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Due to complicated noise interference, seismic signals of high arch dam are of nonstationarity and a low signal-to-noise ratio
(SNR) during acquisition process. 1e traditional denoising method may have filtered effective seismic signals of high arch dams.
A self-adaptive denoising method based on ensemble empirical mode decomposition (EEMD) combining wavelet threshold with
singular spectrum analysis (SSA) is proposed in this paper. Based on the EEMD result for seismic signals of high arch dams, a
continuous mean square error criterion is used to distinguish high-frequency and low-frequency components of the intrinsic
mode functions (IMFs). Denoised high-frequency IMF using wavelet threshold is reconstructed with low-frequency components,
and SSA is implemented for the reconstructed signal. Simulation signal denoising analysis indicates that the proposed method can
significantly reduce mean square error under low SNR condition, and the overall denoising effect is superior to EEMD and
EEMD-Wavelet threshold denoising algorithms. Denoising analysis of measured seismic signals of high arch dams shows that the
performance of denoised seismic signals using EEMD-Wavelet-SSA is obviously improved, and natural frequencies of the high
arch dams can be effectively identified.

1. Introduction

Affected by the testing system and environmental factors,
seismic signals of high arch dams are unavoidably interfered
by complicated noises during the acquisition process, which
greatly influences identification and analysis of real signal
information. Moreover, chaotic and complicated dynamic
behaviors of seismic signals of high arch dams always result
in full or partial overlapping of frequency bands of real
signals and superimposed noise. It is difficult for the tra-
ditional linear method to realize effective denoising. How to
remove the noise in seismic signals of high arch dams and
improve the reliability and accuracy of test data constitute
the foundation for analytical investigations on seismic sig-
nals of high arch dams. Some scholars have carried out a
large quantity of studies on vibration signal denoising
methods [1], where wavelet analysis is a mature signal
analysis method with favorable local time-frequency analysis
performance. Donoho [2] proposed a threshold denoising

method based on wavelet analysis, and this method can
obtain optimal estimated value in the Besov space. 1ere-
fore, it has been widely applied in signal denoising field
[3, 4]. Basic contracting functions of this method include soft
threshold function and hard threshold function, both of
which have achieved good effect in signal denoising field, but
they still have certain deficiencies in aspects of the continuity
and approximation to the original signal. Due to compli-
cated service environment and a low signal-to-noise ratio
(SNR), denoising effect using wavelet is not ideal [5]. Huang
et al. [6] put forward a new signal processing method,
namely, empirical mode decomposition (EMD) algorithm.
As a self-adaptive time-frequency analysis method, EMD
does not need a priori knowledge of the signal compared
with the wavelet transform method, and its decomposition
completely depends on the signal itself, so it has favorable
time-frequency resolution and has been extensively applied
to signal denoising [7, 8] and analysis [9, 10]. However,
EMD has deficiencies such as mode mixing [11, 12] and end
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effect [13]. Influenced by strong noise, intrinsic mode
function (IMF) components decomposed out by EMD will
lead to signal distortion. In order to overcome the mode
mixing phenomenon in EMD, Wu and Huang [14] put
forward ensemble empirical mode decomposition (EEMD)
which added white noise in the original signal according to
uniform distribution feature of white noise power spectral
density so that the signal was continuous in different scales.
EEMD reserves EMD advantage in processing nonstationary
signals; moreover, it can effectively overcome the mode
mixing problem of EMD [15, 16]. However, pure EEMD
denoising will suppress effective high-frequency information
while removing the high-frequency noise [17, 18]. Some
scholars have put forward using the wavelet thresholdmethod
to remove high-frequency noises in EEMD and recon-
structing residual components [19, 20]. However, the wavelet
threshold method cannot completely remove high-frequency
noises; furthermore, low-frequency IMF is of complicated
composition as it is adulterated with low-frequency inter-
harmonics which change with structural operation condi-
tions. Broomhead and King [21] put forward a singular
spectrum analysis (SSA) method which was based on singular
value decomposition and could decompose the original signal
into a series of independent and explainable principal
components [22]. 1e SSA can be an effective and powerful
tool to decompose the signal into a set of additive time series
from which identifying the interest signal from noise is
carried out [23]. Full advantages of EEMD, wavelet threshold
denoising method, and SSA are taken in this paper. Wavelet
threshold denoising is carried out for high-frequency IMFs
with many noises discarded by EEMD in order to reserve
effective information in these components. 1e SSA is
implemented for the reconstructed signal. Denoising results
of simulation signal and seismic signal of high arch dam are
realized. Comparative analyses of the denoising method
proposed in this paper with EEMD and EEMD-Wavelet are
conducted. Results show that this method is better than
EEMD and EEMD-Wavelet on the whole.

1e rest of this paper is structured as follows. Sections 2
describes EEMD, Wavelet, and SSA methods, respectively.
Section 3 presents the EEMD-Wavelet-SSA denoisingmethod
for noise signal. Section 4 demonstrates a simulation signal
analysis case to measure the performance of the proposed
EEMD-Wavelet-SSAmethod. Section 5 compares the EEMD-
wavelet-SSA method with EEMD and EEMD-Wavelet
methods with the use of a seismic signal of high arch dam.
Lastly, Section 6 provides the conclusions drawn in this paper.

2. Denoising Method

2.1. Ensemble Empirical Mode Decomposition Method.
1eEEMD is a new EMD-based signal processing method to
solve easy mode mixing effect of EMD. 1is method makes
the signal be of continuity at different scales by virtue of
uniform distribution feature of the Gaussian white noise
frequency. 1e noises are offset by multiple averaging
processing so as to inhibit and even completely eliminate
noise influence [24]. 1e procedures for implementing
EEMD are as follows:

(1) 1e Gaussian white noise is added to the original
signal, whose mean value is 0 and amplitude and
standard deviation are constants.1e noised signal is
shown as

xi(t) � x(t) + ni(t), (1)

where xi(t) is the signal added with the Gaussian
white noise, ni(t) is the Gaussian white noise,
i � 1, 2, . . . , M, and M is the superposition time.

(2) EMD of xi(t) is implemented to obtain IMFs cij(t)

and the residual component ri(t), j � 1, 2, . . . , N.
(3) As the mean value of uncorrelated random se-

quences is 0, the IMFs obtained through the above
steps are put under average operation in order to
eliminate the influence of multiple superposition of
the Gaussian white noises on real IMF, and the IMF
after averaging is obtained as follows:

cj(t) �
1

M


M

i�1
cij(t), (2)

where cj(t) is the jth IMF component obtained
through EEMD of the original signal.

1e EEMD result is as follows:

x(t) � 
N

j�1
cj(t) + r(t), (3)

where cj(t) indicates various IMF and r(t) is the final re-
sidual component.

In terms of the EEMD method, low-frequency IMF
component is dominated by a real signal, and the noise is
mainly included in high-frequency IMF. 1e EEMD
denoising method refers to discarding one or multiple high-
frequency IMFs while reserving low-frequency IMFs. 1e
consecutive mean square error (CMSE) is used in this paper
to determine demarcation point between high-frequency
and low-frequency IMFs:

CMSE xk, xk+1(  �
1
n



n

i�1
xk ti( − xk+1 ti(  

2

�
1
n



n

i�1
IMFk ti(  

2
,

(4)

where n is the signal length, N is the number of IMFs,
and IMFk(ti) is the reconstruction error of the IMF,
k � 1, 2, . . . , N− 1.

Based on this criterion, the demarcation point of the
signal energy can be determined as follows:

js � argmin CMSE xk,xk+1  , (5)

where argmin indicates the function with minimum re-
construction error, 1≤ k≤N− 1.

2.2. Wavelet .reshold Denoising Method. 1e Wavelet
threshold denoising method firstly transforms the signal
into the wavelet domain where threshold processing is
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implemented to suppress the wavelet coefficient containing
random noises. Finally, a denoised signal is obtained by
reconstructing the wavelet coefficient. 1e threshold pro-
cessing method includes hard threshold value and soft
threshold method. 1e former keeps the wavelet coefficient
higher than the threshold unchanged and conducts zero
setting of the wavelet coefficients lower than the threshold in
subspaces. 1e latter conducts zeroing contraction of the
wavelet coefficient according to one fixed amount, and the
new wavelet coefficient is reconstructed to obtain the signal
after denoising. 1e hard threshold method is simple to use,
but the overall function is discontinuous, which will lead to
additional vibration phenomenon of the reconstructed
signal. Although the soft threshold method is continuous as
a whole, the wavelet with a large amplitude will generate the
attenuation phenomenon, which will cause a constant de-
viation of the processed signal [5, 25]. Given the deficiencies
of hard and soft threshold methods, this paper constructs a
new threshold function based on the hard and soft threshold
functions. 1e improved threshold function is expressed as

s(x, λ) �

0, |x|< λ,

sign(x) |x|−
λ

1 + ln(1 + 1/a)
 , |x|≥ λ,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(6)

where λ is the threshold and a is the adjustment coefficient.
When a takes a large value, the improved threshold function
is inclined to the soft threshold function. As a approaches 0,
the improved threshold function is inclined to hard threshold
function. 1reshold function type can be adjusted by
changing a. A compromise between soft threshold function
and hard threshold function is obtained to eliminate the
constant deviation of soft threshold function as far as possible
and ensure the continuity of the threshold function.

2.3. Singular Spectrum Analysis. 1e core idea of SSA is to
decompose a raw original time series into a sum of subseries,
identified as either a trend, periodic, or quasi-periodic
component or noise. 1en it is followed by the re-
construction of the original series [26]. 1e time sequence
x i{ } can be obtained through signal sampling, i � 1, 2, . . . , L.
If the number of embedded dimensions is m and the time
delay is τ, according to embedding theorem, it is embedded
into m × n dimension space as follows:

X � [x(k), x(k + τ), x(k + 2τ), . . . , x(k +(m− 1)τ)]
T
,

(7)

where k � 1, 2, . . . , n, n � L− (m− 1)τ, and the orbit matrix
X � [X1, X2, . . . , Xn] represents n coordinate points in the
phase space.

C is set as m × m dimension covariance matrix of X,
which is shown as

C �
XXT

n
. (8)

Singular value decomposition of covariance matrix C is
implemented to obtain a group of nonnegative singular

values ei, i � 1, 2, . . . , m. 1ey are sorted in a descending
order as e1 ≥ e2 ≥ · · · ≥ em ≥ 0 to constitute a singular spec-
trum, which represents relative relations of different com-
ponents in aspects of their energy proportions in the whole
system. Great singular values are corresponding to the signal
components with large energies, and small singular values
are corresponding to noise components in the signal, which
constitute the “noise platform”. 1e eigenvector Ek corre-
sponding to ek is called empirical orthogonal function
(EOF), and the kth principal component (PC) is defined as
orthogonal projection coefficient of the original sequence
x i{ } on Ek:

a
k
i � 

m

j�1
xi+jE

k
j , 0≤ i≤ L−m. (9)

1e time sequence reconstructed through principal
components (PC) and empirical orthogonal function (EOF)
is as follows:

xi+j � 
m

k�1
a

k
i E

k
j , 1≤ j≤m. (10)

1e selection of principal components in SSA is a key
problem. If there are too few selected principal components,
the feature information of some signals will be lost. If too
many principal components are selected, they will contain
excess noise components. 1e number of principal com-
ponents is determined in this paper under great difference
existing between singular entropy increments. Singular
entropy increment combines the information entropy with
singular value decomposition, and its computational for-
mula is given by

Hi � −pi ln pi( ,

pi �
ei


m
i�1ei

,
(11)

where Hi is the singular entropy increment, ei is the singular
value, and i � 1, 2, . . . , m.

3. Combined Denoising Method

1e EEMD denoising method refers to discarding one or
multiple high-frequency components (noises) while effective
information on corresponding components is eliminated to
cause serious signal distortion. 1e wavelet threshold
denoising method can eliminate most noises together with
the effective signals of small amplitude. 1e EEMD, wavelet
threshold and SSA are combined in this paper. First of all,
the signal is decomposed into IMFs with frequencies ranking
from high to low through the EEMD method. 1e wavelet
threshold denoising method is conducted only for high-
frequency components while low-frequency IMFs remain
unchanged. High-frequency and low-frequency components
after denoising are reconstructed together with the residual
component, and finally the reconstructed signal is put under
SSA. Concrete steps of the denoising algorithm proposed in
this paper are as follows:
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(1) �e interfered seismic signal x(t) is decomposed by
using EEMD and the modal components cj(t) are
obtained

(2) �e value of js is determined according to consec-
utive mean square error criterion

(3) �e threshold determination criterion is selected,
wavelet threshold denoising is implemented for mode
components c1(t)∼cjs(t), and thenmode components
ĉ1(t)∼ĉjs(t) after denoising are obtained

(4) �e signal is reconstructed, x̂(t) � ∑jsj�1ĉj(t) +
∑N−1j�js+1cj(t) + r(t)

(5) �e SSA is carried out for the reconstructed signal to
obtain the signal after denoising

�e  owchart of the proposed EEMD-Wavelet-SSA
denoising algorithm is illustrated in Figure 1.

In this paper, the conventional SNR method is used to
evaluate the denoising e�ect of the simulation signal. Be-
cause the real signal cannot be obtained, the conventional
SNR method cannot evaluate the denoising e�ect of the
seismic signal. �e spectral estimation method is a SNR
calculation method with very clear physical signi�cance.
�is method assumes that the seismic signal has a certain
frequency band range (dominant frequency); too high and
too low frequencies are noise.

�e method �rst calculates the power spectrum density
of the whole signal, determines the frequency range of the
e�ective signal by calculating natural frequencies of the arch
dam through the �nite element model, then calculates the
energy of the signal and noise, and �nally obtains the SNR.
�e calculation equation of the SNR is as follows:

SNRS �
∑fH
fL
|PSD(f)|2

∑fc
0 |PSD(f)|

2 −∑fH
fL
|PSD(f)|2

, (12)

where fL is the lowest frequency of the e�ective signal, fH is
the highest frequency of the e�ective signal, fc is the highest
frequency of the whole signal, and PSD(f) is the power
spectral density of the frequency f.

4. Simulation Analysis

In order to evaluate the advantage of EEMD-Wavelet-SSA
denoising algorithm proposed in this paper, free attenuation
signal x(t) is established, and numerical veri�cation of noise
signal xn(t) is implemented. Original signal time is 10 s, and
sampling frequency is 200Hz. �e calculation formula is
shown in equation (13). �e random Gaussian white noise
with a signal-to-noise ratio of 5 dB is added to constitute the
noise signal:

x(t) � exp(−0.2t) × cos(6πt + 0.5 sin(6πt))
+ 0.5 × sin(20πt).

(13)

Figure 2 shows original signal x(t) and noise signal xn(t)
added with random Gaussian white noises. It can be seen
that the original signal is basically covered by noises. It is
very di�cult to extract the original signal from the noise
signal with low SNR.

Figure 3 shows EEMD results of the noise signal. �e
noise signal is decomposed into 9 IMFs and one residual
component.

�e consecutive mean square error criterion is used to
distinguish high-frequency and low-frequency components.

Start

EEMD

IMFs, cj (t)

High-frequency
IMFs, c1 (t)~cjs

 (t)

Consecutive
mean square

error criterion

Wavelet decomposition

Wavelet basis
function selection

Threshold calculation

Improved
threshold function

Wavelet coefficient
reconstruction

Reconstruction signal, x̂ (t)

Phase space, X

Embedding
theorem

Orthogonal projection
coefficient, ak

i

Reconstructed
time sequence

Singular entropy
increment, Hi

The number of
principal components

Denoised seismic signal

End

Seismic
signal, x (t)

Figure 1: Flowchart of the EEMD-Wavelet-SSA denoising
algorithm.

4 Shock and Vibration



According to equations (4) and (5), IMF1∼IMF2 are high-
frequency signals and IMF3∼IMF9 are low-frequency sig-
nals. High-frequency components are eliminated while low-
frequency components are reserved, and EEMD denoising
results are shown in Figure 4. It can be seen that EEMD
denoising e�ect is not ideal, and signal distortion occurs
after denoising and some signals appear oscillation.

Wavelet threshold denoising is conducted for high-
frequency components of IMF1∼IMF2. sym4 wavelet is
selected and the number of decomposition layers is 3. High-
frequency and low-frequency components after threshold
denoising are combined for signal reconstruction. EEMD-
Wavelet denoising e�ect is as shown in Figure 5. �e signal
waveform is not well recovered after denoising.

�e SSA is implemented for the signal after EEMD-
Wavelet denoising. Figure 6 shows singular entropy in-
crements of the signal. It can be seen that singular entropy
increment of the �fth principal component experiences
mutation. �e �rst four principal components are reserved.
�e �nal denoising signal is obtained through re-
construction and EEMD-Wavelet-SSA denoising e�ect is
shown in Figure 7. As shown in Figure 7, the signal
waveform e�ect after denoising is superior to EEMD and
EEMD-Wavelet denoising e�ects.

As for the noise signals added with random Gaussian
white noises of di�erent SNRs, the calculation results of
mean square errors (MSEs) of denoised signals through
three methods are shown in Table 1. As can be seen from
Table 1, when EEMD is used to remove noise, the denoising
signal has the maximumMSE and the minimum SNR, while
the EEMD-Wavelet-SSA denoising signal has the minimum
MSE and the maximum SNR. �e algorithm proposed in
this paper is better than EEMD and EEMD-Wavelet on the
whole, and its e�ect on noise signals with low SNRs is more
prominent. As the SNR continuously increases, the di�er-
ences among three methods are narrowed.

5. Engineering Application

A high arch dam is a concrete double-curvature arch dam
with a dam height of 285.5m and design antiseismic in-
tensity is grade 8. �e dam body is arranged with 26
monitoring systems for strong motion seismograph
(QZY1∼QZY26). �e site layout of the monitoring systems
for strong motion seismograph is shown in Figure 8, and the
monitoring system for the strong motion seismograph is
shown in Figure 9.

A 3.6 magnitude earthquake occurred nearby this high
arch dam on May 8, 2018, and focal depth was 13 km. In
order to verify the e�ectiveness of the method proposed in
this paper, measured tangential seismic signal at 527 ele-
vation in 15# dam section is selected as the original signal.
�e waveform diagram of the original signal is seen, and the
gal represents acceleration measurement unit cm/s2 in
Figure 10. As shown in Figure 10, measured signal has strong
background noise and it is obviously interfered by noises.

�e EEMD of the seismic signal is implemented, and
the seismic signal is decomposed into 9 components
(IMFl∼IMF9) and 1 residual component. Using the
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Figure 2: Comparison �gure of original signal and noise signal.
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Figure 3: EEMD results of noise signal. (a) IMF1∼IMF4. (b)
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Shock and Vibration 5



consecutive mean square error criterion, the noises mainly
exist in three components (IMFl∼IMF3). According to the
theorem of the EEMD denoising method, the �rst 3 high-
frequency components are eliminated, and the signal
reconstructed is shown in Figure 11. It can be seen from
Figure 11 that the signal after denoising is smooth, the noise is
e�ectively eliminated, but the signal amplitude is obviously
reduced. �e discarded �rst 3 high-frequency components
not only contain the noise but also contain useful in-
formation. While eliminating the noise, the EEMD denoising
method also eliminates e�ective information in the �rst 3
high-frequency components.

�e EEMD and wavelet threshold denoising are com-
bined. �ree high-frequency components (IMFl∼IMF3) are
added to the residual components after denoising through
wavelet threshold so as to obtain the reconstructed signal.
�e improved threshold denoising method is adopted
during the denoising process. Figure 12 shows denoising
results of the seismic signal of the high arch dam combining
EEMD with wavelet threshold. As shown in Figure 12, the
denoising method combing EEMD with wavelet threshold
can basically restore the signal from the noise. �e denoising
e�ect is ideal; however, there are some cusps andmany burrs
in the denoised signal.

Figure 13 shows the denoising result of the seismic signal
of the high arch dam combining EEMD, wavelet threshold,
and SSA. It can be seen from Figure 13 that the noise is
e�ectively eliminated.�e signal after combined denoising is
smooth basically without burrs, so the denoising e�ect is
ideal.

In order to compare denoising performances of the three
denoising algorithms, the Fourier transform is conducted for
the original signal and the signals after EEMD, EEMD-
Wavelet, and EEMD-Wavelet-SSA denoising, respectively,
to obtain signal spectrum diagrams seen in Figures 14–17.
Yin et al. [27] showed the natural frequencies of the �rst 10
steps of the arch dam are greater than 1 and less than 4.
�erefore, it can be judged that the signal with the frequency
less than 1 and greater than 4Hz is noise. From
Figures 14–17, it can be seen that

(1) �e original signal frequency is distributed on the
whole frequency coordinate axis, and power spec-
trum distribution is obvious in high-frequency
components. After EEMD and EEMD-Wavelet-
SSA denoising, the power spectrum distribution
with frequencies greater than 4Hz is reduced by a
large margin, tending to be 0.�e power spectra with
frequencies greater than 4Hz are reduced to a great
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Table 1: Simulation signal denoising e�ect.

Denoising
method

0 dB 5 dB 10 dB
MSE SNR MSE SNR MSE SNR

EEMD 0.2160 0.8680 0.0730 5.5774 0.0321 9.1420
EEMD-
Wavelet 0.1890 1.4472 0.0627 6.2378 0.0230 10.5903

EEMD-
Wavelet-SSA 0.1225 3.3301 0.0467 7.5231 0.0229 10.6214
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degree but still with a certain distribution after
EEMD-Wavelet denoising.

(2) �rough a comparison of the spectrum diagrams
of the original signal and denoising signal, it could
be known that the signal energy after EEMD
denoising is obviously reduced, some real signals and
noises are eliminated together, which results in
signal distortion phenomenon, and only two natural
frequencies of the high arch dam could be identi�ed.
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Figure 10: Original signal.
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Figure 11: EEMD denoising result.
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Figure 12: EEMD-Wavelet denoising result.
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Figure 13: EEMD-Wavelet-SSA denoising result.
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EEMD-Wavelet and EEMD-Wavelet-SSA methods
e�ectively extract useful feature information of
IMF1∼IMF3, avoid signal distortion, and can
identify three natural frequencies of the high arch
dam.

(3) �e spectrum distribution indicates that EEMD and
EEMD-Wavelet algorithms have limited denoising
ability, and EEMD-Wavelet-SSA algorithm has
better denoising e�ect.

�e denoising e�ect of seismic signal is further analyzed
by using the spectral estimation method. According to
equation (12) and the natural frequency range of the arch
dam, fL � 1, fH � 4, and fc � 4 can be known. �e SNR of
each denoising method obtained by using equation (12) is
shown in Table 2. It can be seen from Table 2 that the SNR of
the proposed EEMD-Wavelet-SSA denoising method is the
largest, and the denoising e�ect is obviously better than the
other two methods.

6. Conclusions

Given nonstationarity and low SNR features of seismic
signals of high arch dams, an EEMD-based signal denoising
method combining wavelet threshold and singular spectrum
analysis is proposed in this paper. Firstly, the wavelet
threshold denoising is conducted for high-frequency IMFs
containing many noises which should be discarded by using
the EEMD algorithm to reserve e�ective information of
these components.�e singular spectrum analysis is used for
further denoising of the reconstructed signal so that the
signal after denoising reserves waveform features of the
original signal very well. �e combined denoising method
proposed in this paper took full advantages of EEMD,
wavelet threshold, and singular spectrum analysis, which can
not only e�ectively remove random noise but also reserve
e�ective information of high-frequency and low-frequency
components in the original signal. �e simulation signal
denoising analysis indicates that the EEMD-Wavelet-SSA
denoising method can improve the MSE of the signal with
low SNR, which proves that the proposed denoising method
can obtain ideal e�ect.

�e denoising analysis of seismic signals of high arch
dams shows that the denoising performance of EEMD-
Wavelet-SSA is signi�cantly improved compared with the
other twomethods. Furthermore, this combinedmethod can
e�ectively identify natural frequencies of high arch dam, and
it is a satisfactory solution for seismic signal denoising of
high arch dam and feature information extraction.
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�e data used to support the �ndings of this study are
available from the corresponding author upon request.
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Figure 14: Spectrum diagram of the original signal.

Table 2: Seismic signal denoising e�ect.

Denoising method SNR
EEMD 51.8016
EEMD-Wavelet 75.8261
EEMD-Wavelet-SSA 5.6335e4
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Figure 15: Spectrum diagram of the signal after EEMD denoising.
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Figure 16: Spectrum diagram of the signal after EEMD-Wavelet
denoising.
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Figure 17: Spectrum diagram of the signal after EEMD-Wavelet-
SSA denoising.
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automatic SSA-based de-noising and smoothing technique
for surface electromyography signals,” Biomedical Signal
Processing and Control, vol. 18, pp. 317–324, 2015.

[24] N.-S. Kim, K. Chung, S. Ahn, J. W. Yu, and K. Choi,
“Denoising traffic collision data using ensemble empirical
mode decomposition (EEMD) and its application for con-
structing continuous risk profile (CRP),” Accident Analysis
and Prevention, vol. 71, pp. 29–37, 2014.

[25] X. Chiementin, B. Kilundu, L. Rasolofondraibe, S. Crequy,
and B. Pottier, “Performance of wavelet denoising in vibration
analysis: highlighting,” Journal of Vibration and Control,
vol. 18, no. 6, pp. 850–858, 2011.

[26] C. Yu, Y. Li, and M. Zhang, “Comparative study on three new
hybrid models using Elman neural network and empirical
mode decomposition based technologies improved by sin-
gular spectrum analysis for hour-ahead wind speed fore-
casting,” Energy Conversion and Management, vol. 147,
pp. 75–85, 2017.

[27] X. J. Yin, G. L. Wang, C. H. Zhang, and B. Z. Liao, “Dynamic
analysis of Xiluodu arch dam,” Journal of Hydroelectric En-
gineering, vol. 23, no. 1, pp. 27–30, 2004.

Shock and Vibration 9



International Journal of

Aerospace
Engineering
Hindawi
www.hindawi.com Volume 2018

Robotics
Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

 Active and Passive  
Electronic Components

VLSI Design

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Shock and Vibration

Hindawi
www.hindawi.com Volume 2018

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Electrical and Computer 
Engineering

Journal of

Advances in
OptoElectronics

Hindawi
www.hindawi.com

Volume 2018

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2013
Hindawi
www.hindawi.com

The Scientific 
World Journal

Volume 2018

Control Science
and Engineering

Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com

 Journal ofEngineering
Volume 2018

Sensors
Journal of

Hindawi
www.hindawi.com Volume 2018

International Journal of

Rotating
Machinery

Hindawi
www.hindawi.com Volume 2018

Modelling &
Simulation
in Engineering
Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Chemical Engineering
International Journal of  Antennas and

Propagation

International Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Navigation and 
 Observation

International Journal of

Hindawi

www.hindawi.com Volume 2018

 Advances in 

Multimedia

Submit your manuscripts at
www.hindawi.com

https://www.hindawi.com/journals/ijae/
https://www.hindawi.com/journals/jr/
https://www.hindawi.com/journals/apec/
https://www.hindawi.com/journals/vlsi/
https://www.hindawi.com/journals/sv/
https://www.hindawi.com/journals/ace/
https://www.hindawi.com/journals/aav/
https://www.hindawi.com/journals/jece/
https://www.hindawi.com/journals/aoe/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/jcse/
https://www.hindawi.com/journals/je/
https://www.hindawi.com/journals/js/
https://www.hindawi.com/journals/ijrm/
https://www.hindawi.com/journals/mse/
https://www.hindawi.com/journals/ijce/
https://www.hindawi.com/journals/ijap/
https://www.hindawi.com/journals/ijno/
https://www.hindawi.com/journals/am/
https://www.hindawi.com/
https://www.hindawi.com/

