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When the observed input-output data are corrupted by the observed noises in the aircraft flutter stochastic model, we need to obtain
the more exact aircraft flutter model parameters to predict the flutter boundary accuracy and assure flight safety. So, here we combine
the instrumental variable method in system identification theory and variance matching in modern spectrum theory to propose a new
identification strategy: instrumental variable variance method. In the aircraft flutter stochastic model, after introducing instrumental
variable to develop a covariance function, a new criterion function, composed by a difference between the theory value and actual
estimation value of the covariance function, is established. Now, the new criterion function based on the covariance function can be
used to identify the unknown parameter vector in the transfer function form. Finally, we apply this new instrumental variable variance
method to identify the transfer function in one electrical current loop of flight simulator and aircraft flutter model parameters. Several
simulation experiments have been performed to demonstrate the effectiveness of the algorithm proposed in this paper.

1. Introduction

Flutter is a large-scale vibration phenomenon in which an
elastic structure is coupled by aerodynamics, elastic force,
and inertial force in a uniform airflow. It is a most interesting
issue in aeroelastic dynamics, which can damage aircraft
structures and collapse buildings and bridges. *e flutter
phenomenon can occur during the flight of an aircraft. At
this time, due to the action of the airflow, the elastic structure
of the aircraft (such as the wing, tail, or operating surface)
will generate additional aerodynamic forces. As an excitation
force, additional aerodynamic forces will exacerbate struc-
tural vibration; meanwhile, the damping force of the air on
the aircraft structure tries to weaken the vibration. At low
speeds, the flutter after the disturbance gradually disappears
due to the dominant damping force. When at a certain flight
speed, that is, the critical speed of the flutter (the flutter
boundary) is reached, the exciting force is dominant and the
equilibrium position is unstable [1], which causes a large
vibration or makes aircraft to be destroyed in a short time.

In order to avoid the occurrence of flutter accidents, the
new aircraft development must undergo one flutter test to

determine the stable flight envelope without flight flutter. *e
main content of the flutter test is to apply excitation to the
aircraft structure under different flight conditions (different
flight altitudes and speeds) and to identify the model pa-
rameters such as the flutter frequency and damping of the
aeroelastic structure based on the dynamic response data.
*en, flutter boundary will be predicted by virtue of the
identified model parameters. Due to the complex dynamic
characteristics of the aircraft structure, the dense model, and
various disturbances (such as turbulence) and measurement
noise during the flight process, these above factors likely cause
many results to the dynamic response signal, such as low
signal-to-noise ratio, short effective samples, and non-
stationary processes. *en, it is very difficult to accurately
identify the model parameters of aircraft flutter.*erefore, the
problem on how to effectively process the test data and ac-
curately identify the model parameters becomes an important
research direction of the current flight flutter test; it means that
the aircraft flutter model parameter identification can accu-
rately predict the flutter boundary to ensure flight safety.

*e identification of current flutter model parameters
has attracted wide attention from various countries. For
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example, when developing a new type of drum-type small
rotor excitation device, the United Kingdom used wavelet
to filter the test signal in the time-frequency domain and
applied advanced subspace methods to identify model
parameters [2]. *ese new methods significantly improve
the estimation accuracy of flutter model parameters and the
accuracy of flutter boundary prediction [3]. It is particu-
larly worth mentioning that the Free University of Brussels
proposed a large number of new model parameter iden-
tification strategies based on the theory of frequency-do-
main system identification [4] and analyzed the accuracy of
model parameter identification by means of the asymptotic
theory of parameter estimation. It is well known that when
to analyze and process input-output observation data in the
frequency domain, firstly, discrete Fourier transform
(DFT) must be used to transform the number of finite data
samples for the input-output observation data. Usually,
when doing discrete Fourier transform, for the simplicity of
analysis, the initial state and terminal state of the observed
data are ignored, that is, the negative influence of the
transient term on the frequency-domain response function
is neglected. *is kind of neglect will inevitably affect the
identification accuracy of the flutter model parameters [5].
So, it is necessary to introduce a variety of frequency-
domain windowing functions to compensate or avoid the
phenomenon of aliasing spectrum and leakage spectrum,
generated after discrete Fourier transform [6]. *e iden-
tification of aircraft flutter model parameters is less studied
in China. In China, the whole flutter test process was
systematically studied in [7], where a wavelet method for
flutter test data processing was proposed to improve the
signal-to-noise ratio of flight test under the condition of
small rocket excitation. *en, aiming at improving the
effect of pulse excitation response, a method based on
support vector machine for flight test response data was
proposed [8]. A wavelet time-frequency domain algorithm
and a fractional Fourier domain method were proposed,
respectively, for the rudder surface sweep excitation of the
telex aircraft [9]. In order to make up for the shortcomings
of the traditional least squares frequency-domain fitting
identification algorithm, the global least squares identifi-
cation algorithm in the frequency domain is proposed in
[10], which avoids the complex nonlinear optimization and
the dependence on initial value in the iterative algorithm.
Based on the aforementioned four research contents,
according to the whole framework of the system identifi-
cation theory [11], the four research contents are just two
aspects of the parameter estimation and experimental
design in system identification theory. So far, there is a lack
of works in the literature that seeks to solve the problem of
parameter estimation of the flutter phenomenon.

In recent years, the authors conduct in-depth research
on the identification of flutter model parameter based on the
parameter estimation strategy. *e research results are
summarized as follows. In [12], the nonlinear separable least
squares algorithm is used to accurately identify the flutter
model parameters of the aircraft within the noise envi-
ronment. Combined with the transfer function model, the
identification problem with noisy systems is transformed

into one nonlinear separable least squares problem, and the
variance of the two noises and the unknown parameters in
the transfer function are separately identifiable [13]. Fur-
thermore, a simplified form of the maximum likelihood cost
function of the aircraft flutter model is derived by means of
the principle of frequency-domain maximum likelihood
estimation [14]. In order to reduce the possibility of con-
vergence to the local minimum, the iterative convolution
smoothing identification method is derived by using global
optimization theory. Based on the state-space model of the
aircraft flutter stochastic model, the maximum value of the
likelihood function is calculated in an iterative form using an
expectation-maximization method suitable for the noise
environment [15]. *ere is no need to calculate the second-
order partial derivative and its approximation corre-
sponding to the log-likelihood function, and then this can
increase the likelihood that the likelihood function con-
verges to a stationary point. Recently, the first author
combines the bias-compensated algorithm and the in-
strumental variable algorithm to promote a new bias-
compensated instrumental variable algorithm. Combined
with the transfer function model, the identification problem
of the noisy system is transformed into an iterative problem,
which is used to solve a complex identification problem with
white input noise and colored output noise. It is the gen-
eralization of the input-output observation noise, where the
input noise and output noise are all white noises. Fur-
thermore, the instrumental variable and subspace identifi-
cation algorithm are combined to obtain the optimal
instrumental variable subspace identification algorithm,
which is used to accurately identify each systemmatrix in the
aircraft flutter stochastic model under the random state-
space form, and then the desired aircraft flutter model
parameters are obtained. *e detailed derivation of various
methods for identifying the aircraft flutter model parameters
proposed by the author can be referred to reference [11].

Based on the aforementioned research results, this paper
continues to study the problem of identifying aircraft flutter
model parameters in [12]. *e main contribution of this
paper is to combine instrumental variable method in system
identification theory with variance matching method in
modern spectrum estimation theory to form a new identi-
fication strategy—instrumental variable variance method.
*e instrumental variable method is derived from the system
identification theory, accompanied by the development of
the system identification discipline. At present, the research
on instrumental variable identification is mature, and it has
been successfully applied to closed-loop system identifica-
tion and cascade system identification. *e purpose of in-
troducing instrumental variable is to ensure the independence
between the two vectors, and then, the consistency and
unbiased parameter estimates are guaranteed. Variance is a
second-order statistical property used to describe random
vectors in probability theory. It has been proved that second-
order statistical property cannot fully reflect the statistical
properties of random vectors, but higher-order statistics such
as third-order and fractional orders are needed. Statistical
characteristics are not limited to single time or frequency
domain, but a combination of time domain and frequency
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domain, i.e.,time-frequency domain. In this paper, according
to the stochastic model of aircraft flutter, by introducing
instrumental variable to form the variance function, a certain
norm of the difference between the theoretical value of the
variance function and its actual estimated value is taken as a
criterion function. *en, the criterion function based on the
variance function is used to identify the unknown parameter
vector. A stochastic model of aircraft flutter is represented as a
model with input-output observation noise, which is used to
describe the random factors generated in the flutter test. *e
unknown parameter vector in the transfer function form is
obtained by minimizing this criterion function. As accurate
transfer function estimation is the premise of model pa-
rameter identification, the detailed process of minimizing the
criterion function is deduced, and the corresponding partial
derivative expression is also given.

2. Problem Description

An important algorithm for flutter model parameter
identification is a frequency-domain algorithm based on
transfer function model. It usually needs to establish a
parameterized frequency-domain transfer function (fre-
quency response function) model and obtain the model
parameters of each order by fitting the estimated frequency
response function from the experiment. *e rational
fractional method proposed by Tanaskovic [16] is used in
flutter model parameter identification. *e rational frac-
tional method is to represent the frequency response
function as a rational fractional form, and then apply the
linear least squares method to fit the estimated flutter
frequency and damping. Although it is simple and easily
implemented, as the traditional least squares algorithm fails
to fully consider the influence of noise disturbance on the
fitting result, it is difficult to accurately identify the model
parameters when dealing with the noised test data, espe-
cially the damping parameters.

For this reason, the transfer function model is still used
in this paper. *e stochastic model of the flutter test ex-
periment is shown in Figure 1.

In Figure 1, u(t) and y(t) are input and output signals,
respectively, u0(t) represents the artificial excitation applied
to aircraft, and ng(t) is atmospheric turbulence excitation.
G(q− 1) is one transfer function of the considered aircraft,
and it is unknown and needed to be identified; q− 1 is one
time shift operator, i.e., qu(t) � u(t − 1). Since the flight test
is inevitably affected by atmospheric turbulence excitation,
then ng(t) is regarded as an unmeasured excitation, and the
random response generated by ng(t) will be included as
process noise in the measured response signal. y0(t) is the
flutter acceleration signal, and observed noises 􏽥u(t) and 􏽥y(t)

are generated by the sensor. *e processing method of the
flutter test data and the choice of the excitation method are
closely related with each other. At present, the commonly
used excitation methods mainly include control-surface pulse
excitation, small rocket excitation, frequency sweep excita-
tion, and atmospheric turbulence excitation.*e excitation of
the flight test uses rocket excitation. *e principle of exci-
tation point and sensor arrangement is to effectively stimulate

the first-order symmetric bending mode of the wing of in-
terest, the first-order antisymmetric bending mode, and the
first-order symmetric mode. And it is convenient to measure
the response signal corresponding to these third-ordermodes.
*e flutter characteristics of an aircraft can be determined
through estimating the frequency and damping of various
flight states as a function of altitude and speed.

In time domain, the following relationships hold:

y(t) � y0(t) + 􏽥y(t),

u(t) � u0(t) + 􏽥u(t),

y0(t) � G q− 1( 􏼁 u0(t) + ng(t)􏽨 􏽩.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(1)

Substituting the expression y0(t) into y(t), we obtain
that

y(t) � y0(t) + 􏽥y(t) � G q
− 1

􏼐 􏼑 u0(t) + ng(t)􏽨 􏽩 + 􏽥y(t)

� G q
− 1

􏼐 􏼑u0(t) + G q
− 1

􏼐 􏼑ng(t) + 􏽥y(t)
􏽼√√√√√√√√􏽻􏽺√√√√√√√√􏽽

􏽥y1(t)

.

(2)

After introducing one new observed noise 􏽥y1(t), the
expression of y(t) can be rewritten as

y(t) � y0(t) + 􏽥y1(t),

u(t) � u0(t) + 􏽥u(t),

y0(t) � G q− 1( 􏼁u0(t).

⎧⎪⎪⎨

⎪⎪⎩
(3)

It means that the effect coming from unmeasured ex-
citation ng(t) is included as process noise in the measured
response signal, so ng(t) is neglected in the above equation.

Using the rational transfer function model for our
considered aircraft structure, we have

G q
− 1

􏼐 􏼑 �
B q− 1( 􏼁

A q− 1( 􏼁
,

A q
− 1

􏼐 􏼑y0(t) � B q
− 1

􏼐 􏼑u0(t),

A q
− 1

􏼐 􏼑 � 1 + a1q
− 1

+ · · · + ana
q

− na ,

B q
− 1

􏼐 􏼑 � b1q
− 1

+ · · · + bnb
q

− nb ,

(4)

u(t)

u0(t)

u(t)

y(t)

y0(t)
ng(t)

y(t)

G(q−1)

+
+ +

+

~~

Figure 1: Stochastic model of the flutter test.
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where ai and bi are coefficients of polynomial and na and nb

are orders of polynomial.
Define pr: (r � 1, 2, . . . , na) as the poles of the transfer

function A(q− 1), where na is the number of poles; then, it
means that

pr( 􏼁
na + a1 pr( 􏼁

na − 1
+ · · · + ana− 1 pr( 􏼁 + ana

� 0, r � 1, 2, . . . , n
a
,

(5)

and by using the correspondence relation between contin-
uous time model and discrete time model, poles sr: (r �

1, 2, . . . , na) are obtained in continuous time domain, i.e.,
pr � esrT, where T is the sampled period. So, the poles sr:

(r � 1, 2, . . . , na) for continuous time model are given as

sr � ln
pr

T
􏼒 􏼓. (6)

*en, the model frequency and damping coefficient can
be solved as follows:

fr �
Im sr( 􏼁

2π
,

ξr � −
Re sr( 􏼁

sr

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

.

(7)

*emain goal of aircraft flutter experiment is to identify
the model frequency and damping coefficient fr, ξr, (r �

1, 2, . . . , na). Obviously, accurate transfer function estima-
tion is the premise of model parameter identification, so we
give some assumptions as follows.

Assumption 1. All zeros of polynomial A(q− 1) are outside the
unit circle, and A(q− 1) and B(q− 1) have no common factor.

Assumption 2. Two observed noises 􏽥u(t) and 􏽥y(t) are two
stochastic processes with uncorrelated zero-mean stationary
Gaussian distribution, and their corresponding power
spectrums are ϕ􏽥u(ω) and ϕ􏽥y(ω). *ese two observed noises
are independent of two noiseless variables u0(t) and y0(t).

3. Analysis Process

*e purpose of the identification problem in this paper is to
determine the unknownparameter vector in the rational transfer
function model. When given input-output observed data

u(1), y(1), . . . , u(N), y(N)􏼈 􏼉, (8)

with observed noises, then the considered aircraft flutter
model parameters can be identified from equation (4).

Let the unknown parameter vector to be identified be

θ � a1 · · · ana
b1 · · · bnb

􏽨 􏽩
T
. (9)

As the second-order statistic of the stochastic process
can be used to describe the extent to which the dynamic
system deviates from the equilibrium or working point, we
introduce one parameter to describe the statistical charac-
teristics of two observed noises. *is introduced parameter

corresponds to variance value. When observed output noise
􏽥y(t) is colored noise, we set the parameter vector corre-
sponding to observed noise as

ρ � r
􏽥y
(0) · · · r

􏽥y
(m − 2) λu􏽨 􏽩, (10)

where r
􏽥y
(t) denotes the variance value corresponding to the

observed output noise 􏽥y(t) at different time instant t, and
similarly, λu is the variance for observed input noise 􏽥u(t).

Furthermore, if observed output noise 􏽥y(t) is white
noise, then equation (10) reduces to

ρ � λy λu􏽨 􏽩,

r
􏽥y
(0) � λy,

r
􏽥y
(0) � · · · � r

􏽥y
(m − 2) � 0.

(11)

Combing equations (9) and (10), the unknown param-
eter vector to be identified in this paper can be obtained as

δ �
θ

ρ
􏼢 􏼣. (12)

To formulate equations (1) and (4) as one more con-
densed form, we construct the following three regressor
vectors:

φ(t) � − y(t − 1) · · · − y t − na( 􏼁u(t − 1) · · · u t − nb( 􏼁( 􏼁,

φ0(t) � − y0(t − 1) · · · − y0 t − na( 􏼁u0(t − 1) · · · u0 t − nb( 􏼁( 􏼁,

􏽥φ(t) � − 􏽥y(t − 1) · · · − 􏽥y t − na( 􏼁 􏽥u(t − 1) · · · 􏽥u t − nb( 􏼁( 􏼁,

⎧⎪⎪⎨

⎪⎪⎩

(13)

where φ(t) is consisted by input-output data and φ0(t) is
one regressor vector, consisted by input-output data with no
noise. *e elements of regressor vector 􏽥φ(t) are the observed
noises. In the latter derivation process, θ0 is the true pa-
rameter vector and 􏽢θ is its parameter estimation. A0(q− 1)

and B0(q− 1) are two true polynomials for two polynomials
A(q− 1) and B(q− 1), respectively.

􏽢θ � 􏽢a1 · · · 􏽢ana

􏽢b1 · · · 􏽢bnb
􏽨 􏽩

T
,

θ0 � a1 · · · ana
b1 · · · bnb

􏽨 􏽩
T
.

(14)

According to the above three regressor vectors, the
following relation holds:

φ(t) � φ0(t) + 􏽥φ(t). (15)

After a straightforward calculation,

y(t) �
B q− 1( 􏼁

A q− 1( 􏼁
u0(t) + 􏽥y(t)

�
B q− 1( 􏼁

A q− 1( 􏼁
[u(t) − 􏽥u(t)] + 􏽥y(t),

A q
− 1

􏼐 􏼑y(t) � B q
− 1

􏼐 􏼑u(t) − B q
− 1

􏼐 􏼑􏽥u(t) + A q
− 1

􏼐 􏼑􏽥y(t).

(16)
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*en, formulate equations (1) and (4) as the following
linear regression form:

y(t) � φT
(t)θ + ε(t),

ε(t) � A q
− 1

􏼐 􏼑􏽥y(t) − B q
− 1

􏼐 􏼑􏽥u(t).
(17)

Based on this linear regression form (17), many classical
identification methods are applied to identify the unknown
parameter vector θ.

For convenience, set

θ �

a1

⋮

ana

b1

⋮

bnb

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�
a

b
􏼢 􏼣,

a �

a1

⋮

ana

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

b �

b1

⋮

bnb

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

a �
1

a
􏼢 􏼣.

(18)

For one stationary stochastic process x(t), define its
variance function as

rx(τ) � E x(t)x(t − τ){ }. (19)

*en, the covariance function between two stationary
stochastic processes x(t) and y(t) are also defined as

rxy(τ) � E x(t)y(t − τ)􏼈 􏼉. (20)

Similarly, the variance function and covariance function for
stationary stochastic process can be extended to variance
matrix Rx(τ) and covariance matrix Rxy(τ) for stochastic
vector. E denotes the expected value. And in practice, variance
function (matrix) and covariance function (matrix) can be
estimated by observed data, i.e.,

􏽢rx(τ) �
1
N

􏽘

N

t�1
x(t)x(t − τ),

􏽢rxy(τ) �
1
N

􏽘

N

t�1
x(t)y(t − τ),

􏽢Rx(τ) �
1
N

􏽘

N

t�1
x(t)x

T
(t − τ),

􏽢Rxy(τ) �
1
N

􏽘

N

t�1
x(t)y

T
(t − τ),

(21)

where N is the number of observed sequence.
*e above defined variance estimation is one of the main

key technologies in the latter proposed identification
method.

4. Instrumental Variable Variance Method

Set one new instrumental variable z(t) ∈ Rnz (nz ≥ na + nb)

and consider the following parameterized system:

1
N

􏽘

N

t�1
z(t) y(t) − φT

(t)θ􏽨 􏽩 �
1
N

􏽘

N

t�1
z(t)ε(t). (22)

As the unknown parameter vector must satisfy the above
equation, the classical instrumental variable estimation is
denoted as 􏽢θiv, i.e.,

􏽢θiv �
1
N

􏽘

N

t�1
z(t)φT

(t)⎡⎣ ⎤⎦

− 1
1
N

􏽘

N

t�1
z(t)y(t)⎡⎣ ⎤⎦

� R
T
zφRzφ􏼐 􏼑

− 1
R

T
zφrzy � θ0 + R

T
zφRzφ􏼐 􏼑

− 1
rzε,

(23)

where

Rzφ � lim
N⟶∞

1
N

􏽘

N

t�1
z(t)φT

(t),

rzε � lim
N⟶∞

1
N

􏽘

N

t�1
z(t)ε(t),

(24)

and the above inverse matrix exists in case of Assumptions 1
and 2 hold.

From the result of equation (23), we see that the classical
instrumental variable estimation 􏽢θiv is an unbiased esti-
mation. *e constructed instrumental variable z(t) must be
independent of the random disturbance term ε(t), and it is
also dependent on the regressor vector φ(t) in order to make
the matrix (23) well posed. Generally, the conditions that
need to be met can be summarized as

rzε � 0, Rzφ is nonsingular. (25)

Based on the related results from [6], the solution
process of equation (22) depends on the following de-
terministic equation:

􏽢Rzφ − R
􏽥z 􏽥φ

(ρ)􏼒 􏼓θ � 􏽢rzy − r
􏽥z 􏽥y

(ρ). (26)

*e choice of elements in the instrumental variable will
determine the structure of R

􏽥z 􏽥φ
(ρ) and r

􏽥z 􏽥y
(ρ), and these two

variance matrices are functions of the parameter vector ρ.
By choosing z(t) � φ(t), the obtained equation reduces

to the bias-compensated least squares equation. Also, if the
elements of z(t) are independent of the noise ε(t), the model
parameter θ is named as the extended instrumental variable
estimation. In order to obtain estimations of the parameter
vector θ and ρ, some elements of the instrumental variable
z(t) must be selected at least in relation to noise ε(t).

Equation (26) can be regarded as one nonlinear least
squares problem, where unknown parameter vectors θ and ρ
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in equation (12) can be identified through minimizing the
following criterion function:

(􏽢θ, 􏽢ρ) � argmin
θ,ρ

V1(θ, ρ),

V1(θ, ρ) � rzy − r
􏽥z 􏽥y

(ρ) − Rzφ − R
􏽥z 􏽥φ

(ρ)􏼒 􏼓θ
������

������

2
,

(27)

where the instrumental variable z(t) is chosen as

z(t) �

y(t)

φ(t)

φ
�

(t)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (28)

Regardless of whether the observed output noise is white
noise or colored noise, the choice of the regressor vector φ

�

(t)

must be satisfied:

R􏽥φ
�

􏽥φ(ρ) � E 􏽥φ
�

(t)􏽥φT
(t)􏼨 􏼩 � 0. (29)

*e above equation shows that when observed output
noise 􏽥y(t) is one white noise, then regressor vector φ

�

(t) is
consisted by the delayed input-output data. Furthermore, if
observed output noise 􏽥y(t) is one colored noise, then re-
gressor vector φ

�

(t) is consisted only by the delayed input
data.

To give our new instrumental variable variance method,
we rewrite equation (26) as the following criterion function:

V2(θ, ρ) � rzy − r
􏽥z 􏽥y

(ρ) − Rzφ − R
􏽥z 􏽥φ

(ρ)􏼒 􏼓θ
������

������

2

W(θ)
, (30)

where W(θ) is one nonnegative weighting matrix with
unknown parameter vector θ, i.e., ‖x‖2W � xTWx. Our de-
fined instrumental variable z(t) is chosen as

z(t) �

y(t)

⋮

y t − na − py􏼐 􏼑

u(t − 1)

⋮

u t − nb − pu( 􏼁

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (31)

where py and pu are two selected variables by the researcher,
and they satisfy

py ≥ 0,

pu ≥ 0,

py + pu ≥ 1.

(32)

Using the defined three regressor vectors and random
noises, we continue to abbreviate equation (26) as follows:

􏽢rzε � E z(t, θ)ε(t, θ){ } � 0, (33)

where the new instrumental variable z(t) is chosen as

z(t) �

y(t)

φ(t)

ε
�
(t, θ)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (34)

From equation (26), the new instrumental variable
variance method can be changed as the following minimi-
zation problem:

􏽢δ � (􏽢θ, 􏽢ρ) � argmin
δ

V3(θ, ρ)

� argmin
δ

‖f(δ)‖
2
W,

f(δ) �
1
N

􏽘

N

t�1
z(t)ε(t, θ) − rzε(θ, ρ),

(35)

where the nonnegative weighting matrix W(θ) depends on
the unknown parameter vector θ.

For the criterion function f(δ) in the minimization
problem (35), when the parameter estimation 􏽢δ is consistent,
then it holds that

f δ0( 􏼁⟶ 0, If N⟶∞. (36)

Linearizing the criterion function f(δ) around the true
parameter estimation δ0, we have

f(􏽢δ) �
1
N

􏽘
N

t�1
z(t, 􏽢θ)ε(t, 􏽢θ) − rzε(

􏽢θ, 􏽢ρ)

�
1
N

􏽘

N

t�1
z(t, 􏽢θ) φT

0 (t)θ0 + 􏽥y(t) − φT
(t) 􏽢θ − θ0􏼐 􏼑 − φT

(t)θ0􏽨 􏽩

− rzε θ0, ρ0( 􏼁 − rθ θ0, ρ0( 􏼁 􏽢θ − θ0􏼐 􏼑 − rρ θ0, ρ0( 􏼁 􏽢ρ − ρ0( 􏼁,

(37)

where

rθ �
zrzε

zθ
(θ, ρ),

rρ �
zrzε

zρ
(θ, ρ).

(38)

Neglecting the difference term 􏽢Rzφ − Rzφ, we have

f(􏽢δ) �
1
N

􏽘

N

t�1
z(t, 􏽢θ) 􏽥y(t) − 􏽥φT

(t)θ0􏽨 􏽩

− rzε θ0, ρ0( 􏼁 − Rzφ
􏽢θ − θ0􏼐 􏼑

− rθ θ0, ρ0( 􏼁 􏽢θ − θ0􏼐 􏼑 − rρ θ0, ρ0( 􏼁 􏽢ρ − ρ0( 􏼁,

(39)

and when parameter estimation 􏽢δ approaches its corre-
sponding true parameter value δ0, it holds that
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f(􏽢δ) �
1
N

􏽘

N

t�1
z t, θ0( 􏼁ε t, θ0( 􏼁 − E z t, θ0( 􏼁ε t, θ0( 􏼁􏼈 􏼉

− Rzφ + rθ θ0, ρ0( 􏼁 rρ θ0, ρ0( 􏼁􏼐 􏼑

􏽢θ − θ0􏼐 􏼑

􏽢ρ − ρ0( 􏼁

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠.

(40)

From equation (40), the gradient matrix of the criterion
functionf(􏽢δ) with respect to the unknown parameter vector
is obtained.

S �
zf

zδ
� − Rzφ + rθ θ0, ρ0( 􏼁 rρ θ0, ρ0( 􏼁􏼐 􏼑. (41)

*e solution to the optimization problem (35) can be
solved iteratively with each other using the nonlinear sep-
arable least squares method proposed by the authors in [11].
Here, the simplest Newton method can be used to get a
general understanding of the parameter estimation. *is
approximation is sufficient in practical applications. As the
nonlinear separable least squares method needs to calculate
an optimization solution for each iteration, this requirement
may be solved several times, so it is not easy to be used in
engineering practice, but only used in theoretical analysis.

Generally, the simplest Newton method is formulated
here for solving that minimization problem (35).

Step 1. Given the initial estimation δ0
Step 2. Compute V3(θ0, ρ0) and ∇V3(θ0, ρ0):

∇V3 θ0, ρ0( 􏼁 � f
T δ0( 􏼁W

zf

zδ
δ0( 􏼁 � f

T δ0( 􏼁WS δ0( 􏼁. (42)

Step 3. Let p0⟵− ∇V3(θ0, ρ0) � fT(δ0)WS(δ0)
Step 4. Compute αk and set

δk+1 � δk + αkpk, (43)

where αk is one forgetting factor, chosen by the
researcher
Step 5. Estimate ∇V3(δk+1) and choose

βk←
∇TV3 δk+1( 􏼁∇V3 δk+1( 􏼁

∇TV3 δk( 􏼁∇V3 δk( 􏼁
. (44)

Step 6. Update

pk+1⟵ − ∇V3 δk+1( 􏼁 + βk+1pk, k⟵ k + 1. (45)

Step 7. Repeat the above iterative process until the
following inequity is satisfied:

δk+1 − δk

����
����≤ c, (46)

where c is one arbitrary small scalar

5. Simulation Examples

To verify the feasibility and effectiveness of the proposed
instrumental variable variance method, the transfer function

identification of the current loop in flight simulation
turntable and aircraft flutter model parameter identification
are, respectively, used.

(1) Firstly, the proposed instrumental variable variance
method is applied to identify the transfer function of
the current loop in flight simulation turntable, which
is seen in Figure 2.
Generally speaking, in identifying the transfer
function of the current loop, we only consider white
noise in output signal. However, in the actual test
process, disturbances caused by natural wind, human
factors, or signal acquisition instruments are in-
evitably mixed in the input-output signals, so the
stochastic model in this paper needs to be used in the
whole system identification process.
In flight simulation turntable, the function of the
current loop is to control the current of the motor not
exceed the maximum stall current of the motor. At the
same time, it is necessary to make the armature current
strictly follow the change of the control voltage com-
mand, as the torque of the motor can be accurately
controlled to eliminate the effect from the back elec-
tromotive force to the torque.
*e closed-loop structure of the DC motor current of
the flight simulation turntable is shown in Figure 3,
where the current loop includes pulse width modu-
lation (PWM), electric motor, current regulator, low-
pass filter, and current detector. And the combination
of low pass filter and current detector is regarded as the
feedback part.
In Figure 3, u0(t) and i0(t) are the input and output
in the whole current loop, respectively. In order to be
able to utilize the identification method described in
this paper, it is necessary to convert the above closed-
loop system into an equivalent open-loop system
through certain simplifications and calculations. *e
equivalence means that the outputs are same in case
of the same input According to the actual test and
calculation of the flight simulation turntable, the
open-loop linear part can be obtained in Figure 4.
In Figure 4, the first term is the filter, the second is
PWM, and the third part corresponds to the electric
motor. *e electromechanical time constant in the
motor is 0.27, and the electrical time constant is 0.00054.
Multiplying these three terms to obtain one rational
transfer function form, i.e.,

G0(q) �
0.72(0.68q + 1)

24q2 + 13q + 1( 􏼁(0.00054q + 1)(0.27q + 1)
.

(47)

In Figure 4, u0(t) is regarded as the true input, i0(t)

is regarded as the true output, and then it is similar to
Figure 1. Moreover, after two observed noises are
considered, we obtain one linear system identifica-
tion with two input-output noises in Figure 5.
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In Figure 5, as the rational transfer function form is
unknown, the next step is to estimate it. Within the
system identification theory, we only deem it as a
true value to measure the identification accuracy.
Assume the number of input-output data u(t), i(t){ }

is 10000, and both observed noises are randomly
independent and identically distributed random
white noise with their variances σ2y � σ2u � 1; fur-
thermore, set the initial value as 􏽢σ0 � 0 0􏼂 􏼃

T.
Now, our proposed instrumental variable variance
method is applied to identify each parameter in
numerator and denominator polynomials from that
rational transfer function. *e transfer function
consisted by identified parameters is named as the
identified model. To verify the accuracy of the
identificationmodel, step input signal is used to excite
the true model and identified model, respectively;
then, the obtained step responses are in Figure 6. Also,
the step response is given based on the classical least
squares method in Figure 6, where the black curve
denotes the true step response, the blue curve is step
response based on our proposed method, and the
green curve is step response in case of the classical
least squares method. *rough comparing these three
curves in Figure 6, as our proposed instrumental
variable variance method is one extended form on the
basis of the classical least squares method, all the
properties of the least squares identification method

hold for our proposed instrumental variable variance
method. *e estimation accuracy based on our pro-
posed method is greatly improved. As the influence of
the two observed noises on the identification method
and accuracy can be considered in our proposed
method, the variance of the observed noise is also
taken as part of the estimation parameters. So, our
proposed instrumental variable variance method is
more superior than the classical least squares method.

(2) Secondly, the proposed instrumental variable vari-
ance method is applied to identify the aircraft flutter
model parameter
*e flutter test data of a certain aircraft is used to
verify the effectiveness of the proposed method.
Aircraft flutter model is very complex, as it is full of
flexible structure and aerodynamics. So, in this
simulation part, we only use wind tunnel test to
construct the flutter mathematical model of the two-
dimensional wing. In the whole wind tunnel test for
two-dimensional wing, the input is chosen as an
artificially applied excitation signal, and the output is
an accelerometer measurement, collected frommany
sampling data points. *e simulation is based on 100
independent experiments and 500 data points. When
comparing our proposed method with the classical
instrumental variable method, the standards for
measuring the performances are chosen as follows:

(1) Computation time (S)
(2) *e estimated error of the model parameters on the

test set is

δ �
‖􏽢θ(t) − θ‖

‖θ‖
. (48)

True system is that

y0(t) �
B q− 1( 􏼁

A q− 1( 􏼁
u0(t),

A q
− 1

􏼐 􏼑 � 1 − 0.8q
− 1

+ 0.9q
− 2

,

B q
− 1

􏼐 􏼑 � 0.5q
− 1

+ 0.4q
− 2

.

(49)

Define the input without noise as

u0(t) �
1

1 − 0.2q− 1 + 0.5q− 2 euo
(t), (50)

where euo
(t) is a white noise source, and the colored noise

model is defined as follows:

C q
− 1

􏼐 􏼑 � 1 − 0.2q
− 1

. (51)

Define the variances of white noises as λe􏽥u
� 0.14

and λe􏽥y
� 1.45, and these two variances correspond to SNR

of the input-output signal.

SNR � 10 log10
Px0

P
􏽥x

⎛⎝ ⎞⎠, (52)

Figure 2: Flight simulation turntable.
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where Px is the average power of the signal.
*en, we apply our proposed instrumental variable

variance method and classical instrumental variable method
on the same system until the optimal parameters are ob-
tained, and then the identification results are shown in
Tables 1 and 2, where, to simplify notation, our proposed
instrumental variable variance method is simplified as IVC
and classical instrumental variable method is simplified as
IV.

From the two tables, we see as IVC is obtained on
the basis of IV, its estimated performance result is
better than IV, and the generalization performance is
better too. But IVC needs to solve an optimization
problem, so its computational complexity is obviously
much more complicated than IV. In our recent ad-
vanced times, this more computational complexity is
tolerable for us.

u0(t) i0(t)
0.72

(0.68q + 1)/
(24q2 + 13q + 1)

(1)/
(0.00054q + 1)(0.27q + 1)

Figure 4: *e approximated linear part for the current loop.

+
+

+
+

0.72(0.68q + 1)/
(24q2 + 13q + 1)(0.00054q + 1)(0.27q + 1)

u0(t)

u(t)
i(t)

i0(t)

u(t)~ i(t)~

Figure 5: *e linear system identification with two input-output noises.
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Figure 6: Comparison of the two step responses.
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Figure 3: Closed-loop structure of the current loop in flight simulation turntable.
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*e transfer function's poles can be used to estimate the
model frequency and damping coefficient. To improve the
efficiency of our proposedmethod, we only calculate the pole
of the transfer function during online flutter analysis, i.e., the
poles of the transfer function is used to be a comparison
criterion to verify the validity of our proposedmethod. From
Figure 7, the true poles corresponding to the transfer
function are very consistent with the identified poles from
our proposed method. *en, the accurate model parameters
can be obtained by using equation (7). Furthermore, to test
the identification result for the molecular polynomial,
comparison of Bode plots between the true system and
identified model is given in Figure 8, where the approxi-
mation performance is acceptable.

*e BACT wind tunnel model is a rigid rectangular
wing with NACA 0012 airfoil section. *e wing is
mounted to a device called the Pitch and Plunge Ap-
paratus, which is designed to permit motion in princi-
pally two modes-rotation (or pitch) and vertical (or
plunge). *e BACT system has dynamic behavior very
similar to the classical two-degree-of-freedom problem
in aeroelasticity. *e preliminary analysis, control sur-
face sizing, and flutter suppression control law design
were based on the analytical state-space equations of
motion of the BACT wing model. *ese equations were
developed analytically, using structural dynamic analysis
and unsteady doublet-lattice aerodynamics with rational
polynomial approximations. *ese linear state-space
equations consisted of 14 states, 2 inputs, and 7 outputs.
*is state-space equation is used for classical control law
design and for performance simulation and verification
purposes.

*e analytical open-loop flutter dynamic pressure in air
was 128 pounds per square feet at a flutter frequency of
4.5Hz. *e sinusoidal sweep signal is commonly used as
input for system identification, and this sinusoidal signal is
seen in Figure 9. Figure 10 shows the response of the wing
trailing-edge and leading edge accelerometers due to 1
degree step input of the trailing-edge control surface in air at
225 per square feet dynamic pressure. Also from Figure 10,
we can see that the primary plunge motion with small pitch
diverges rapidly.

Table 1: Comparison of the computation time.

Method Time (s) δ λe􏽥u
� 0.14

IV 10.4 2.269 0.209± 0.054
IVC 12.6 1.679 0.15± 0.013

Table 2: Comparison of the parameter estimations of transfer function.

Method a1 � − 0.8 a2 � 0.9 b1 � 0.5 b2 � 0.4

IV − 0.791± 0.602 0.905± 0.024 0.473± 2.284 0.436± 2.228
IVC − 0.802± 0.025 0.902± 0.019 0.492± 0.155 0.396± 0.191
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6. Conclusion

In this paper, aircraft flutter model parameters are identified
based on one stochastic model of aircraft flutter. *rough

introducing instrumental variables to form the variance
function, a certain norm of the difference between the
theoretical value of the variance function and the actual
estimated value is taken as a criterion function. *e un-
known parameter vector in the transfer function form is
obtained by minimizing this criterion function, where this
transfer function form corresponds to the aircraft flutter
model. But we do not consider the convergence and accuracy
of our proposed method, so these two aspects can be
considered as our future work.
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