearing
system. ,erefore, the vibration signals of some failures are
usually characterized using impulsive series. According to
this, we generate the simulated signals using the following
model [37]:

y(t) � r(t) + e(t),

r(t) � ri(t)rfa
(t) + ra(t),

(14)

where ri(t) is an impulsive component, rfa(t) is the reso-
nance component, ra(t) is the vibration component that is
produced by the mechanical equipment, and e(t) denotes
the additive Gaussian noise. In this experiment, six different
frequencies (corresponding to one normal state and five fault
states) were used to generate six fault vibration signals which
are shown in Figure 4. ,e vibration signals are formulated
as follows:

normal: y(t) � 0.02 cos(20π × t)sin 2πfa × t( 

+ 0.02 cos(20π × t),

faults: yj(t) � e
− ntm sin 2πfa × t( 

+ 0.02 cos(20π × t), j � 1, 2, 3, 4, 5,

tm � mod td,
1

fm

 , m � 1, 2, 3, 4, 5,

(15)

where n denotes the damping factor contributing to the
signal that affects the pulse duration, fa and fm denote
carrier centers and characteristic frequencies, respectively,
and td is the duration of the simulated signal. ,e sampling
frequency was set to 12 kHz, and 105 points were collected
for the simulated signal under the condition that the value of
the damping factor is 500. Considering the stability of the
classification and the simplicity of the training, 200 samples
(each sample contains 2000 points) were generated from the
simulated signal for each class, in which 100 samples were
randomly selected to train the subdictionary and the other
100 were used as test samples. After the PCA, the dimension

of the features was reduced to 300. In addition, under the
trained dictionary pair, the reconstruction precisions of each
test sample are assessed using all subdictionaries Cj and Dj

in the experiment, and the corresponding errors are shown
in Figure 5. It can be clearly seen that when a test sample
belongs to a certain class, it produces the smallest error for
that corresponding class because almost all of the energy of
the given test example is projected in its corresponding
analysis subdictionary Dj, which ensures that the recon-
structed sample using the synthesis subdictionary Cj closely
approximates the original sample.

Moreover, the DPL greatly contributes to the accuracy of
the CR-based classification methods. An comparative ex-
periment was conducted to verify this point, and the results
are reported in Figure 6. From the figure, one can clearly see
that the accuracy that is obtained by the proposed algorithm
is 100% in all cases, while the result using the traditional CR
classification without the DPL strategy is only approximately
91% and is also unstable. Meanwhile, it should be noted that
the sparsity constraint that is involved in DPL also makes a
certain contribution to the classification accuracy.

By applying the four comparison methods on the sim-
ulated samples, we further investigate the performance of the
proposed method. ,e results that are obtained by our al-
gorithm and the comparison methods are listed in Table 1.
From the table, it can be seen that the classification accuracy
obtained by our algorithm is still 100% in all cases, while the
results produced by other four methods are all lower than
ours. ,is result indicates that the bearing states can be
precisely classified using our algorithm. ,e reason is that
the features are directly extracted from the raw data without
an artificial operation, and the method is adaptive to the
input data. By carefully analyzing Table 1, we know that the
performance of the DT algorithm is the worst among the
used methods. ,is is because the features in DT are
extracted by finding the smallest error after an artificial
operation. Obviously, this minimum value is not accurate
enough and it will lower the accuracy of DT, especially when
there is more than one class. In addition, the classification
accuracies of the other three methods are between the DT
method and the proposed algorithm. ,e SVM achieves the
second best results for all the fault states. ,e main reason is
that only 100 samples are tested for each class, which is a
small-sample problem at which the SVM is particularly
skilled. However, the problem that is encountered in this
paper is not just a small-sample problem, but is also a
multiclass problem; thus, the SVM only outperforms the
KNN, BPNN, and DT.Meanwhile, skewed datasets that arise
in the multiclass problem also degrade the performance of
the SVM. Moreover, the confusion matrix that is used to
compute the Acc for the proposed method is listed in
Figure 7. ,e elements on the main diagonal represent the
correct classification accuracy for each state, while the el-
ements on the other places denote the wrong classification
accuracy. Figure 7 shows that the values on the main di-
agonal are all equal to 1, which means that all the test
samples are correctly classified by our method.

Finally, to compare the computational burden of our
method with other four methods, the running times are
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Figure 4: Simulated vibration signals with different parameters: (a) normal signal using fa � 1000Hz; (b) fault signal 1 using fa � 1000Hz
and fm � 50Hz (m� 1); (c) fault signal 2 using fa � 2000Hz and fm � 60Hz (m� 2); (d) fault signal 3 using fa � 3000Hz and fm � 70Hz
(m� 3); (e) fault signal 4 using fa � 4000Hz and fm � 100Hz (m� 4); (f ) fault signal 5 using fa � 4500Hz and fm � 150Hz (m� 5).
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assessed using Matlab (R2018a, 64 bit) on a personal
computer with an i5-7500 CPU (3.40GHz) and 8.00GB of
memory. ,e running times that are consumed by the SVM,
KNN, DT, BPNN, and ours method are 74.73 s, 126.03 s,
4.07 s, 80.86 s, and 3.85 s, respectively. Obviously, the pro-
posed method shows significant superiority over the com-
parison algorithms. ,is is because (1) the feature extraction
step is fairly simple, which dramatically decreases the
computational time and (2) the proposed method does not
need to estimate too many parameters, which also saves a
large portion of the execution time.

3.2. Experiment onRealData. In this subsection, two types of
real data are employed to further evaluate the performance of

the proposed method. One is the vibration signals that are
generated from bearings with predefined faults, and the other
is generated from bearing without predefined faults. ,e
parameters that are involved in the tested methods are the
same as those that are used in the above simulation
experiment.

3.2.1. Real Data from Bearings with Predetermined Faults.
,e used experimental data of rolling bearings are provided
by Case Western Reserve University [38]. First, we provide a
brief introduction of the equipment (Figure 8) that is used to
generate the real vibration signals. ,e objective bearings
(6203 wind turbine end bearing (FE) and 6205 drive end
bearing (DE)) with single faults were tested under different
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Figure 7: Confusion matrix obtained by the proposed method for the simulated signals.
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Figure 6: Classification results of the simulated signals: (a) results without dictionary learning; (b) results using dictionary learning.

Table 1: Recognition rates obtained by different classification methods on simulated signals.

Method SVM BPNN KNN DT Ours
Feature dimension 300 300 300 300 300
Acc (%) 98.2 92.1 94.5 83.7 100.0
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loads (0–3 horsepower). ,e single faults with 4 different
defect diameters (0.028, 0.021, 0.014, and 0.007 inches) are
introduced to the rolling bearings using electrodischarge
machining. Two sampling frequencies (12 kHz and 48 kHz)
were used to collect the vibration signals. In this experiment,
we selected twelve running states of rolling bearings with
different types of faults and fault severities. To visually
observe the real vibration signal, twelve raw signals (DE with

different faults) with a sampling frequency 12 kHz are il-
lustrated in Figure 9. Based on the raw fault signals, we
generated 200 samples (each sample contains 2000 points)
for each class, and the detailed information for the gener-
ation of raw samples is reported in Table 2.

Once the samples were acquired, we randomly and
equally divided them into two sets. One set (100 samples) is
used to train the dictionaries, and the other (100 samples) is
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Figure 8: Classification results of the simulated signals: (a) results without dictionary learning; (b) results using dictionary learning.
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Figure 9: Vibration signals under normal and different fault states: (a) normal and faults 1-2; (b) faults 3–5; (c) faults 6–8; (d) faults 9–11.
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used to test the proposed model. To obtain reliable results,
this experiment was repeated 30 times to produce averaged
results as the final output. ,e Accs that are obtained by our
method and the other comparison methods are listed in
Table 3, and the corresponding confusion matrix for our
method is shown in Figure 10. It can be clearly seen that the
classification accuracy that is obtained by our work is still
100%, which indicates that the performance of the proposed
method is very effective and stable. By observing Table 3, one
can find that there is a sharp distinction between the pro-
posed work and the DT; namely, our work gets the best
result, and the DT obtains the lowest accuracy in all fault

cases. Overall, the results that are obtained in this experi-
ment accord with those of the simulated experiment; that is,
our method is also effective for real vibration signals and
outperforms other classification methods.

3.2.2. Real Data from Bearings without Predetermined Faults.
To prove the performance of our method for bearings in real
operating situation, the vibration signals from the
accelerated degradation of bearings (without predetermined
faults) were assessed in this subsection. ,e data are pro-
vided by the Changxing Sumyoung Technology and the

Table 2: Detail information of the drive end for the generation of raw samples.

States Diameter (inch)
Number of samples

1797 rpm (0HP) 1772 rpm (1HP) 1750 rpm (2HP) 1730 rpm (3HP) Class
Normal 0.000 50 50 50 50 1

Ball fault

0.007 50 50 50 50 2
0.014 50 50 50 50 3
0.021 50 50 50 50 4
0.028 50 50 50 50 5

Inner-race fault

0.007 50 50 50 50 6
0.014 50 50 50 50 7
0.021 50 50 50 50 8
0.028 50 50 50 50 9

Outer-race fault
0.007 50 50 50 50 10
0.014 50 50 50 50 11
0.021 50 50 50 50 12

Table 3: Recognition rates obtained by different classification methods on real signals.

Method Feature dimension
Acc (%)

Average Acc (%)
DE (12 kHz) DE (48 kHz) FE (12 kHz)

SVM 300 97.6 96.7 95.4 96.6
BPNN 300 90.8 91.0 93.1 91.6
KNN 300 95.4 94.7 95.6 95.2
DT 300 80.5 82.7 82.1 81.7
Ours 300 100.0 100.0 100.0 100.0
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Figure 10: Confusion matrix obtained by the proposed method for the vibration signals in Figure 9.
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Xi’an Jiaotong University (https://www.mediafire.com/
folder/m3sij67rizpb4/XJTU-SY_Bearing_Datasets). ,e
vibration signals were obtained by running a bearing
from a normal state until reaching the various faults
under different conditions, which can accurately reflect
the real operating situations of bearings. ,e 4 different
fault conditions were adopted in this experiment, which
are inner-race fault, cage fault, ball fault, and outer-race
fault. For simplicity, we labeled them as 1, 2, 3, and 4,
respectively, and the parameters of the bearings are listed
in Table 4. In addition, 200 samples (each sample con-
tains 2000 points) were generated for each fault class, in
which 100 samples were randomly selected to train the
subdictionary, and the other 100 were used as test
samples.

,e accuracies that were obtained by all the fault di-
agnosis methods are reported in Table 5, and the confusion
matrix for the proposed method is illustrated in Figure 11.
As presented in the previous experiments, our proposed
method acquires a 100% recognition rate in all fault states,
the DT has the worst performance, and the Accs that are
obtained by the rest are between the proposed method and
the DT algorithm. ,ese results agree with the results of the
simulated experiment. ,e results also indicate that our
method can identify the fault states of the bearings operating
in real situations.

4. Conclusion

In the paper, a classification method using CR based on DPL
has been proposed to detect and classify the states of bearings.
We construct a feature matrix that is used to train the dic-
tionary pair, and the Haar wavelet was employed to de-
compose the raw samples. Two operations are adopted to
improve the accuracy of classification: one is the introduction
of the sparse constraint into the dictionary training of DPL,
and the other is the fusion of sparse coefficients and projection
coefficients. ,e results that are obtained by testing the
simulated vibration signals and the real vibration signals
indicate that the proposed work provides fairly good classi-
fication effects in all cases, and the recognition performance is
very stable. However, since the OMP algorithm is exploited to
find the sparse vector, the computation burden of our method
is also increased. Moreover, the size of training samples used
in the proposed method is relatively small. In fact, long
samples are common inmany practical situations, and a DPL-
based fault diagnosis algorithm that considers samples with
large size will be studied in the future.

Data Availability

,e data used to support the findings of this study are
available from the corresponding author upon request.

Table 4: Parameters of bearing used for accelerated degradation.

Parameter Value Parameter Value
Outer-race diameter 39.80mm Inner-race diameter 29.30mm
Bearing mean diameter 34.55mm Ball diameter 7.92mm
Number of balls 8 Contact angle 0°
Load rating 6.65/12.82 kN RPM 2100/2250/2400
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Figure 11: Confusion matrix obtained by the proposed method for vibration signals from accelerated degradation of bearing.

Table 5: Recognition rates obtained by different classification methods on real vibration signals from accelerated degradation of bearing.

Method KNN SVM DT BPNN Ours
Feature dimension 300 300 300 300 300
Acc (%) 95.4 97.6 89.5 92.6 100.0
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