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Load identification is very important in engineering practice. In this paper, a novel method for load reconstruction and lo-
calization is proposed. In the traditional load localization method, location information is coupled to the impulse response matrix.
+e inversion of the impulse response matrix leads the process of load localization to be time-consuming. So we propose a variable
separation method to separate the load location information from the impulse response matrix. An error optimization function of
load histories in different modes is employed to determine the true load location. After locating the external load, the load time
history can be easily reconstructed by the measurement responses and determinate impulse response matrix. +is method is
verified by simulations of a simply supported beam acted by a sine load and an impact separately. An experiment is also carried out
to validate the feasibility and accuracy of the proposed method.

1. Introduction

Knowledge of external loads and load locations is crucial in
various fields, such as structural dynamic design, noise re-
duction, and fault diagnosis. However, it is usually difficult
to directly measure the structure external loads and the
locations due to some physical or economical limitations.
+is is why indirect methods must be developed to identify
structural loads by using measured structural responses,
such as acceleration, velocity, displacement, and strain.

In recent years, with the deepening of the research on
structure dynamics, the techniques of load identification
have developed rapidly. Currently, there are two mature
methods of load identification: frequency-domain methods
and time-domain methods. +e frequency-domain method
converts the kinetic equation into linear equation in the
frequency domain. Bartlett and Flannelly [1] firstly used the
frequency-domain methods to identify the hub forces in a
helicopter model. Starkey and Merrill [2] used direct in-
version of the frequency response function (FRF) to de-
termine the load. In their research, they found the frequency
response function (FRF) was ill-posed near the resonance

zone, and with the number of the loads increasing, the
accuracy of the identification result was reduced. Doyle [3]
established a waveguide model to describe the dynamic
response and employed the spectral analysis to reconstruct
the impacting force acting on a two-dimensional bimaterial
beam system. Liu and Shepard [4] used enhanced least
squares schemes to reduce the random errors of structural
response signals. In their researches, a total least squares
scheme was also employed to solve the errors associated with
the FRF matrix. +e applications of the frequency-domain
methods are often restricted since sufficient long data are
required to apply the Fourier transformation or other
harmonic transformation which is often used in frequency-
domain methods. +us, the time-domain method of load
identification was developed. +e research of time-domain
methods started relatively late and still has many problems
need to be solved. Desanghere and Snoeys [5] established the
time-domain method of load identification and firstly used
the modal coordinate transformation to identify the external
load. Chang and Sun [6] employed a deconvolution method
to reconstruct the time history of structure loads. +e load
identification is an inverse problem, where the structural
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properties and responses are known while the external loads
need to be determined. However, this inverse problem is
mathematically ill-posed in most case, which means that the
uniqueness and the stability of the solution are lost. A little
noise in the measured responses of the structure, which is
inevitable, would result in the great change of the estimated
load. To solve this ill-posed problem, some regularization
techniques are introduced to stabilize the identified load.
Jacquelin et al. [7] compared the efficiency of two widely
used regularization techniques, the Tikhonov method and
the truncated singular value decomposition (TSVD), by
identifying an impact acting on a circular Kirchhoff plate.
In their research, they also compared the effect of two-
parameter choice criterion, L-curve method, and gener-
alized cross validation (GCV). Besides these two methods,
there are also some commonly used regularization
methods, such as the modified TSVD [8], the damped
singular value decomposition [9], and the iterative regu-
larization methods [10]. Liu et al. [11, 12] introduced
several new regularization filter function and confirmed the
effectiveness and the accuracy of proposed methods for
solving load identification problems. In many researches
including those mentioned above, the main purpose is to
reconstruct the time history of the excitation and the load
location is assumed as known information, which is often
not the case and needs to be identified before the re-
construction of load time history. In fact, the process of
load identification consists of two separate parts: locali-
zation of the external load and reconstruction of the load
time history. In order to identify the load location, wavelets
were introduced to locate the external loads. Gaul and
Hurlebaus [13] employed the wavelet transform to de-
termine the arrival time of impact wave to different sensors
and used an optimization method to identify the impact
location. As for impact load, there are several localization
methods by analyzing wave propagation, such as time
difference of arrival (TDOA) [14, 15], direction of arrival
(DOA) [16, 17], and wave’s energy loss with traveled
distance [18, 19]. Ginsberg and Fritzen [20] created a
sample-force-dictionary as the prior knowledge to trans-
form the impact identification into a sparse recovery task.
Li and Lu [21] adopted a complex method to determine the
location of the impact and then identify the impact history
by using a constrained optimization scheme. +ey [22]
used a two-step iterative approach to both localize and
reconstruct a single point force acting on a structure. In
their research, they proposed the stabilization diagram of
identified locations to determine the appropriate regula-
rization range and the true force location. However, these
two studies have the same problem: the location in-
formation is coupled to the impulse response matrix, which
generally needs to be inverted in the process of load
identification. +us, to identify the load position, a con-
siderable amount of matrix inversion is needed and a lot of
time will be consumed.

In this paper, a new localization method is proposed,
which separates the location variable from the impulse re-
sponse matrix. In this method, a modal decomposition
method is adopted and only once matrix inversion needs to

be done to obtain several-order modal force. +e load po-
sition is identified by optimizing an error function of the
modal force. Numerical simulation and identification test on
a simply supported beam structure are implemented to
demonstrate the accuracy and effectiveness of the proposed
method. +is paper is organized as follows: in Section 2, the
inverse model for load localization and reconstruction is
discussed, with introducing regularization techniques. +e
applied method for fast localization is also proposed. In
Section 3, both numerical simulation and experiment are
carried out to validate the proposed method. Finally, con-
cluding remarks are presented in Section 4.

2. Load Localization and
Reconstruction Scheme

2.1. Inverse Model. First, we construct the relationship be-
tween a concentrated force and responses of a structure.
Without loss of generality, a multiple degree-of-freedom
system is considered as the structure model, and the degree
of freedom of the system is assumed as N. Generally, the
dynamic equilibrium equation of the MDOF system is
expressed as

M€u(t) + C _u(t) + Ku(t) � P(t), (1)

where M, C, and K represent the mass, damping, and
stiffness matrixes, respectively. u(t) is the response vector of
the system, and P(t) is the external load vector.

Under the zero initial condition, the relation between the
responses and the load can be written as the form of a
convolution:

u(t) � h(t)∗P(t), (2)

where h(t) is the unit impulse response matrix, and it can be
expressed through the following modal superposition:

h(t) � 􏽘
N

r�1

φrφT
r

mrωr

�����

1− ξ2r
􏽱 e

−ξrωrtsin
�����

1− ξ2r
􏽱

ωrt, (3)

where mr, ξr, and ωr are the rth-order modal mass, damping
ratio, and natural circular frequency, respectively. φr is the
rth-order mode of vibration.

For a concentrated force, sf is assumed as the load lo-
cation, and f(t) is the load time history. +e response of the
ith degree of freedom is obtained:

ui(t) � 􏽚
t

0
􏽘

N

r�1
hr(t− τ)φr(i)φr sf( 􏼁f(τ)dτ, (4)

where hr(t) is the rth-order impulse response function:

hr �
1

mrωr

�����

1− ξ2r
􏽱 e

−ξrωrtsin
�����

1− ξ2r
􏽱

ωrt. (5)

+e summation part in equation (4) can be represented
by

hi,sf
(t) � 􏽘

N

r�1
hr(t)φr(i)φr sf( 􏼁. (6)
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+e subscript of hi,sf
(t) denotes the ith DOF unit impulse

response with load acting on the location sf .+e convolution
in equation (4) can be taken into a discrete form:
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(7)

where Δt denotes the sampling interval, Q denotes the
number of sampling points, and ti � iΔt(i � 0, 1, 2, . . . , Q).
Equation (7) can be simplified as

ui � H i, sf( 􏼁 · f . (8)

For a certain system, the only unknown variables in
equation (8) are the load location sf and load time history f .
To determine the location sf , two or more measurement
points are chosen to obtain corresponding load time history
f . A minimum optimization problem is established to find
the suitable value of location sf , which makes the error
function value of several load vectors f minimum. In this
process, there are lots of matrix inversion because the lo-
cation variable sf is included in the matrix H. Generally, the
size of the matrix H is large, due to the number of sampling
points Q. +us, the process of load localization will cost
plenty of time which may cause unknown problems during
researches and practical engineering situations.

2.2. New Load Localization Method. To reduce the time of
load localization, a new method is considered which sepa-
rates the load location sf from the matrix H. In this method,
the number of matrix inversions is reduced significantly so
that the load location can be identified faster.

From equation (6), hi,sf
(t) is expressed as the form of the

modal superposition. By substituting equations (6) and (8),
the following equation can be derived:

ui � 􏽘
N

r�1
φr(i)φr sf( 􏼁Hr · f , (9)

where
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Combining the component φr(sf ) and load time history
f , equation (9) is turned into

ui � 􏽘
N

r�1
φr(i)Hr · Sr, (11)

where Sr � φr(sf ) · f(r � 0, 1, 2, . . . , N). +en, summation
in equation (11) can be transformed to a matrix form:

ui � Wi · S, (12)

where

Wi � φ1(i)H1 φ2(i)H2 · · · φN(i)HN􏼂 􏼃Q×NQ,

S � S1 S2 · · · SN􏼂 􏼃
T
1×NQ.

(13)

From equation (12), we can see that the load location sf is
included in the vector S, and the matrixWi only contains the
information of measurement point and properties of the
system. +us, the matrix Wi is defined when the mea-
surement point is settled. However, the vector S cannot be
calculated by directly inversing equation (12) because
equation (12) is an undetermined system of equation.

+us, to obtain the vector S uniquely, the modal trun-
cation method is employed and the m modes which con-
tribute the most to the response are chosen. Equation (12) is
transformed to

ui � Wtrun
i · Strun, (14)

where

Wtrun
i � φ1(i)H1 φ2(i)H2 · · · φm(i)Hm􏼂 􏼃Q×mQ,

Strun � S1 S2 · · · Sm􏼂 􏼃
T
1×mQ.

(15)

In addition, the responses of other measurement points
are necessary. Assuming that responses of m points are
known, then we have

Y � Wtrun
· Strun, (16)

where
Y � uT

1 uT
2 · · · uT
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.
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Equation (16) can be inversed directly becauseWtrun is a
mQ × mQ matrix. +en Si(i � 1, 2, . . . , m) are calculated,
and m load vectors can be obtained:

f i �
Si

φi sf( 􏼁
, i � 1, 2, . . . , m. (18)

For the true load location sf , the m load vectors f i(i �

1, 2, . . . , m) are equal. +us, an optimization function is
introduced:

η sf( 􏼁 � 􏽘
m

i�1
f i −

1
m

􏽘

m

r�1
fr

���������

���������2

. (19)

From equation (19), the optimization function η(sf ) gets
the minimum value when the variable sf is the true load
location. +us, the load localization is transformed to a
minimum optimization problem.

In this method of load localization, only once matrix
inversion is computed, which reduces the operation time
greatly and increases the efficiency of load localization. For a
certain system, the matrix Wtrun is determined when the
measurement points, the sampling interval, and the number
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of sampling points are all defined. +erefore, the load lo-
cation can be quickly identified, as the responses are
measured by the sensors. In addition, the selection of
modes is a very important part in this method. +e
identified location may not be accurate, if a specific mode is
not kept. +us, the selected modes should reflect the re-
sponse as far as possible. As the number of selected modes
is limited by the number of measurement points, the
identified result of a load with a wide range of frequencies
would not be effective when the number of measuring
points is not large enough. Furthermore, the normalized
modal shape values must be measured, which is difficult to
realize in the real work. +is problem needs to be solved
with the help of finite element techniques.

Due to the modal truncation, the load time history which
is obtained in this method may not be accurate enough.
+us, after identifying the load location, the load time
history can be reconstructed by equation (8).

2.3. Regularization Method. Since the matrix Wtrun is gen-
erally ill-posed, the direct inversion of equation (16) would
not give a stable result.+e identified result is sensitive to the
errors including signal sampling errors, modal truncation
errors, and rounding errors. A little error will cause the
direct inverse solution change a great deal.

Considering the errors, the measurement response can
be expressed as

Yδ � Wtrun
· Strun + δ, (20)

where δ is the error data of responses and Yδ is the mea-
surement response including errors data. +e singular value
decomposition of Wtrun is

Wtrun
� UΩVT

� 􏽘

mQ

r�1
urσrv

T
r , (21)

where U � [u1, u2, . . . , umQ] and V � [v1, v2, . . . , vmQ] are
matrixes with orthonormal columns and Ω � Diag(σi)(i �

1, 2, . . . , mQ) has nonnegative diagonal singular values
appearing in the nonincreasing order. +us, equation (20)
gives a formulation of the identified result

S∗ � Wtrun
􏼐 􏼑

−1
Yδ � VDiag σ−1i􏼐 􏼑UTYδ

� Strun + 􏽘

mQ

i�1
σ−1i uT

i δ􏼐 􏼑vi.
(22)

As shown in equation (22), the ill-posed factor of the
load identification model is controlled by using the smaller
singular value σi rather than the maximal singular value σ1.
With the singular values going down to zero, the error of
measurement responses would strongly influence the sta-
bility of identified results. To reduce this effect, the regu-
larization method is introduced to filter the small singular
values. σ−1i in equation (22) is coupled with a regularization
operator p(α, σi), and the parameter α can make p(α, σi)

decay to zero when σi approaches zero. +us, the stable
identified result can be obtained:

S∗ � VDiag p α, σi( 􏼁σ−1i􏼐 􏼑UTYδ � 􏽘

mQ

i�1
p α, σi( 􏼁σ−1i uT

i Yδ􏼐 􏼑vi.

(23)

+e regularization operator is selected as follows:

p α, σi( 􏼁 �
σ2i

σ2i + α
. (24)

+is regularization method has turned into the famous
regularization method called the Tikhonov regularization
method. +e regularization parameter α is generally de-
termined with a certain criterion, such as L-curve criterion
and GCV criterion.

3. Tests and Results

3.1. Numerical Simulation. In this section, two numerical
simulations of a simply supported beam model are imple-
mented to verify the proposed method. In this beam model,
the length is 1m long, and the cross section is 6 cm × 1 cm.
+e material of the beam has the density 7800 kg/m3,
Young’s module 210GPa and Poisson’s ratio 0.3. +e beam
is evenly divided into 1000 elements, and there are 1001
nodes in total. +e first two-order natural frequencies of the
beam are f1 � 23.5Hz and f2 � 94.1Hz. Two displacement
sensors are installed at x1 � 0.23m and x2 � 0.45m from
one simply supported end, and the beammodel is excited by
a sine load and an impact separately, as shown in Figure 1.

3.1.1. Identification of a Sine Load. +e beam is excited by a
load F1, which is shown in Figure 2. F1 is a sine load with
frequency f � 60Hz acting at the point a1 � 0.35m from
one simply supported end. +e measurement responses of
the two points x1 and x2 are computed through the ana-
lytical response expression of simply supported beams, and
5% (5% of the maximum of the measured signals) Gaussian
white noise has been added to the responses. +e responses
of the two points are shown in Figures 3 and 4.

To localize the load, the first two-order modes are
adopted. +ere is only one matrix inversion needing to be
done in the identification procedure. Furthermore, the
Tikhonov regularization method is used to overcome the ill-
condition of the matrix inversion.

+e regularization parameter α is determined by the
L-curve method, which is shown in Figure 5. +e red dot
indicates the regularization parameter α � 0.0028. +e two
vectors S1 and S2 are calculated through equation (23). To
identify the true load location, the 999 nodes are assumed as
the load location, except the two ends. At each assumed load
location, the two load vectors f1 and f2 can be obtained by
using equation (18) and corresponding optimization func-
tion value η is computed. Figure 6 shows the curve of η and
the load location with minimum value of η is 0.356m from
one simply supported end, which is very close to the true
load location a1 � 0.35m. f1 and f2 in the identified load
location are shown in Figure 2. At the same time, the relative
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error and the correlation coefficient of f1 and f2 are listed in
Table 1.

In Table 1, the identified f1 and f2 can be used to describe
the external load, but they still have some noticeable os-
cillatory components. To reconstruct the load history more

accurately, the responses of measure points x1 and x2 are,
respectively, used to identify the load history by regularizing
equation (8) as the load location has already been de-
termined. +e reconstruction of the load history is shown in
Figure 7. +e relative error and the correlation coefficient of
the reconstruction are listed in Table 1. It can be found that
the reconstruction by measurement response of point 2 is
closest to the real load.+is is because the response value and
the SNR (signal-to-noise ratio) of point x2 are larger to these
of point x1. +e final result is considered satisfactory.

Sensor 1 Sensor 2

F2 F1

0.23m

0.26m

0.35m

0.45m

1m

Figure 1: Beam simulation model.
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Figure 2: Real load history and identified loads of F1.
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Figure 3: Displacement response of point 1 by F1.
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3.1.2. Identification of an Impact. In this section, a simu-
lation of the beam excited by using an impact load F2 is
carried out to verify the proposed method. +e impact load
F2 is shown in Figure 8, acting at the point a2 � 0.26m from
one simply supported end. +e measurement responses of
the two points x1 and x2 are computed through the ana-
lytical response expression of simply supported beams, and
5% (5% of the maximum of the measured signals) Gaussian
white noise has been added to responses. +e responses of
the two points are shown in Figures 9 and 10.

In the same way, the first two-order modes are used to
identify the impact location, and the Tikhonov regulariza-
tion method is employed to reduce the influence of the
errors on the identified result. +e regularization parameter

α is determined by the L-curve method, which is shown in
Figure 11.+e red dot indicates the regularization parameter
α � 0.0054.

To localize the impact load, the optimization function
value η at each assumed load location is computed, and the
curve of η is shown in Figure 12. +e identified load location
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Figure 6: +e optimization function value of F1.

Table 1: +e relative error and the correlation coefficient of the
identified F1.

f1 f2 Point x1 Point x2

Relative error 0.1599 0.1845 0.231 0.1159
Correlation coefficient 0.9876 0.9876 0.9815 0.9945
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Figure 7: +e reconstruction of the load F1.
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Figure 8: Real load history and identified loads of F2.
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Figure 9: Displacement response of point 1 by F2.
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Figure 10: Displacement response of point 2 by F2.
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is 0.259m from one simply supported end. +is identified
result is very close to the actual impact location a2 � 0.26m.
+e corresponding f1 and f2 in the identified load location
are compared in Figure 8. We also use the response of
measure point x2 to reconstruct the impact history, which is
shown in Figure 13. +e relative error and the correlation
coefficient of the reconstruction are listed in Table 2. +e
reconstruction can describe the external load well, so the
identified result is accepted.

3.2. Experiment. For experimental validation of the pro-
posed localization method, an experimental test of a steel
simply supported beam was set up. As shown in Figure 14,
the steel rectangular beam is simply supported at the two
ends and the geometric dimension of this beam is measured.
+e length, width, and thickness are l � 0.695m,w � 0.04m,
and h � 0.007m, respectively. +e sensors used in this ex-
periment are two PCB piezoelectric accelerometers and one
force transducer of Model Number 208C02. An impact
hammer with a rubber head is used to excite the beam, and
the sampling frequency is 4096Hz.

+e modal parameters are obtained by the system
identification techniques. +e experiment values of the first

three-order natural frequencies are recorded in Table 3.+e
experiment values of the first three-order modal damping
ratio are ξ1 � 0.0026, ξ2 � 0.0013, and ξ3 � 0.0009.
According to the natural frequencies obtained by the ex-
periment, the finite element model of the beam is estab-
lished and the modal shape values φ can be calculated from
this finite element model. +e beam is evenly divided into
695 elements, and there are 696 nodes in total. +e sim-
ulation values of the first three-order natural frequencies
are also recorded in Table 3.

Eleven mark points are distributed on the beam, and two
accelerometers are installed at points 3 and 6, shown in
Figure 14. +e beam is impacted at points A, B, and C
separately. +e real location of these impacts is shown in
Table 4.+emeasurement of the accelerometers is integrated
twice to obtain the displacement responses of the measure
points. As shown in Figure 15, an FRF analysis shows that
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Figure 11: +e L-curve plot of F2.
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Figure 13: +e reconstruction of the impact F2.

Table 2: +e relative error and the correlation coefficient of the
identified F2.

f1 f2 Point x1 Point x2

Relative error 0.2051 0.1808 0.1339 0.1138
Correlation coefficient 0.9713 0.9792 0.9867 0.9911

Figure 14: Experimental model of the simply supported beam.
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the displacement responses are mainly involved in the first
two modes, which are used to identify the impact location.
After computing the optimization function value η at each
node, the impact locations are identified and shown in
Figures 16–18 separately.

+e details of the identified locations are shown in
Table 4. It can be seen that the identified locations coincide
with the true impact locations well for all three impact points
A, B, and C. After determining the impact location, the force
histories can be reconstructed. By using the responses of
sensor 2 installed at point 6, the comparison of the measured
and identified time histories of the three impacts are shown
in Figures 19–21, respectively. +e relative error and the
correlation coefficient of the reconstructions are listed in
Table 5. For all three impact test, the identified results have
good consistency. +us, the experiment result is satisfactory
and verifies the credibility of the proposed method.

4. Conclusion

In this paper, the problem of load localization and re-
construction from structural responses is addressed. In
order to improve the problem that a lot of matrix inversions
in the identification process consume much operation time,
a variable separation method is proposed. +is method

separates the load location variable from the impulse re-
sponse matrix which needs to be inversed in the localization
process. We take several order modes in which the response
is mainly included and identify the stable time history
vectors of the corresponding modes. In this step, there is

Table 4: Identified locations of the experiment.

A B C
True locations (m) 0.15 0.25 0.43
Identified locations (m) 0.151 0.252 0.431
Absolute error (m) 0.001 0.002 0.001
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Figure 17: +e optimization function value of impact B.

Table 3: Natural frequency of the beam (unit: Hz).

1st 2nd 3rd
Test 39.37 153.41 346.74
Simulation 38.48 153.91 346.30
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Figure 16: +e optimization function value of impact A.
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Figure 18: +e optimization function value of impact C.
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only once matrix inversion and it can be replaced by singular
value decomposition method. +e regularization method is
employed to overcome the ill-posed problem and obtain the
stable time history vector.+en we compute the force history
through dividing the time history vector by corresponding
mode shape value. +e load location is determined with
error function using the minimum optimization method.
After identifying the location, this problem is transformed
into the classic reconstruction of force history. By using the
regularization method and L-curve criterion, the force
history is inversely computed. +e proposed method is fully
demonstrated and verified with simulations of a simply
supported beam separately acted by a sine load and an

impact. An experiment is also implemented to prove the
validity of the method.
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Supplementary Materials

+e codes and data used in this manuscript are included in
the “supplementary information.zip” file. +e specific de-
scription of the files is listed as follows: Simulation 1: the M
file “simulation _sin load.m” is the Matlab code to simulate
the identification of a sine load. Simulation 2: the txt files
“u1err_sin2d.txt” and “u2err_sin2d.txt” are the responses
data of the sine load simulation. Simulation 3: the M file
“simulation_impact.m” is the Matlab code to simulate the
identification of an impact load. Simulation 4: the txt files
“u1err_impact2d.txt” and “u2err_impact2d.txt” are the re-
sponses data of the impact load simulation. Experiment 5:
the M file “experiment_impactA.m” is the Matlab code to
verify the identification of impactA. Experiment 6: the txt
files “experiment_impactA_response1.txt” and “exper-
iment_impactA_response2.txt” are the measured responses
of the experiment of impactA. Experiment 7: the txt file
“experiment_impactA_Force.txt” is the measured data of
impactA. Experiment 8: the M file “experiment_impactB.m”
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Figure 21: +e reconstruction of the impact C.

Table 5: +e relative error and the correlation coefficient of the
identified impacts.

A B C
Relative error 0.1440 0.1195 0.1207
Correlation coefficient 0.9943 0.9957 0.9965
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Figure 19: +e reconstruction of the impact A.
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Figure 20: +e reconstruction of the impact B.
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is the Matlab code to verify the identification of impactB.
Experiment 9: the txt files “experiment_impactB_res-
ponse1.txt” and “experiment_impactB_response2.txt” are
the measured responses of the experiment of impactB.
Experiment 10: the txt file “experiment_impactB_Force.txt”
is the measured data of impactB. Experiment 11: the M file
“experiment_impactC.m” is the Matlab code to verify the
identification of impactC. Experiment 12: the txt files
“experiment_impactC_response1.txt” and “exper-
iment_impactC_response2.txt” are the measured responses
of the experiment of impactC. 13. +e txt file “exper-
iment_impactC_Force.txt” is the measured data of impactC.
(Supplementary Materials)
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