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+e bearings’ degradation features are crucial to assess the performance degradation and predict the remaining useful life of
rolling bearings. So far, numerous degradation features have been proposed. Many researchers have devoted to use dimensionality
reduction methods to reduce the redundancy of those features. However, they have not considered the properties and similarity of
those features. In this paper, we present a simple way to reduce dimensionality by classifying different features based on their
trends. And the degradation features can be classified into two subdivisions, namely, uptrends and downtrends. In each sub-
division, there exists visible trend similarity, and we have introduced two indexes to measure this similarity. By selecting the
representative features of the subdivision, the multifeatures can be dimensionality reduced. +rough the comparison, the root
mean square and sample entropy are two good representatives of uptrend and downtrend features. +is method gives an al-
ternative way for dimensionality reduction of the rolling bearings’ degradation features.

1. Introduction

Rolling bearings are widely used in rotary machinery as a
component to provide a near frictionless environment to
support and guide a rotating shaft, which has an important
influence on the modern industry. At the same time,
bearings are the most frequent reason for failure in mech-
anisms. An unexpected failure may cause not only the loss of
property but also the loss of human beings, even leading to
catastrophe. So, the technology of condition-based main-
tenance (CBM) comes into being to monitor the degradation
process and predict the remaining useful life of bearings.
Several approaches have been reported to monitor the
degradation process of bearings, e.g., acoustic emission
signals, temperature, lubricant analysis, electrical current
analysis, and vibration signals. Among them, the vibration
signal is believed to be the most extensively used approach in
industries for diagnosis and prognostics due to the ease of
measurement and analysis. To give a good representation of
bearings’ degradation process, many signal processing

techniques are applied to extract different features. Good
reviews for feature extractions can be seen in [1–4].

When having extracted numerous features, it is still
difficult to estimate which features are better to trace the
bearing’s degradation process. In addition, these features are
still with high dimensionality, and we need to select ap-
propriate methods for reducing dimensionality to remove
redundant features. Some researchers have devoted to this
area. In [5], logistic regression is used to convert the mul-
tidimensional features into single health indicator. Dong and
Luo [6] extracted the time domain, frequency domain, and
time-frequency domain features and fused them by principal
component analysis (PCA) and then used the least squares
support vector machine (LSSVM) optimized by particle
swarm optimization (PSO) for degradation process pre-
diction. Similarly, Lu et al. [7] applied PCA to fuse multi-
features, and the degradation trend of slewing bearing was
predicted using the LSSVM optimized by PSO. In [8], Yu
employed a dynamic PCA for the dimensionality reduction
of multifeatures and developed generative topographic
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mapping-based quantification indications for health deg-
radation assessment. Finally, a variable replacing-based
contribution analysis method is developed to verify that the
fuse features are effective. Kang et al. [9] proposed a state
assessment method based on the relative compensation
distance of multifeatures and dimension reduced by locally
linear embedding (LLE) algorithm. Li and Zhang [10] ap-
plied supervised locally linear embedding projection for
machinery fault diagnosis. By using linear embedding
projection (LPP), Yu [11] proposed a multivariate statistical
process control-based bearing performance quantification
index and combined exponential weighted moving average
statistic for performance degradation assessment. Yu [12]
proposed a local and nonlocal preserving projection (LNPP)
based index for defect classification and performance as-
sessment. Benkedjouh et al. [13] presented a prognostic
method based on isometric mapping (Isomap) and support
vector regression.

As introduced above, many references have contributed
to reducing the dimension of multifeatures of rolling
bearings for diagnostics and prognostics.+e dimensionality
reduction methods usually can be classified into two cate-
gories: linear one and nonlinear one. At present, a classi-
fication chart of basic dimensionality reduction methods can
be seen in Figure 1. In particular, the perspective of manifold
learning methods (i.e., LPP, LLE, and Isomap) accelerates
the development of this academic field. However, there are
three queries that the references above have not mentioned
or solved. +e first is that the feasibility of the multifeature
dimensionality reduction in rolling bearings. For example,
when applying the manifold learning methods, the first step
ought to be determining whether there exists a manifold
surface of those high ordered features. +e second is that the
persuasion or generalization ability of the applied method.
+e results of the references above exist inconsistent. By
comparisons of a specific case or two, it is hard to infer which
dimensionality reduction method is better. +e third is that
there is lack of a principle for the number of dimensions that
should be reduced to. +e number must be predetermined,
most of the researchers set it as two or three, but there should
be a powerful reason to set the number of dimensions that
should be reduced to.

With these questions, it is easy to think of a simple way
to fix these questions. Take a classification of those features
and then select the best performance representative to
represent the corresponding type. Now, the question is
changed to how many different types should be classed
into. It simply put these features into two classes based on
their trends. And we just need to measure which feature of
the two classes has the best property. In this paper, first, we
are going to summarize a criterion for the degradation
features of rolling bearings. +en, we will have a discussion
of difference by their traditional classification modes.
When conducting classification, we have found a trend
similarity between features and introduce two similarity
indexes to approximately measure this similarity. Finally,
we can infer that the degradation features of rolling
bearings have two main categories: uptrends and down-
trends. By selecting the representative features of those

classifications, the multifeatures can be dimensionality
reduced. +e rest of the paper is organized as follows. In
Section 2, a criterion of the degradation features is sum-
marized. In Section 3, two similarity indexes are introduced
to measure trend similarity. In Section 4, a new classifi-
cation of multifeatures is proposed based on the discussion
of the traditional classification of the multifeatures.+e two
cases used in this paper are stated in Section 5. +e dis-
cussion is in Section 6. Finally, concluding remarks are
given in Section 7.

2. The Criterion of Being aDegradation Feature

It should make certain that which kind of features are good
or not for prognosis. Not all the features of rolling bearings
can be treated as degradation features. For example, the
mean value cannot be treated as a degradation feature.
Figure 2 shows the mean value of the whole life of Case I.+e
details of two cases, namely, Case I and Case II, we used in
this paper have been exhibited in Section 5. As the figure
shows, the mean value keeps straight all the time except a
slight fluctuation close to the end of failure. +e mean value
can be treated as a diagnosis indicator of misalignment.
Nevertheless, it could not be a degradation feature of rolling
bearings. From the relative references, we can summarize a
criterion of the degradation features as follows.

2.1. Criterion
(1) A degradation feature can be extracted from the run-

to-failure data. Generally, each file can extract a
degradation feature point.

(2) A degradation feature must have a trend which can
assess the degradation process and should have a
physical significance.

(3) Generally, a degradation feature should not be a
simple mathematical transformation from the other
features.

(4) In particular, it is better to have degradation feature
extraction methods which have denoising perfor-
mance and enhance the proportion of the signals
which contain defect information.

Criterion 1 is the premised item. By extraction
methods, generally, each file will extract a degradation
feature point. +us, each degradation feature point can
constitute a time sequence which is the degradation fea-
ture. It is worth to explain that decomposition methods
can make multifeatures which are not discussed in this
paper. Criterion 2 is the foremost item. +e role of deg-
radation features is to assess the degradation process and
further to predict the remaining useful life. Criterion 3 is a
supplement of Criterion 2. Some researchers proposed
features through elementary functions (e.g., asinh and
atan). +ese functions can make features are monotonous,
but it is difficult to identify the degradation status, so they
are not the degradation features yet. Criterion 4 is an
additional criterion. +e degradation feature which has
lower noise is relatively better.
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Figure 3 shows the peak-to-peak and root mean square
(RMS) of Case I. Although they have a great difference in
numerical value, it is easy to see a trend similarity between
them. Since it is an average process when calculating RMS,
there are little burrs in its curve, so relatively speaking, RMS
is a better choice of the two features.

Actually, both peak-to-peak and RMS can measure a sort
of energy of rolling bearings. +ey are belonging to energy
features which are a subdivision of bearings’ features. If we
check all the subdivision of bearings’ features and select
representatives to represent this subdivision, the di-
mensionality reduction problem of bearings can be solved.

Next, we will introduce a method to quantitatively de-
scribe the trend similarity which is an auxiliary for feature
selections.

3. The Similarity Index of Trend Similarity

As we can see from Figure 3, it appears to find a trend
similarity between the peak-to-peak and RMS. Many
similarity indexes are based on distance measures, e.g.,
Manhattan distance, Euclidean distance, and Chebyshev

distance. Since there is no specific definition of trend
similarity, it is more difficult to measure the trend simi-
larity. As a matter of experience, when referring to trend
similarity, first thought to measure this similarity is
comparing the derivatives of the two sequences. And we
need to use fitting methods. However, the selection of
fitting methods and their parameters becomes another
question.

In this paper, we will introduce two similarity indexes to
approximately describe this trend similarity. +e first one is
the Fréchet distance. +e Fréchet distance is first proposed
by Fréchet in 1906, and it is a measure of similarity between
curves that considers the location and ordering of the points
along the curves [14]. An intuitive definition of the Fréchet
distance can be described like that. Where a man is tra-
versing a finite curved path while walking his dog on a leash,
with the dog traversing a separate path. Assume that the dog
varies its speed to keep the leash as much slack as possible:
the Fréchet distance between the curves is the length of the
shortest leash sufficient for both to traverse their separate
paths. Note that the definition is symmetric with respect to
the two curves [15].

A formal definition can be depicted as follows. Let S be a
metric space. A curve A in S is a continuous map from the
unit interval into S, i.e., A:[0, 1]⟶ S. A reparameterization
α of [0, 1] is a continuous, nondecreasing, surjection
α:[0, 1]⟶ [0, 1]. Let A and B be two given curves in S. +en
the Fréchet distance between A and B is defined as the
infimum over all reparameterizations α and β of the max-
imum over all t ∈ [0, 1] of the distance in S between A(α(t))

and B(β(t)). In mathematical notation, the Fréchet distance
F(A, B) is F(A, B) � infα,βmaxt∈[0,1] d(A(α(t)), B(β(t))) ,
where d is the distance function of S [15].

+e Fréchet metric considers the flow of the two curves
because the pairs of points whose distance contributes to the
Fréchet distance sweep continuously along their respective
curves. +is makes the Fréchet distance a better measure of
similarity for curves. For time series sequences, we need to
use discrete Fréchet distance (DFD), also called the coupling
distance. It approximates the Fréchet metric for polygonal
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reduction
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methods

Nonlinear 
methods

PCA
ICA (independent component analysis) 
LDA (linear discriminant analysis) 
LPP (the linear approximation of Laplacian eigenmaps)
···
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LE (Laplacian eigenmaps) 
Hessian LLE 
LSTA (local tangent space alignment)
···

Neural network based: SOM (self-organizing feature map), ···

Preserving distance based
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Isomap (isometric mapping)
Diffusion maps
···

Figure 1: +e classification chart of basic dimensionality reduction methods.
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Figure 2: +e mean value of the whole life of Case I.
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curves, defined by Eiter and Mannila [16]. +e DFD con-
siders only positions of the leash where its endpoints are
located at vertices of the two polygonal curves and never in
the interior of an edge. +is special structure allows the DFD
to be computed in polynomial time by an easy dynamic
programming algorithm. In order to display the DFD
intuitionally, Figure 4 shows an example of it. +e DFD of
curves P and Q is 1.8983 which is the length of the line in
magenta.

As for the similarity between degradation features, an-
other example is shown in Figure 5 to illustrate the calcu-
lation of the DFD between the peak-to-peak and RMS of
Case I. It is important to normalize the ordinate first to
ensure the consistency of range. It is worth noting that the
pairs of points whose distance contributes to the DFD are
upright or saying one-to-one correspondence, that is be-
cause we have not normalized the abscissa where the scale
interval is 1. +e distance between the correspondent two
points is the length of each other. In this way, the DFD is
equal to the maximum of all the corresponding two points’
length. By the means of this method, the maximum of two
curves’ DFD can reach 1. +e DFD of the example is 0.2257.
But, in fact, there are just 14 corresponding lengths (CL) that
are greater than 0.1. +ose files are all concentrated at the
end of the degradation process. It is normal to see that when
the bearing is close to failure, the peak-to-peak is grown
faster than the RMS since the vibration is fierce. Generally,
the peak-to-peak and RMS have a similarity. +en, we
propose a close index (CI) to measure the holistic similarity.
+e close index (CI) η can be defined by
η � num(CL< ε)/total num, i.e., the ratio of the number
where CL< ε to the total number of the files.+e parameter ε
is threshold of similarity; in general, we set ε � 0.1. +us, the
CI of the two curves is 98.6%.

Now, we have two similarity indexes to measure the
trend similarity between two features: one is the DFD, and
the other is the CI. Comparatively, the CI is more visu-
alized, and it measures the overall similarity. +ough the
setting of parameter is empirical, it does not interfere with

Discrete Fréchet distance of curves P and Q: 1.8983
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Figure 4: +e example of discrete Fréchet distance.
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Figure 3: +e peak-to-peak (a) and RMS (b) of the whole life of Case I.

4 Shock and Vibration



the judgment whether the similar degree is higher or not of
two features compared with the other two. For conve-
nience, we have made an empirical classification of similar
degrees by CI, as shown in Table 1. However, the DFD
locates the most differentiated corresponding two points. It
describes a kind of local dissimilarity which infers that
bigger DFD means larger local dissimilarity.

4. A New Classification of Bearings’ Features
Based on Their Trends

Generally, the multifeatures of rolling bearings can be
classified into the time domain, the frequency domain, the
time-frequency domain, and complexity domain tradi-
tionally. Time domain features have been widely used. +ey
usually measure the statistical characteristics of a signal.
When extracting frequency domain features, it needs to be
converted into frequency domain by fast Fourier transform
(FFT) method. +e time-frequency domain features have
made rapid progress recently. +e complexity domain is
different from the above, and it measures the signals’
complexity degree. In this section, we are going to search for
the trend similarity of different features through the tra-
ditional classification of bearings and proposed a new
classification of bearings’ features based on their trend.

4.1. TimeDomainFeatures. Time domain features are a kind
of features which are easy to think out and obtain. A
commonly used time domain features’ list is shown in
Table 2. Not all the features can be treated as degradation
features, e.g., feat1 (the mean value) is not a degradation
feature as we have discussed. Feat2, feat3, and feat4 are the
amplitude of root, the RMS, and the absolute mean value,
respectively. All the three measure the average energy
amplitude of the signal and have the same unit and same
order. +erefore, they can be classified as energy feature. As
we can see from Figure 6, the three features have an ex-
tremely similar trend. However, there is some subtle
distinction.

+e trends of Case I and Case II are different. +rough
the viewpoint of energy, we can conjecture the process of
degradation. For Case I, an outer race fault example, there is
no overt change before #520 (where # means the number of
files), and we estimate the bearing is in normal condition.
Between #520 and #700, the curve increases in a linear way,
and we guess the bearing is in slight fault. In this stage, the
accumulated stresses reach a certain value, and this indicates
that a dentation process is developing. +e dent will have
specific asperity that produces stress and energy concen-
tration and become more deteriorated gradually. When the
stresses reach a certain threshold, the crack is opened. At
about #700, there is a sudden change, and we guess it is the
occurrence time point of the crack. From #700 to #850, the
bearing should be in the severe fault condition.+e asperities
are smoothed by the continuous rolling contact and abrasive
wear actions. +at means the generated stress due to dents’
asperities will be reduced. As the damage spread over a
broader area, the vibration level raises again. +is is called

“healing” phenomenon and has been stated in [2, 17, 18]. In
this stage, the crack continues to propagate and the stresses
are still accumulating. During this time, the spalling occurs.
At about #850, the defect is completed. From #850 to the
end, the condition of bearing is becoming fierce.+e damage
sustains growth. +e “healing” phenomenon expands, and
the variances enlarge. According to [19], the whole process
of degradation consists of two visible “healing” spans and
two peaks. As close to failure, the feature experiences a
significant increase. For Case II, the inner race fault example,
though it seems to be monotonous, we can find there exist
two “healing” spans. +ere is a slight decrease at the be-
ginning of degradation. It is considered as a run-in period.
Before #1200, the bearing is in the normal stage for there is
little change. From #1200 to #2750, the curves are increasing
with the variance enlarging. +e bearing is gradually tran-
sitioned from slight to severe fault. From #2750 to the end,
the curves are moving up sharply, and the bearing is no
doubt in failure stage. Take an overall survey of the two cases,
the energy curves are increasing which means the fault is
growing up even though there exist back and forth.

+e feat5 and feat6 are the third and fourth central
moment, and there is a minus in front of α (also in feat9) to
make the value positive. +e feat10 is the unbiased esti-
mation of variance and also the second central moment.
+ese three features have a similar trend but have a serious
problem that bigger xi will make the curves steep.

Here, we have the third and fourth standardized mo-
ment, the skewness (feat15) and kurtosis (feat16). RMS can
be seen as the second central moment when X is close to
zero. Skewness and kurtosis are dimensionless, and they
have their respective statistical meanings. Skewness is a
measure of the asymmetry of the probability distribution of
a real-valued random variable about its mean. Negative
skewness manifests that the tail on the left side of the
probability density function is longer or fatter than the
right side, vice versa.

Kurtosis is another statistic measure which can weigh the
“tailedness” of the probability distribution. Figure 7 shows
the skewness and kurtosis also with RMS of the whole life of
Case I and Case II. It can be observed a similarity compared
with RMS. We can see that there is a zoom at the end of the
degradation in kurtosis of Case I. As we all know, kurtosis is
a good feature for diagnosis. However, the monotonicity is
less than RMS. For a white Gaussian noise, the kurtosis is
close to 3, but as Figure 7 shows, it is close to 3 again near the
end of failure. +at cannot be explained.

+ere are amplifications at the local peaks compared
with the RMS in Case II. Feat7, feat8, and feat9, as shown in
Figure 8, are the peak-to-peak, maximum, and minimum
values. +eir trend is similar too, if the mean value is close to

Table 1: An empirical classification of similarity by CI.

+e ranges of CI (%) Trend similarity degree
0∼50 Dissimilar
50∼80 Partially similar
80∼90 Very similar
90∼100 Extremely similar
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zero.+e peak-to-peak is about twice over the other two.+e
three features canmeasure the one-order energy of the signal
too. However, these features have more uncertainty than
RMS, since they only can measure the peaks of each file.

Feat11, feat12, feat13, and feat14 are shape factor, crest
factor, impulse factor, and clearance factor, respectively, as
shown in Figure 9. +ey are all dimensionless. As we dis-
cussed above, the RMS represents the energy of signals. And
they have a similar trend. So, the shape factor is fluctuating
around its mean (close to 1). +e same event occurs to the
crest factor. It is fluctuating around its mean too. +e crest
factor is sensitive to the files where there has a big maximum
value, but there is little change of the mean energy. +ese
files are thought to be where the defect exists. +e clearance
factor has the similar function to the crest factor. +e im-
pulse factor is steep. It is sensitive to where the mean value is

very close to zero. +ose four features sometimes cannot be
deemed as degradation features, for they cannot trace the
process of degradation properly. But these features can be
considered as diagnosis indicators.

As shown in Table 2, the similarity indexes based on
RMS are also calculated. +e similarity indexes of RMS are
no doubt 0 and 1. For feat2, feat4, feat7, feat8, and feat9, we
can see that they are in extremely similar degree. And for
feat5, feat6, and feat10, they are in very similar degree. If we
take order normalization of the three, the normalized fea-
tures are in extremely similar degree too. It is easy to realize
that features extracted from a set of data which have a similar
physical significance and same order (i.e., same dimension)
should have a similar tendency. +e mentioned normalized
features can be called energy features. Taking a panoramic
view of the degradation process, the energy features have a
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Figure 6: +e Xr, Xrms, and μ|x| of the whole life of (a) Case I and (b) Case II.

Table 2: +e time domain features and their similarity indexes of Case I and Case II based on RMS.

Names

Similarity
indexes of
Case I

Similarity
indexes of
Case II Names

Similarity
indexes of
Case I

Similarity
indexes of
Case II

DFD CI
(%) DFD CI

(%) DFD CI
(%) DFD CI

(%)

feat1 � X � (1/N)
N
n�1xi 0.6728 0.81 0.9921 0.71 feat2 � Xr[(1/N)

N
n�1

���
|xi|


]2 0.2197 98.47 0.1686 99.71

feat3 � Xrms �

�����������

(1/N)
N
n�1x

2
i



0 1 0 1 feat4 � μ|x| � (1/N)
N
n�1|xi| 0.1479 99.08 0.1091 99.93

feat5 � α � − (1/N)
N
n�1(xi − X)3 0.5084 82.18 0.6983 86.09 feat6 � β � (1/N)

N
n�1(xi − X)4 0.5291 80.55 0.5278 80.38

feat7 � Xp− p � max(xi) − min(xi) 0.2257 98.57 0.1286 99.89 feat8 � max |xi|  0.2369 98.07 0.5278 80.38

feat9 � − min xi  0.2171 98.68 0.2807 99.22 feat10 � δ2 � (1/N − 1)
N
i�1(xi − X)2 0.2033 91.24 0.2290 85.91

feat11 � Sf � Xrms/μ|x| 0.4429 18.84 0.4999 85.98 feat12 � Cf � Xmax/Xrms 0.8181 6.82 0.9877 50.30

feat13 � If � Xrms/|X| 0.7190 94.20 0.9983 81.34 feat14 � CLf � Xmax/Xr 0.6013 6.12 0.9877 51.80
feat15 � Sk � α/X3

rms 0.5527 24.95 0.8647 1.00 feat16 � Kv � β/X4
rms 0.4399 95.93 0.9759 90.58

Note: xi is a signal series for i � 1, 2, · · · , N, in whichN is the number of the data points.
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good uptrend feature. And RMS is a good representative of
them, for its extensive usability and antinoise performance.
+ough feat11 to feat16 have the same dimension (di-
mensionless), they have different physical significances.
Most of them do not manifest a good trend.

4.2. FrequencyDomainFeatures. Table 3 lists seven frequency
domain features. +ese features are all calculated in the fre-
quency domain by using FFT. For p1, it is themean value of the
signal’s frequency amplitude. Based on Parseval’s theorem, we

have the equation that (1/N)
N
n�1x

2
i � 

K
k�1(s(k))2. So, p1

presents a kind of energy of the signal. No wonder that it is
extremely close to RMS. For p2 to p4, the equations are similar
to δ2, Sk, and Kv. +ey are the variance, skewness, and kurtosis
of the frequency domain, respectively. From Figure 10, we can
see the three (normalized) have a similar trend compared with
RMS.

+e unit of p5, p6, and p7 is hertz; among them, p5 is the
gravity frequency. Actually, the three features measure
kinds of change of frequency concentration. As shown in
Figure 11, the three features show a similar trend,
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Figure 8: +e peak-to-peak, maximum, and minimum values of the whole life of (a) Case I and (b) Case II.
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especially, the p5 and p6. Note that the p7 of Case I has a
different trend ranged from #500 to #800. And then, we
take the envelope of each file’s signal to calculate these three
features displayed in Figure 12. Once processed after en-
velope analysis, the trend of the three features is similar. So,
envelope analysis can remove interference signal and make
the demodulation signal contain more defect information.
However, these three features cannot be regarded as

degradation features for they do not have a good trend for
degradation assessment.

When referring to the envelope analysis, the envelope
domain features aremore commonly used which are a subset
of frequency domain features. Envelope analysis is broadly
used to process the bearings’ signal. For the vibration data of
bearings, signal modulation effect is one of the problems for
processing. +e modulation effect can be solved by using
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Figure 9: +e shape factor, crest factor, impulse factor, and clearance factor of the whole life of (a) Case I and (b) Case II.

Table 3: +e frequency domain features and their similarity indexes of Case I and Case II based on RMS.

Names

Similarity
indexes of Case

I

Similarity
indexes of Case

II Names

Similarity
indexes of Case

I

Similarity
indexes of Case

II
DFD CI (%) DFD CI (%) DFD CI (%) DFD CI (%)

p1 � (1/K)
K
k�1s(k) 0.1801 98.37 0.1310 99.93 p2 � 

K
k− 1((s(k) − p1)

2/K − 1) 0.1932 99.19 0.2566 86.69

p3 � 
K
k�1(s(k) − p1)

3/K(
��
p2

√
)3 0.3043 98.88 0.4674 81.98 p4 � 

K
k�1(s(k) − p1)

4/Kp2
2

0.3986 83.10 0.5969 80.63

p5 � 
K
k�1fks(k)/K

k�1s(k) 1 1.93 0.9787 12.31 p6 �

������������������


K
k�1f

2
ks(k)/K

k�1s(k)



0.9025 5.91 0.9787 8.13

p7 �

��������������������


K
k�1f

4
ks(k)/K

k�1f
2
ks(k)



0.7334 10.59 0.8928 1.21

Note: s(k) is a spectrum for k � 1, 2, . . . , K, in whichK is the number of spectrum lines, s(k)≥ 0. f(x) is the frequency value of the kth spectrum line.
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envelope analysis. When localized defects occur at races or a
roller, the vibration signal becomes amplitude modulated.
By using envelope analysis, the defect frequency can be
demodulated and appear in the envelope spectrum. Usually,
the defect frequency includes the ball-pass frequency of
outer ring (BPFO) fBPFO, the ball-pass frequency of inner
ring (BPFI) fBPFI, and the ball-spin frequency (BSF) fBPF.
By knowing the failure modes of Case I and Case II, we can
extract the amplitude peaks at the characteristic frequencies
from each file. +us, we can have the feature named “am-
plitude of defect frequency (ADF)” of each case. +e results
are shown in Figure 13. As we can see, for Case I, the outer

race fault, the ADF and RMS have a similar trend. +e
similarity indexes of the both normalized features are 0.2844
and 89.51%. But, for Case II, there is something different
between the two features’ trends. As for RMS, there is a
stable rising trend ranged from #1000 to #2748 while for
ADF, there is a long period straight trend until it is close to
failure. To delve the phenomenon of Case II, we extract the
sum of amplitudes of fBPFI, 2× fBPFI, 3× fBPFI, i.e., the
base defect frequency, second defect harmonic, and the third
defect harmonic, respectively. We name it as ADF3, and it is
shown in Figure 14. It can be seen there is a slightly in-
creasing period ranged from #1000 to #2748 similar to the
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Figure 10: +e p1, p2, p3, p4, and RMS of the whole life of (a) Case I and (b) Case II compared with RMS (the five features are normalized).
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Figure 11: +e p5, p6, and p7 of (a) Case I and (b) Case II.
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RMS. From the above, we can infer that ADF is the un-
derlying determinant of the RMS. And the RMS is the
outward manifestation of the ADF.

Actually, there are more than eight frequency domain
features. We have not listed them because they are lacking
more explicit physical significances. Some of the frequency
domain features can relate to time domain features, just like
p1. +ey measure specific kinds of energy. +e others are like
p5, and they measure specific concentrated frequency.
Whatever the frequency domain features are, they must
conduct FFT. However, FFT has its disadvantages, e.g.,
truncation error and leakage error. Furthermore, the tra-
ditional Fourier transform is not suitable to process the
nonstationary signal. So, the frequency domain features are
not very accurate.

4.3. Time-Frequency Domain Features. Nowadays, time-
frequency analysis is developed rapidly, and it can describe the
time domain and frequency domain information of the signal
at the same time. Many time-frequency signal processing
techniques have been proposed for bearing diagnosis, e.g.,
wavelet methods, empirical mode decomposition (EMD)
([20], [21]), local mean decomposition (LMD) [22], intrinsic
time-scale decomposition (ITD) [23], variational mode de-
composition (VMD) [24], and empirical wavelet transform
(EWT) [25]. We can classify them into two groups. One
includes the first four decomposition methods, for they de-
compose signals in a dichotomy way. +e other includes the
last two methods. When carrying out VMD or EWT, the
decomposed signals are exhibited as in different band-pass
filters. And both VMD and EWT are not recursive methods.
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Figure 12: +e p5, p6, and p7 of Case I processed after envelope analysis.
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Figure 13: +e ADF of (a) Case I and (b) Case II compared with RMS.
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By using these methods, the signal is decomposed into several
subsignals. And it is difficult to extract a degradation feature
simply by these methods. So, it is usually combined with
energy or complexity measures to extract degradation fea-
tures. Pan et al. [26] developed an assessment model based on
second-generation wavelet packet decomposition (WPD) and
support vector data description (SVDD) for health assessment
of the bearings. +e degradation features used were the en-
ergies of the wavelet packet nodes. Pan et al. [27] further
proposed a new approach using second-generation WPD
with fuzzy c-means (FCM) for performance degradation
assessment. Wavelet packet node energies are also used to
compose feature vectors. In [28], Hong et al. utilized wavelet
packet-empirical mode decomposition for feature extraction.
+e corresponding entropy features are extracted from the
raw signal after wavelet packet decomposition. An energy
feature extraction method based on ensemble empirical mode
decomposition (EEMD) and Gaussian mixture model is
proposed in [29].

As revealed in the references, usually the time-frequency
signal processing techniques are used for denoising the raw
signal and selecting the subsignals which include the defect
or degradation information. And then a time-frequency
domain feature can be extracted by combining with energy
or complexity measures. In this way, time-frequency domain
features are turned to be energy features and complexity
measures.

4.4. Complexity Features. Complexity measures are different
from the energy features. Many references have used ran-
domness complexities for diagnosis and prognostics. Zhao
et al. [30] proposed a quantitative diagnosis method of a
spall-like fault for bearings based on empirical mode de-
composition (EMD) and approximate entropy (ApEn).
Yang et al. [31] proposed a bearing diagnosis method based
on EMD energy entropy and ANN. Zheng et al. [32] pre-
sented a bearing diagnosis approach based on local char-
acteristic-scale decomposition (LCD) and fuzzy entropy

(FuzzyEn). Shannon entropy (ShEn) is selected as one of the
basic features for prognostics in [33]. Yan et al. have applied
permutation entropy (PermEn) as features for bearings
diagnosis in [34]. A diagnosis method based on multiscale
entropy and adaptive neurofuzzy inference is proposed in
[35]. Pan et al. have applied correlation dimension and ApEn
in the performance degradation process of bearings [36]. In
the numerous relevant literature studies, authors have ap-
plied many randomness complexities for research and
combined with signal processing methods like EMD and
wavelet transform. No matter what the forms of the ran-
domness complexities are, the basic principle of randomness
complexities is invariable, namely, the greater the regularity
is, the lower the randomness complexities’ value is. For
convenience, when we talk about randomness complexity
later, we use complexity instead.

In this next, we are going to apply six commonly used
complexities, i.e., ShEn, ApEn, sample entropy (SampEn),
FuzzyEn, PermEn, and LZC. ShEn is the first proposed
complexity [37]. It is sensitive to the noise. In 1976, Lempel
et al. proposed a complexity called LZC [38]. In 1991, Pincus
gave an approximate valued of Kolmogorov–Sinai entropy
named ApEn [39]. SampEn is a modification of ApEn
proposed by Richman et al. in 2000 [40]. Compared to
ApEn, SampEn has a relatively trouble-free implementation
and has data length independence. Moreover, SampEn need
not to calculate the template vector composed by itself. In
2002, Bandt et al. introduced PermEn which is based on
comparisons of neighboring values of times series [41]. Chen
et al. proposed FuzzyEn in 2007, and they extended the
“membership degree” in ApEn with a fuzzy function
[42].+e calculations are ignored in this paper. To give a fair
comparison, the same parameters should set equally. Table 4
shows the parameters. Notice that the embedding dimension
m of PermEn is not like ApEn and SampEn; bigm will make
greater time. And we set it 6.

+e six complexities’ degradation features of Case I and
Case II are calculated as shown in Figures 15 and 16. From the
curves, we can see a kind of similarity. As the degeneration
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Figure 14: +e ADF3 of (a) Case I and (b) Case II compared with RMS.
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Table 4: +e summary of the selected parameter values.

Complexity Parameters Value

ApEn
Embedding dimension, m 2

Tolerance r 0.2 std
Delay time τ 1

SampEn
Embedding dimension, m 2

Tolerance r 0.2 std
Delay time τ 1

FuzzyEn

Embedding dimension, m 2
Tolerance r 0.2 std
Parameter w 2
Delay time τ 1

ShEn Average filling of the histogram, k/N 0.02

PermEn Embedding dimension, m 6
Delay time τ 1

LZC Parameter m Median value
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Figure 15: Continued.
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Figure 15: +e six complexities of Case I.
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deepens, the defects occur and propagate, thus making the
vibration signal become more periodical so that the com-
plexities’ features show a downtrend. And we will benchmark
which one has the best performance.

First, it should test the periodical signals with different
intensity noise. And we set up a group of simulation signals,
S(t) � X(t) + e(t), where X(t) � sin(2π × 10t) and e(t) is
the additive noise.+e signal’s sampling frequency is 10 kHz.
Figure 17 shows the normalized complexities with different
SNRs.

All the complexities are rising with the increase of the
noise. However, ShEn and PermEn do not have a good
monotonicity. Both are the worst.

Although we have tested the signals with additive noise, the
test signals are not general. References [43–45] showed that the
bearings’ signals are with chaotic properties. So, we are going to
test the complexities with chaos signals. +e logistic map is a
simple way to generate chaos signals. Figure 18 shows the
logistic map with the largest Lyapunov exponents (LLE). LLE
can only measure the chaotic system. When it is periodical,
LLE� 0.+e six complexities are shown in Figure 19. Aswe can
see, ShEn and PermEn are the worst. FuzzyEn has something
wrong at edges of periodical and chaos. LZC has some wrong
value about μ� 3.6. ApEn and SampEn have better
performance.

+e length of data can affect the complexities’ value.
Figure 20 shows a simulated signal with the length from 100
to 4000. As we can see, PermEn and ShEn have an increasing
convergence trend. +e complexities’ values are convergent
after 2000 data points. +e others are better since they are
convergent before 2000 points.

Above all, we have compared the six comparisons
with three methods. Among them, ApEn and SampEn
have better performance. Since SampEn is an im-
provement of ApEn, the SampEn shows the best per-
formance. It can be a representative of the complexity
features.

5. The Cases of Bearings’ Run-to-Failure Data

In this section, two run-to-failure data are used to visualize
and validate the trend similarity of different features.

5.1. Case I (Outer Race Fault). Case I data come from IMS
center, as shown in Figure 21. +e details of the test can be
seen in [46]. We used set no. 2 which exhibits outer race
defect as Case I.

5.2. Case II (Inner Race Fault). Case II comes from the IEEE
PHM 2012 Prognostics Challenge data, which is provided by
FEMTO-ST Institute. +e details of the data can be seen in
[47]. Figure 22 shows the experimentation platform which is
named PRONOSTIA. We use the first dataset in the first
load condition as Case II.

Since we have no idea of the failuremode of Case II, we will
take the envelope spectrum of the last file data (i.e., #2803)
which is shown in Figure 23 to figure out the failure mode of
Case II. We can see the peak with 218.8Hz. By means of the
calculation of characteristics frequencies, we have the ball-pass
frequency on inner race (BPFI) for 221.66Hz and the ball-pass
frequency on outer race (BPFO) for 168.34Hz and funda-
mental train frequency (FTF) for 12.95Hz.

6. Discussion

Prior work has enumerated and discussed the degradation
features in time domain, frequency domain, time-frequency
domain, and complexity domain. A fact must be recognized
that the degradation features are endless, and it is impossible
to fuse all the features. As mentioned previously, many
references utilized different methods for dimensionality
reduction. However, they ignored the physical significances
of the degradation features. If you want to fuse two features,
the first thing is to make the two have the same ordinate unit.
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Figure 16: +e six complexities of Case II.
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As it is revealed, the basic degradation features of the same
ordinate unit have a trend similarity. At present, there is no
precise definition of trend similarity. When talking about
trend similarity, it comes from the idea that using curve
fitting method and comparing the derivatives of two fea-
tures. However, both the selection of fitting method and
parameters of selection method to be set are difficult.
Meanwhile, it is not accurate to calculate the derivative of
time series. So, we have used DFD and proposed CI to
approximately measure this trend similarity.

As discussed earlier, we have classed the features based
on their physical significances. From the classification, we
can simply categorize the features in two classes. One is
uptrend features, and the other is downtrend features.
+ough there are many frequency features, they are hardly

can be regarded as degradation features. And then, we can
use a typical one, e.g., to represent this kind of features. We
take RMS and SampEn as the representatives. In essence, the
energy and the complexity features are related. Figure 24 has
shown the SampEn and RMS together of Case I and Case II.
We can see a synchronous reverse trend similarity in the fist
85% time of the whole process. As the degradation deepens,
the dent or defect will make the stresses and energy con-
centration; meanwhile, the dent or defect will make the
signal more periodical. However, when close to failure, the
energy increased rapidly, but the complexity does not
change much. We surmise that the defect is completed on
the surface of interactions and competitions. We consider
that the defect signal accounts for a large proportion of the
overall signal. A simple example is that if a signal’s amplitude
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increases proportionately, then the complexity of each
formed signal during the process is unaltered. In turn, when
the bearing turns close to the failure, the difference between
impact amplitude and overall signal is not so high.

+rough the run-to-failure process, the RMS destines to
have an increasing trend and the SampEn destines to have a
decreasing trend. In addition, we have used all the IEEE
PHM 2012 Prognostics Challenge bearings’ data for vali-
dation. +ough some of results show a long period flat, at
least it lines with the regulation close to the failure. It is
worth to mention that the sampling time and sampling
frequency should be constant, or there exists a jump at the
point of the change. Future work should focus on finding or
proposing better representatives of energy and complexity
features combined with new signal processing techniques.

+e fault information can be better extracted through these
techniques.

7. Conclusions

In this study, we have summarized the criterion of degra-
dation features. And then, we have listed multifeatures of
rolling bearings using two run-to-failure bearings’ data. We
have classified them in their different domains. +rough the
process, we have found a trend similarity of degradation
features whose dimensions are the same. We use the DFD
and propose CI to approximately measure this similarity. By
doing this, we can simply categorize the degradation features
in two classes, namely, uptrend and downtrend features.
RMS and SampEn are two good representatives of them.+e
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Figure 22: Overview of PRONOSTIA.
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degradation process can be presented through these two
features. +is method gives an alternative way for di-
mensionality reduction of the rolling bearings’ degradation
features.
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All the data used to support the findings of the study can be
downloaded from http://data-acoustics.com. +e detail of
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