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Surrogate models have been widely adopted for reliability analysis. The common approach is to construct a series of surrogates
based on a training set and then pick out the best one with the highest accuracy as an approximation of the time-consuming limit
state function. However, the traditional method increases the risk of adopting an inappropriate model and does not take full
advantage of the data devoted to constructing different surrogates. Furthermore, obtaining more samples is very expensive and
sometimes even impossible. Therefore, to save the cost of constructing the surrogate and improve the prediction accuracy, an
ensemble strategy is proposed in this paper for efficiently analyzing the structural reliability. The values of the weights are obtained
by a recursive process and the leave-one-out technique, in which the values are updated in each iteration until a given prediction
accuracy is achieved. Besides, a learning function is used to guide the selection of the next sampling candidate. Because the
learning function utilizes the uncertainty estimator of the surrogate to guide the design of experiments (DoE), to accurately
calculate the uncertainty estimator of the ensemble of surrogates, the concept of weighted mean square error is proposed. After the
high-quality ensemble of surrogates of the limit state function is available, the Monte Carlo method is employed to calculate the
failure probabilities. The proposed method is evaluated by three analytic problems and one engineering problem. The results show
that the proposed ensemble of surrogates has better prediction accuracy and robustness than the stand-alone surrogates and the
existing ensemble techniques.

1. Introduction

Nowadays, computer simulations are a major tool to design
engineering structures for accurate analysis of their per-
formance. Although the computer processing power along
with memory and storage capacities has been drastically
increased, Goel et al. [1] pointed out that analysis models of
acceptable accuracy have required at least six to eight hours
of CPU time. At the same time, uncertainty in the pa-
rameters characterizing the mechanical behavior of a
structure and loads acting on it calls for reliability analysis.
When computer simulations are combined with the re-
liability assessments, the computational cost tends to in-
crease, especially when complex nonlinear limit state
functions are involved [2]. Thus, assessing the reliability of a

complex structure requires a transaction between the re-
liability algorithms and numerical simulation methods used
to analyze the mechanical behavior of the structure.

In a reliability assessment problem, the safety domain of
the structure under a given failure mode is described by the
limit state function g(x), which is often determined by the
FEM G and a given threshold value z, and then the response
function g(x) is defined by

g(x)=G(x) -z, (1)

where x=[x,, ..., x,]" represents the vector of random
variables and g(x)=0 is the limit state function of the
structure. The failure domain is defined by g (x) >0, and the
safe domain is defined by g(x) <0.
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The failure probability of the structure is computed by a
multidimensional integral of the joint probability density
function f,:

p. - J . Lum F(x)dx. 2)

It is typically not feasible to calculate the integral of
equation (2), particularly for problems involving implicit
limit state functions.

Recently, surrogate models have been introduced by
several scholars to replace the limit state functions in the
reliability field, including quadratic response surfaces [3],
neural networks [4], support vector machines [5], and
Kriging [6-8]. These methods obtain a compromise between
the complexity and nonlinearity of surrogates.

Different from other surrogate models, Kriging not only
predicts the mean value of the structural response but also
provides the local uncertainty measure (the so-called Kriging
variance). In addition to surrogate formulation, the design of
experiments (DoE) also has a considerable influence on the
efficiency and accuracy of reliability analysis [9, 10]. There-
fore, Kriging-based sequential strategies of the design of
experiments (DoE) have drawn more and more attention
because it is an active learning process and can update itself by
adding new training point based on the statistical information
provided by the Kriging model. So far, several Kriging-based
reliability methods with an adaptive DoE have been proposed
utilizing the Kriging variance [11-13].

The above surrogate-based methods improve the accu-
racy of structural reliability analysis and reduce the number
of calls to the real performance function to some extent.
However, because there is not enough information to de-
scribe the relationship between the output response and the
input variables, it is difficult for engineers to know which
surrogate is the best for a specific limit state response. In
addition, according to Goel et al. [1], due to the influence of
the selected DoE type, the number of design points in the
training data set, and the form (e.g., linear, nonlinear) of the
limit state function, there is also uncertainty in surrogate
predictions.

At present, for the surrogate-based reliability evaluation
problem, scholars mainly focus on the selection of different
surrogates and rarely pay attention to the application of an
ensemble of surrogates. But some researchers observed that
no single surrogate model was found to be most effective for
all problems.

The idea of combination can be traced to the devel-
opment of committees of neural networks by Perrone and
Cooper [14] with further refinement by Bishop [21].
Zerpa et al. [22] and Goel et al. [1] extended this idea to
the ensemble of metamodels and found that multiple
metamodels can identify the possible regions with high
errors where predictions of metamodels vary widely.
Thereby, it can guide the researchers to obtain more
sample points in this uncertain region and reduce pre-
diction errors. At the same time, they pointed out that
combining metamodels can provide researchers with a
more robust prediction and effectively eliminate the
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negative impact brought by inappropriate stand-alone
metamodels. In 2009, Acar and Rais-Rohani [15] pro-
posed a combining technique with optimized weight
coefficients. They get the weights by minimizing GMSE or
RMSE using a formal optimization algorithm. Later, other
ensemble techniques are proposed by scholars, such as
BestPRESS [1] and OWS [17]. Essentially, they are the
same; the difference between them is that the method of
calculating the weight coefficient is different. Those
techniques could achieve a more satisfactory result than
individual surrogates in some cases. However, those
methods are not only time-consuming but also have the
following two disadvantages. One is that they could not
ensure obtaining a globally optimal solution, easily fall
into a local optimum, and sometimes even have no locally
optimal solution. The other is that the range of weight
coeflicients (w;) is not constrained and any value can be
taken. For the actual problem, w; <0 is unreasonable.

In view of the shortcomings of the above methods, Zhou
proposed an ensemble technique with recursive arithmetic
average [16], in which the weights are obtained using a
recursive process. These weights are updated in each iter-
ation until the last ensemble reaches a desirable prediction
accuracy. Unlike the previous method of arithmetically
averaging the responses of the stand-alone metamodels just
once, this technique builds an ensemble of metamodels by
recursive arithmetic average several times. It provides a
balance between model prediction accuracy and modeling
time. But this method uses the randomly selected samples to
construct the ensemble of metamodels. This results in a low
precision if too few samples are used, or wastes cost creating
models that are accurate in areas where they need not be.
Moreover, Zhou’s method has the following shortcoming: if
the initial weights are incorrectly selected, this will lead to
more iterations.

As mentioned above, the design of experiments (DoE)
also has huge influence on the convergence rate and the
accuracy of reliability analysis, and the surrogate un-
certainty estimator can guide the design of experiments
(DoE). However, there is relatively little research on the
uncertainty of the ensemble of surrogates. Goel et al. [1]
proposed a method to identify the region of ensemble of
surrogates with large uncertainty. He used the standard
deviation (SD) of multiple individual surrogates’ pre-
dictions to identify areas where the prediction error of
ensemble of surrogates is high. The SD value of the pre-
dictions will be large in regions where the surrogates differ
greatly. A high SD may indicate that there is a region with
high uncertainty in the predictions of any of the surrogates,
and adding sampling points can reduce the uncertainty in
such region. However, this method does not take into
account the influence of the prediction precision of an
individual surrogate. It is unreasonable that the value of the
standard deviation is completely determined by the single
surrogate when the prediction of a single surrogate differs
greatly from that of an ensemble of surrogates.

In this paper, we propose an ensemble technique with
recursive arithmetic average for structural reliability anal-
ysis. In calculating the uncertainty of the ensemble of
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surrogates, we consider the influence of the precision of the
prediction of each stand-alone surrogate and then utilize an
active learning function to add new sample point in the
vicinity of the limit state function based on the statistical
information provided by the ensemble of surrogates model.

The remainder of this paper is organized as follows.
Section 2 gives an overview of the ensemble of surrogates
method briefly. Section 3 introduces our method for
running the reliability analysis algorithm with ensemble of
surrogates. Section 4 presents the academic validation and
compares the performance of our proposed ensemble
technique to that of other available methods. Finally,
Section 5 presents the conclusion.

2. Ensembles of Surrogates

In recent years, in order to improve the accuracy of the
surrogate and make up for the lack of a stand-alone surrogate,
the ensemble technology has been developed. The ensemble of
surrogates is composed of several stand-alone surrogates
which are multiplied by different weight coefficients. Using
the weight-sum formulation, the ensemble of surrogates for
approximation of response can be expressed as

N
Pen (%) = D w; ()7, (%), (3)
i=1

where x is the input variable, Y\ (x) denotes the predicted
response by the ensemble of surrogates, N is the number of
surrogates in the ensembles, w; (x) is the weight coefficient
for the ith surrogate, and ¥; (x) is the predicted response of
the ith surrogate.

The weight coefficients in equation (3) are usually
satisfied:

N
Y wi(x) = 1. (4)
i=1

Generally, the weight coefficients of individual surro-
gates can be obtained based upon global and/or local
measures [14, 15]. The surrogates with high accuracy have
large weight factor and vice versa. Considering the calcu-
lation cost of the actual engineering problem, global error
metric with a generalized mean square cross-validation error
(GMSE) is proposed by Acar and Rais-Rohani [15]. The
GMSE can be written as follows:

1& . .
GMSE =3 (¥ - 7ix) (5)
=1

where y/ and 7y denote the true response at x; and
corresponding predicted value from the ensemble of sur-
rogates constructed by using all but the jth design point (i.e.,
leave-one-out cross-validation strategy), respectively, and n

is the number of sampling points.

2.1. Weight Coefficients Selection. At present, a variety of
techniques for constructing more accurate ensemble of
surrogates are proposed. There are mainly the following
methods.

2.1.1. Weight Factors Selection Based on Cross-Validation
Errors

(1) Heuristic computation of the weight coefficient: Goel
etal. [1] proposed a heuristic weight scheme, namely,
the prediction-sum-of-squares-based weighted av-
erage surrogate (PWS). The weight coeflicients are
computed as follows:

*

w. _—wi
iT¢N 8
ijle
* B
w; :(Ei + “Eaverage) > (6)

1 N
Eaverage = N Z Ei>
i=1

where E; is the generalized mean square error
(GMSE) of the ith surrogate with « = 0.05 and f =
-1 suggested by Goel et al.

(2) The approach based on minimizing GMSE: this
optimal weighted surrogate approach was proposed
by Acar and Rais-Rohani [15], which is achieved by
minimizing some error metric, such as GMSE error.
The optimization problem is presented as follows.

Find w;,i=1,2,...,N

N .
min GMSE, = %Z [)’(xi) - j’EN(wi’j}(_l) (xi))]2

i=1

(7)

s.t. w;

where y(x;) - Vgx (w;, 77 (x,)) is the predicted value
of the ensemble of surrogates for all training sample
points except point (x;, y (x;)).

2.1.2. 'The Ensemble Technique with Recursive Arithmetic
Average. Zhou proposed an ensemble technique with re-
cursive arithmetic average [16], in which the weights are
obtained using a recursive process. It is composed of the
following steps:

(1) initial weight coefficients

(2) Generate initial samples using sampling method, call
the performance function to calculate the structural
response at those initial samples, use these training
samples, and construct N candidate surrogates

(3) Calculate the prediction mean square errors (MSE)
of N candidate surrogates separately

(4) Find out the individual surrogate with the largest
MSE and the individual surrogate with the smallest
MSE, while (MSEj,;geq = MSE; i) > tolerance

(5) Obtain the arithmetic average of the candidate N
surrogates



(6) Use the simple average surrogate made in Step 5 to
replace the surrogate which has the largest prediction
MSE, obtain N new surrogates, of which N-1
surrogates are not changed, and then the weights of
the initial individual surrogates are calculated and
updated

(7) Perform the same work as Step 4; if the condition in
while (-) is satisfied, go back to Step 5; otherwise,
break out of the loop

End While
(8) Output the optimal weight coefficients

2.2. Prediction Metrics. The coeflicient of determination (R?)
and the root mean square error (RMSE) are often used to
compare the prediction capabilities of different surrogate
models. The coefficient of determination (R?) is given as

RZ _ 1_22:1 (yk_j}k)j’ (8)
ket k= Vi)

and the root mean square error (RMSE) is given as

where 7 is the number of test samples, ¥, is the mean of
actual response, ¥, is the mean of predicted response, and y;,
denotes the true response. R? indicates how well the sur-
rogate model fitted the actual response model; a higher value
represents a better fit. RMSE is an indicator of the precision
of a surrogate model, where smaller value means a more
accurate surrogate model.

Since the experiments are repeated many times, the
coefficient of variation of R? and RMSE are used to evaluate
the prediction accuracy of the surrogate. The definition of
coefficient of variation is as follows:

0
v=- (10)
@
where y and § denote the mean and the standard deviation of
R? and RMSE, respectively.

3. Ensemble of Surrogates for Structural
Reliability Analysis

3.1. The Proposed Ensemble of Surrogates with Iterative Weight
Coefficients. As mentioned above, the ensemble of surro-
gates can identify the possible regions with high errors and
can provide researchers with a more robust prediction. So in
this paper, we propose the ensemble technique for structural
reliability analysis.

In practical applications, the ensemble of surrogates can
be established by the following two ways:

(i) A set of surrogates created based on different
techniques—such as polynomial response surface
(PRS), radial basis function (RBF), and support
vector regression (SVR)
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(ii) Different instances of one surrogate; for example,
several surrogates can be obtained by changing the
types of regression functions of Kriging (KRG)

In this article, in order to use the statistical information
provided by the Kriging to guide DoE, we use the second
approach to build the ensemble of surrogates.

Kriging assumes that the response of interest F(x)
includes the linear regression part and the nonparametric
part:

F(x)=h(x)"B+Z(x), (11)

where /i (x) is a scalar or multivariable polynomial, f3 is the
coefficient vector of h(x) estimated with generalized least
squares, Z (x) follows a Gaussian process with zero-mean
and constant variance, and the covariance between Z(x;)
and Z(xj) is defined as

cov(Z(xi),Z(xj)) = O'ZR(xiaxj’e)’ (12)

where ¢? and R(xi,xj, 0) denote the variance and correla-
tion function of Z (x), respectively. 0 is a parameter vector.
The predictions of the KRG at a point are

G(x) = FB+r" R (G(x) - FB), (13)

where F is the matrix of linear equations constructed by
the regression function and the experimental design, =
(FTR'F)'FTR7'G is the generalized least square estimate
of B, R is an n x n matrix correlation between Z at design
sites, r is the vector of correlations between point x and the
points of the training design, and G = [G,...G,]" is a
vector of the training point observations. The Kriging
prediction variance can be calculated as

T T
s(x)=0" ~[F rT][O F HF] . (14)
F R r

The prediction precision of KRG is determined by re-
gression functions and correlation functions. For a certain
problem, Kriging models with different accuracy can be
obtained by different combinations of correlation functions
and regression models. However, the choice of correlation
functions and regression models depends on human ex-
perience. Therefore, ensemble technique is an effective way
to make up for the shortfalls of the above strategy.

For the most current combining techniques, they build
an ensemble of surrogates by arithmetically averaging the
responses of the stand-alone metamodel just once. But they
could not ensure obtaining the optimal weight coefficients or
take a lot of time to build the surrogate. Therefore, we
propose an iterative method to obtain the weight co-
efficients, in which the values of these weight coefficients are
updated in each iteration until a desirable prediction ac-
curacy is achieved. In order to improve the modeling effi-
ciency, we fist use a cross-validation strategy and the
prediction-sum-of-squares-based weighted average surro-
gate (PWS) to calculate the initial weight coeflicients and
then employ recursive process to obtain the best weight
coefficients.
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3.2. Adaptive Sequential Sampling. According to [18] and
[12], besides surrogate formulation, the design of experi-
ments (DoE) also has great influence on the convergence
rate and the accuracy of reliability analysis. A good strategy
of DoE enables the reliability calculation process to converge
quickly and provides higher computational accuracy at the
same time.

Within recent years, several Kriging-based reliability
methods with an adaptive DoE have been proposed utilizing
the KRG variance [11, 12]. Examples of such methods in-
clude the efficient global reliability analysis (EGRA) pro-
posed by Bichon et al. [11] and the active learning reliability
method combining Kriging and MCS (AK-MCS) proposed
by Echard et al. [12]. These methods use both the prediction
and uncertainty estimates offered by the Kriging model to
select the new sampling point for building an accurate
surrogate. Such adaptive methods not only improve the
accuracy of structural reliability analysis but also reduce the
number of calls to the real performance function.

In our proposed method, to speed up the construction of
the ensemble of surrogates, we use EGRA method to add
sequentially training set and then update the surrogate
model during each iteration until the predefined criterion is
satisfied.

The EGRA algorithm uses the expected feasibility
tunction (EFF) to search for points in the vicinity of the limit
state function. The maximum point of EFF is added into the
DoE step by step. EFF is defined as

z+e

-1z -G(x)]fgdx, (15)

z—€

EFF[x] = J

where G is a realization of the distribution G. This integral
can be calculated as

EFF[x] = (pg (x) —z)[2q><z — kg (x)) ~ (D< (z—¢)—ug (x))

oz (x) oz (x)

(z+e) =g (x) ~ z = e (x)
o) o ()
~ (Z—S)—u@(x)>_ ((Z+8)—#a(x)>]

¢( 0 (x) ¢ 0 (%)

H[@((ZH)—#@(JC)) _q)((z—S)—yg(x))]’
oz (x) oz (x)

(16)

where ¢ =20~(x) and z is a constant (z = 0). The new
sample can be obtained by maximizing the EFF and adding
this new sample to the previous set.

x" = arg (max (EFF (x))). (17)

EGRA iteratively adds training points to the data set by
maximizing the EFF until the stopping criterion is met.

3.3. The Weighted Mean Square Error. Because EGRA uses
the surrogate uncertainty estimator to guide the selection of

the next sampling candidate, it requires that the surrogate
can provide uncertainty estimates. As mentioned above,
there is relatively little research on the uncertainty of the
ensemble of surrogates. Although Goel et al. [1] proposed a
method to identify the region of ensemble of surrogates with
standard deviation (SD), this method does not take into
account the influence of the prediction precision of the
stand-alone surrogate. SD is defined as

YN.(5;(x) - (x))
N-1

>

SDEN (j’(x)) = \/
(18)
e
y N
where N is the number of surrogates, y;(x) denotes the
predicted response of the ith surrogate, and ¥ is the mean
predicted value of all surrogates.
In this research, we propose the concept of weighted
mean square error to calculate the uncertainty for ensemble
of surrogates, which is constructed as

MSEp (5(0) = Y [7; (0 - F 0], (19)

where x is the input variable, Y\ (x) denotes the predicted
response by the ensemble of surrogates, N is the number of
surrogates in the ensembles, w; (x) is the weight coeflicient
for the ith surrogate, and ¥, (x) is the predicted response of
the ith surrogate.

We demonstrate the application of the weighted mean
square error to identify the region of high uncertainty of the
ensemble of surrogates. The result for a single instance of a
DoE for a two-dimensional limit state function [11] is
presented in detail. This function is given as follows:

(e +4)(x,-1) . 5x)
g(x) === —sin 5t -2
x el47, @
x, € [-3,8].

Figure 1 shows the contour plots of absolute error
(ly(x) = ¥ (x)]), standard deviation (SD), and the square
root of the weighted mean square error in prediction. From
Figure 1(a), it can be seen that the ensemble of surrogates has
a high prediction accuracy in most areas (the absolute error
is relatively small), but the absolute error is larger in the top
middle boundary and bottom middle boundary. The con-
tour plot of the square root of the weighted mean square
error (Figure 1(b)) also shows the region of high uncertainty
near the above areas, indicating that the weighted mean
square error can accurately identify the region of high
uncertainty.

From Figure 1(c), we can note that the standard de-
viation (SD) has high values near the bottom right corner
and the top left corner, but the absolute error is not high.
This means that the standard deviation (SD) cannot ac-
curately identify regions of high uncertainty of the en-
semble of surrogates. The reason for this may be due to the
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-4 -3 -2 -1

Figure 1: Contour plots of absolute error, the square root of the weighted mean square error, and standard deviation (SD) for a two-
dimensional function. (a) Absolute error. (b) The root weighted mean square error. (c) Standard deviation (SD).

poor prediction accuracy of one individual surrogate.
Compared with the standard deviation (SD), the weighted
mean square error can make a more reasonable assessment
of the uncertainty of the ensemble of surrogates.

In order to demonstrate the independence of the result
with respect to the design of experiments, 1,000 DoEs are
carried out for the function expressed in formulas (21), and
then the maximum square root of weighted mean square
error, the minimum square root of weighted mean square
error, and corresponding locations are obtained. At the same
time, the actual errors in the predictions of different sur-
rogates at those locations are also calculated. Figure 2(a)
shows the magnitude of maximum square root of the
weighted mean square error and actual errors for different

surrogates. Figure 2(b) shows the magnitude of minimum
square root of the weighted mean square error and actual
errors for different surrogates. In Figure 2, s-WMS denotes
the square root of the weighted mean square error, and
e_EN, e KRG-con, e KRG-lin, and e_KRG-qua represent
the actual errors of EN, KRG-con, KRG-lin, and KRG-qua,
respectively. By comparing the boxplots for the errors in
predictions, we can see that the large weighted mean square
errors correspond to areas of great uncertainty, while the
small weighted mean square errors correspond to areas of
small uncertainty. We also find that the actual errors at the
locations of maximum weighted mean square errors are
high, and the actual errors at the locations of minimum
weighted mean square errors are low. This result shows that
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FIGURE 2: Maximum/minimum square root of the weighted mean square error and actual errors in prediction of different surrogates at
corresponding locations. (a) Maximum square root of the weighted mean square error and corresponding actual errors. (b) Minimum
square root of the weighted mean square error and corresponding actual errors.

there is a high correlation between the weighted mean
square error and the uncertainty of the ensemble model. In
the sequential sampling process, we pay more attention to
find regions with greater uncertainty in prediction and add
sampling points to these locations instead of quantifying the
magnitude of actual errors. The weighted mean square error
can qualitatively identify regions with large uncertainties in
prediction; therefore, is well suitable for sequential updating
of ensemble models.

3.4. Leave-One-Out Technique. As mentioned above, for an
ensemble technique that uses a recursive process to obtain
the weights, if the weight coefficients are incorrectly selected,
this will lead to more iterations. To improve modeling ef-
ficiency, we employ the leave-one-out technique with re-
spect to GMSE to obtain the weight coeflicients in each
iteration; namely,

GMSE =" Y (3~ J ) 21)

nia

where n denotes the number of test samples, y, is the actual
response at x;, and ¥y, is the corresponding predicted
response from the metamodel constructed using all except
the kth design point.

The basic frame of our proposed algorithm is composed
of the following steps:

(1) Generate a small number of samples from the true
response function. Here, Latin hypercube sampling
(LHS) is used to generate the initial samples.

(2) Use these samples to construct multiple surrogates.
Those candidate surrogates can be obtained by
changing the types of regression functions.

(3) Calculate the generalized mean square cross-vali-
dation error (GMSE) of each surrogate and use the

heuristic weight scheme to calculate weight co-
efficients of ensemble of surrogates.

(4) Calculate the uncertainty of ensemble of surrogates
by the proposed weighted mean square error method
(equation (19)).

(5) Find the point with the maximum EFF (equation (17))
of ensemble of surrogates and determine whether
max(EFF(x)) is smaller than the given e_given. If so,
go directly to Step 9.

(6) Evaluate the true response function at the point
obtained from Step 5.

(7) Add this new sample to the previous set and update
all surrogates.

(8) If max(EFF(x)) is smaller than the given e_givens,
end the iteration, and go to Step 9. Otherwise, go to
step 2 and continue the iterative process.

(9) Use this surrogate model to calculate the probability
of failure.

4. Academic Validation

4.1. Analytical Problems. In order to test the performance of
our proposed ensemble technique, we choose the following
analytic functions which are used in the literature, and then one
engineering example with nonlinear behavior and high di-
mension is used to demonstrate the advantage of the proposed
method. The details of each test problem are given as follows:

(1) Numerical Example 1: this example is a two-di-
mensional nonlinear function already analyzed in [11]:

G(x) = x + x5 - 18, (22)

where x; and x, are subject to normal distribution,
respectively, and the variables are uncorrelated. The



distribution of x, is normal (4 = 10,0 =5) and x, is
normal (4 = 9.9,0 = 5). In this example, the response
level is z = 0, and the probability of failure P; is then

Py = P(g(x) >0). (23)

(2) Numerical Example 2: this example consists of a
modified Rastrigin function adopted in [18]:

2
G(x)=10- Z(xi —5cos (ann)), (24)

n=1

where x, and x, are subject to the standard normal
distribution, and the variables are uncorrelated. In this
example, the response level is z = 0, and the probability
of failure Ps is then

Py = P(g(x) > 0). (25)

The limit state of equation (24) is much more com-
plicated than the one in Example 1, due to the complex
failure domain composed of multiple failure regions.

(3) Numerical Example 3: this example is a multidimen-
sional problem which was proposed in Rackwitz [19]:

G(xl,...,xm):m+3a\/ﬁ—2xj, (26)
j=1

where x;,j =1,...,m, are subject to lognormal dis-
tribution, and the variables are uncorrelated with unit
means and standard deviations (o = 0.2). In this ex-
ample, the response level is Z = 0, and the probability of
failure P; is then

Py =P(g(x)>0). (27)

The limit state of equation (28) has equal curvature
and its concavity is pointed toward the origin.

(4) Stiffened plate element problem: an implicit limit

state function is involved which has already been
studied in [20].
When comparing the accuracy of one surrogate,
considering only analytical problem functions can be
very misleading, because they often do not represent
the various characteristics of true engineering design
problems. Therefore, we also consider the following
engineering design problems from the literature. The
limit state function is given by

g(x) = 0,(x) = (04, (x) + 0 (x)), (28)

where 0, (x) is the ultimate compressive stress of the
stiffened plate elements, and o, (x) and o0,,; (x) are the
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still water component and the wave-induced compo-
nent of the uniaxial compressive stress, which are in-
duced by the ship hull girder bending moments.

The ultimate compressive stress is an implicit function of
the vector of basic random variables, which is defined as the
maximum stress value of the average stress-strain curve of
the stiffened plate elements under uniaxial compression and
computed through nonlinear FEA:

0, (x) = max, {0, (x;¢,)}. (29)

For the distributions of the basic random variables, see
[20]. Due to the nonlinear behavior of the material, the finite
element analysis process is very time-consuming. To in-
crease the analytical efficiency, symmetry boundary condi-
tions are imposed at the plate longitudinal edges and the
stiffener mid-span transverse sections. Figure 3 shows the
nonlinear FEA structural model.

4.2. Design Experiments. For the above problems, the Latin
hypercube sampling (LHS) method is used to generate the
training sample. In order to reduce the effect of random
sampling, 1000 different training sets are used for all the
analytical problems. For stiffened plate element problem,
taking into account the computational cost of each simu-
lation, the surrogates are constructed using only one single
training set with 120 training points. For all the problems,
the samples are selected in the space over the bounds + 5¢.
Additional information about the training and test data sets
is provided in 1.

4.3. Ensemble of Surrogates Techniques. According to the
theoretical researches of some scholars [16], when the
number of metamodels is maintained at 3-5, the prediction
accuracy of ensemble models is relatively high. Therefore,
three types of regression functions are considered here,
including constant regression, linear regression, and qua-
dratic regression. The three Kriging models constructed
from these three regression functions serve as the three
members of the ensemble of surrogates, and the ensemble of
surrogates is developed based on our proposed techniques.
These three Kriging models are also used as the three
members of the ensemble that is developed based on the
three previously described techniques.

5. Results and Discussion

5.1. Comparison and Analysis of Surrogate Models. In order
to facilitate the comparison and analysis of the results, each
stand-alone and all ensembles of surrogates are marked as
shown in Table 2.

To compare the performance of different metamodeling
models, the mean and the coefficient of variation (COV) of
R? and RMSE are used in all cases to illustrate the accuracy
and robustness of the stand-alone and ensemble of surro-
gates, respectively.
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Ficure 3: Stiffened plate under uniaxial compression in the longitudinal direction.

TABLE 1: Summary of training data and test data used in each problem.

Problem Design variables Training sets Design points Test points
Numerical Example 1 2 1000 12 405
Numerical Example 2 2 1000 12 405
Numerical Example 3 6 200 56 512
Numerical Example 4 8 1 120 40

TaBLE 2: Summary of surrogate modeling strategies.

Acronym Description
KRG-con The Kriging model with constant regression
KRG-lin The Kriging model with linear regression
KRG-qua The Kriging model with quadratic regression
EH The ensemble of surrogates which is constructed by
the heuristic method of Goel et al. [1]

The ensemble of surrogates which is based on

EM minimizing GMSE method in Acar and Rais-
Rohani [15]

The ensemble of surrogates which is based on

ER recursive arithmetic average technique of Zhou
et al. [16]

ERR The ensemble of surrogates which is constructed

based on our proposed method

5.1.1. The Coefficient of Determination (R?). The boxplots
can provide us with a graphical depiction of how the value of
the metric varies over the range of training sets used. The
bottom of the box represents the lower quartile, the top of
the box represents the upper quartile, and the inner line of
the box represents the median value. The broken line, which
is extended from the end of the box, represents the range of
the remaining data relative to the upper and lower quartiles.
Figure 4 shows the boxplots of the coeflicient of de-
termination (R?) errors for all cases. Based on the com-
parison and analysis in Figure 4, we can make the following
findings. (1) No single surrogate performs the best on all
problems. Compared with them, the ensemble models have
better prediction ability than the stand-alone metamodel
and are less influenced by the experimental design. This
suggests that using an ensemble of surrogate models po-
tentially yields robust approximation. (2) For all examples,
the EM, ER, and ERR have higher prediction accuracy, but
the long tail of EM indicates that EM is less robust than ER
and ERR. (3) For most problems, ERR has the best median
value, indicating that ERR performs best in all ensemble

models. (4) Of all the ensemble models, EH has the worst
performance in Example 1, Example 3, and Example 4 and
has the second worst performance in Example 2, which
reveals that EH cannot perfectly capture the true prediction
errors.

For all metamodeling models, the mean and y value of
R? of each test example are shown in Table 3. From the
table, it can be seen the following: except for Example 3,
the average coeflicient of determination for ERR is the
best, and the performances of the other ensembles and
individual surrogates have changed significantly due to
different test problems. Even the average coefficient of
determination of ERR in Example 3 is larger than that of
ER, but the value of y is minimal, indicating that ERR is
more robust. We also note that although the performances
of other ensembles are worse than that of ERR, they are
better than the worst individual surrogates. This suggests
that using an ensemble of surrogate models, we can
protect against poor choice of a surrogate. Additionally,
for all test examples, each stand-alone metamodel does
not perform perfectly.

5.1.2. The Root Mean Square Error (RMSE). Next, the
RMSEs of different surrogates for all test examples are
compared. As shown in Figure 5, we can note that no single
surrogate performs the best for all problems, and the root
mean square error for individual surrogates varied with the
experimental design. In addition, all ensemble models work
better than the worst individual surrogate, and RMSE for
ensemble models does not vary with DoE significantly,
which indicates the necessity of adopting the ensemble
techniques. At the same time, we can also find that our
proposed method has better performance than other en-
semble models in RMSE.

Numerical quantification of the RMSE is given in
Table 4. The results in Table 4 show that for the test
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FIGURE 4: Coefficients of determination for different surrogate models. (a) Numerical Example 1. (b) Numerical Example 2. (c¢) Numerical

Example 3. (d) Numerical Example 4.

TaBLE 3: Mean and v value of R? using different metamodeling models for all test examples.

Numerical Example 1 Numerical Example 2

Numerical Example 3 Stiffened plate element problems

krg-con 0.8111 (0.0580) 0.7725 (0.0849)
kg-lin 0.8238 (0.0882) 0.7917 (0.0601)
krg-qua 0.7936 (0.0777) 0.8101 (0.0495)
EH 0.8269 (0.0629) 0.8157 (0.0562)
EM 0.8298 (0.0515) 0.8104 (0.0495)
ER 0.8476 (0.0296) 0.8128 (0.0443)
ERR 0.8602 (0.0303) 0.8194 (0.0426)

0.8756 (0.0308)
0.8846 (0.0269)
0.8848 (0.0258)
0.8820 (0.0243)
0.8865 (0.0222)
0.8864 (0.0226)
0.8930 (0.0191)

0.6660 (0.0737)
0.6645 (0.0990)
0.6404 (0.0687)
0.6563 (0.0543)
0.6807 (0.0683)
0.6861 (0.0462)
0.6926 (0.0454)

problems 1, 2, and 4, ERR has the lowest RMSE errors
compared to other surrogates.

Although the mean of RMSE for ERR in test problem 3 is
gently larger than EM, ERR has a lower vy, which indicates
that ERR is more robust than EM. We can also observe that
EH, EM, and ER can significantly reduce the errors com-
pared to the worst individual surrogate, which suggests that
using an ensemble of surrogate models can prevent us from
making wrong choices of a surrogate.

5.2. Reliability Analysis Results. In order to compare the
performance of different surrogates, after high-quality ap-
proximate models of the limit state equations for the four
cases are obtained by using the above-mentioned meta-
modeling techniques, the Monte Carlo (MCS) method is
employed to perform the reliability analysis. The results are
provided in Table 5 including the time of surrogate con-
struction (T',,), the estimation of failure probability (P;),
and the relative error (AP;) compared with MCS.
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FiGure 5: RMSE for different surrogate models. (a) Numerical Example 1. (b) Numerical Example 2. (c¢) Numerical Example 3. (d)

Numerical Example 4.

TaBLE 4: The mean and the coefficient of variation (y) of RMSE errors using different metamodels for different problems.

Numerical Example 1 Numerical Example 2

Numerical Example 3 Stiffened plate element problems

Krg-con 16.0254 (0.1712) 26.0915 (0.1553)
Krg-lin 16.0601 (0.2042) 27.0418 (0.1246)
krg-qua 19.9411 (0.1450) 23.7087 (0.1366)
EH 15.8835 (0.1489) 23.6902 (0.1237)
EM 15.0233 (0.1563) 23.4337 (0.1209)
ER 13.5372 (0.1513) 23.1461 (0.1175)
ERR 12.9343 (0.1177) 22.4847 (0.0878)

1.3606 (0.1816)
1.2540 (0.1715)
1.2622 (0.1802)
1.2511 (0.1451)
1.1114 (0.1715)
1.1496 (0.1542)
1.1159 (0.12590)

3.9573 (0.0913)
4.1229 (0.0514)
4.3224 (0.0830)
3.9136 (0.0508)
3.9190 (0.0804)
3.9224 (0.0559)
3.8767 (0.0546)

For all the examples, from Table 5, we can see the fol-
lowing: an individual surrogate overestimates the failure
probabilities (P;), an individual surrogate underestimates
the failure probabilities (P;), or the relative error (AP;) is the
largest. Combined with Tables 3 and 4, we observe that no
single surrogate model performs well in terms of either
prediction accuracy or reliability evaluation.

In contrast, the ensembles of surrogates have consid-
erably better performance than the individual surrogates
from both the prediction accuracy and the failure probability

obtained. For the same surrogate, the ER and ERR converge
to a more accurate result than the EH and EM. However,
ERR appears to be more effective in assessing the failure
probability with good accuracy. Except for Example 3, the
failure probability obtained by ERR is the closest to that of
MCS and the relative error is minimal.

Table 5 also shows the time consumption of all the
ensembles and individual surrogates. From the table, we can
see that the construction time of individual surrogate is
shorter than that of all ensembles of surrogates. Of all
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TaBLE 5: Results of the reliability analysis of all numerical examples.
Method Example 1 Example 2 Example 3 Example 4
etho

Teon (8) Pr (1073)  AP; (%) Ty (5) P (1072)  AP; (%) T (s) Pp (1073)  AP; (%) T, () Pr (107°)  AP; (%)
MCS — 5.681 — — 7.33 — — 1.581 — — 1.910 —
krg-con 35.261 5.576 1.85 1087.3 7.711 5.20 245.6 1.660 4.99 3215.6 1.837 3.82
kg—lin 39.432 5.983 5.32 1106.5 7.657 4.46 201.3 1.614 2.08 3456.8 2.043 6.96
krg-qua 45.583 5.902 3.89 1035.2 7.485 211 230.5 1.643 3.91 32794 2.022 5.86
EH 52.146 5.873 3.38 1288.55 7.591 3.56 289.1 1.615 2.14 3726.3 2.028 6.18
EM 61.531 5.842 2.83 1312.3 7.614 3.87 353.6 1.620 2.46 4533.2 2.016 5.55
ER 80.152 5.824 2.52 1401.8 7.563 3.18 396.7 1.630 3.09 5284.5 2.01 5.24
ERR 75.573 5.791 1.94 1369.4 7.502 2.35 369.2 1.621 2.59 4216.1 1.832 4.08

ensembles of surrogates, EH and EM are constructed in a
shorter time, because they are both built by the method of
obtaining weight factors at a time. Due to the concept of
weighted mean square error proposed and the use of the
heuristic weight scheme to determine the initial weight
coefficients, ERR takes less time to build than ER.

6. Conclusion

Surrogate models have been widely adopted for reliability
analysis. Traditionally, the researchers tend to select the so-
called most accurate surrogate model as an approximation of
the time-consuming limit state function by assessing its
error metrics. However, the choice of the surrogate model
relies on specific problems and generally there is no prior
information for identifying a suitable surrogate and it is
always man-made. Therefore, in order to save the cost of
constructing the surrogate and improve the prediction ac-
curacy, an ensemble strategy is proposed in this paper. The
weight coefficients are obtained by a recursive process and
the leave-one-out technique. In each iteration, weight factors
are constantly updated until a given prediction accuracy is
achieved. Besides, a learning function is used to guide the
next sampling candidate selection by using the uncertain
estimate of the ensemble of surrogates. In order to accurately
evaluate the uncertainty for ensemble of surrogates, the
concept of weighted mean square error is proposed. After a
high-quality ensemble of surrogates of the limit state is
available, the Monte Carlo method is used for reliability
analysis. The effectiveness of the proposed method is vali-
dated by three analytical functions and a stiffened plate
element problem, which requires high fidelity simulation of
complex models with nonlinear response. Meanwhile, the
proposed method is compared with the previous surrogate
modeling strategy in prediction precision and reliability
analysis result.

The results show that no single surrogate model per-
forms well for all problems, in terms of both prediction
accuracy and reliability assessment. In addition, due to the
lack of sufficient information describing the relationship
between response and input variables, it is difficult for
researchers to know which metamodel is the best for a
specific problem using traditional metamodeling strategies.
However, our comparative study demonstrates that using
an ensemble of surrogate models can provide more ideal
prediction accuracy and higher robustness, which can

effectively eliminate the negative impact brought by in-
appropriate stand-alone metamodel. Of all ensembles of
surrogates, although the construction time of EH and EM is
short, the prediction accuracy is low. Compared with ER,
our proposed method has higher accuracy and efficiency
due to the active learning function based on weighted mean
square error and the heuristic weight scheme to determine
the initial weight coefficients.
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