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+e bending vibration of tensioned ball screw under nonuniform stress in the cutting process is analyzed in this paper.
Differential equation of a beam under nonuniform prestress is derived according to Euler–Bernoulli beam theory. A method
to solve the differential equation under different boundary conditions is proposed based on the segmentation method. +e
correctness of the method is verified by comparison with the traditional method and experiment, respectively. +e dynamic
analysis of tensioned ball screw under nonuniform stress in the cutting process is carried out with this method.+e influence
of the location on the ball screw and amplitude of the axial force produced in the cutting process on natural frequencies of
ball screw is researched. Results show that the greater the force, the greater the change in natural frequencies. Furthermore,
the change of first two natural frequencies presents a simple harmonic trend with the force moving along the ball screw.
Taking a set of cutting force data as an example, the instantaneous frequency of tensioned ball screw in the cutting process is
calculated in the end.

1. Introduction

Ball screw feed drives are widely used in machine tools due
to their high stiffness and accuracy.+e positioning accuracy
and speed directly determine the quality and productivity of
machine tools [1]. For the speed-up of machine tools, the ball
screw feed drives operate at high speed, which leads to the
increase of vibration and position errors [2]. Hence, it is
necessary to study the dynamic characteristics of ball screw
feed drives.

In recent decades, scholars have done a lot of research
on the vibration characteristics of ball screw. Dynamic
modeling of the ball screw feed drive system is one of the
important research contents. Choi et al. [2] proposed a 6
degree-of-freedom lumped parameter model in order to
investigate the dynamic characteristics of ball screw feed
drive system. Zhang et al. [3] proposed an analytical
modeling approach of ball screw feed drive system
modeled by a mass-spring system. With this approach, the
dynamic behavior of the feed drive system could be

proposed. Based on the system modeling methods, some
scholars have studied the influence of some factors on the
dynamic performance of the system. Wang et al. [4]
studied the effect of stiffness of rolling joints on vibrations
of ball screw feed drive system in a milling machine by
numerical calculation. Jiang and Zhu [5] built a dynamic
model of linear guideway joint with ball screw and ana-
lyzed the influence of cutting load on the dynamic stiffness
of joint part. Hung et al. [6, 7] considered the preload of
linear guides in the ball screw feed drive and analyzed the
dynamic behavior of a vertical column-spindle system.
+e modeling methods are also used for error compen-
sation. Huang et al. [8] and Li et al. [9] proposed the
dynamic models to derive the elastic deformation of the
feed drive system. +en, the results were used to offset the
position commands that are fed to the servo controller.
Although these studies have researched the dynamic
characteristics of the ball screw feed drive system, most of
them do not consider the influence of prestress on the
dynamic performance of the ball screw.
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In fact, prestress has a certain effect on the dynamic
characteristics of some structures, especially plates and
beams. Bideau et al. [10] researched the modal of shearable
beams with initial finite strain and found that the frequency
increased with prestress. Ashwear and Eriksson [11] studied
the natural frequencies of the tensegrity structures with
prestress. Using the Euler–Bernoulli beam element, the
stiffness matrix and the mass matrix were formulated. It was
found that the natural frequencies may rise or fall when the
level of prestress increased for a certain tensegrity structure.
Nieves et al. [12] studied the nonlinear bending vibration of
a thick plate subjected to axial forces with the employment of
the theory of nonlinear deformation. +ese research studies
mainly considered the influence of the uniform prestress on
the dynamic performance of structures. In order to analyze
the influence of complex prestress distribution on structural
dynamic performance, some finite element methods (FEM)
considering prestress are proposed. Kashani et al. [13] de-
veloped the dynamic finite element method to analyze the
prestressed, bending-torsion coupled beams. Zhang et al.
[14] adopted the prestressed component mode synthesis
method to optimize the mistuned bladed disk considering
the prestress. Li et al. [15] put forward a prestressed com-
ponent modal synthesis superelement method for vibration
analysis of aeroengine blisk structure. +e accurate results
can be obtained with FEM when enough elements are
established. However, the calculation difficulty is relatively
great [14]. Meanwhile, the FEM considering the prestress is
difficult to analyze. Some scholars established differential
equations of the structures with complex prestress distri-
bution to conduct the dynamic analysis. Li and Chen [16]
researched the top-tensioned rider in consideration of
complex prestress distribution. +e differential equation of
the rider with complex prestress distribution was estab-
lished, and Galerkin’s procedure was employed to solve the
equation. However, the boundary condition at both ends of
the rider was modeled as simple support which was not
applied to all structures. Li [17] introduced a new analytical
method of instantaneous frequency based on experimental
data, namely, the Hilbert–Huang transform method. An
experiment was carried out with a simply supported beam,
and the data were analyzed in the basis of fast Fourier
transformation and Hilbert–Huang transform methods,
respectively. Because prestressing can increase natural fre-
quency, it is applied in some aspects. Zhang et al. [18] ex-
perimentally found that tension force can effectively
enhance the stiffness and natural frequency of blade-fixture
system. Based on this result, Wan et al. [19] proposed
a method to improve chatter stability of thin-wall milling by
prestressing.

In order to compensate for the axial elastic deformation
in machining, the ball screw is generally assembled by
pretension. +erefore, the ball screw is uniformly pre-
stressed, which may influence the dynamic characteristics of
the ball screw according to existing research. Moreover,
there is axial force applied on the ball screw, and the force
varies in the cutting process. As a result, the ball screw is
subjected to nonuniform stress in the process of machining.

In this paper, bending vibration of tensioned ball screw
under nonuniform stress is analyzed. A method to analyze
the dynamic characteristics of the nonuniformly prestressed
beam under different boundary conditions is proposed. +e
frequencies of a simply supported beam subjected to axial
uniform prestress are calculated on the basis of the method
proposed in this paper and the traditional method, re-
spectively. Moreover, a comparison between the proposed
method and an experiment is carried out. +e correctness of
the method proposed in this paper is then verified. +e
bending vibration of tensioned ball screw is analyzed with
this method, and the effects of the location and amplitude of
the axial force on frequency are investigated. At last, a set of
cutting force data is taken as an example to calculate the
instantaneous frequency of the tensioned ball screw during
the cutting process. +ese findings can provide the guidance
for the design and installation of ball screws and machine
tools. +e dynamic characteristics of other nonuniformly
prestressed beams can also be analyzed based on the method
proposed in this paper.

2. Bending Vibration of a Beam Subjected to
Nonuniform Prestress

+e ball screw is subjected to nonuniform stress during
processing by simple analysis. In order to analyze the dy-
namic characteristics of the ball screw, bending vibration
analysis of a beam subjected to nonuniform prestress is
carried out.

As is known to all, the motion differential equation of
beam bending vibration is as follows when damping is not
considered:

EI
z4w

zx4 + ρA
z2w

zt2
� F(t), (1)

where E is Young’s modulus, I is the moment of inertia of
cross section, ρ is the density, A is the cross section area of
the beam, w is the transversal displacement, x is the axial
coordinate, t is the time, and F(t) is the external force. In
this paper, the influence of the nonuniform distribution of
axial stress is mainly considered, so only the equal-section
beam is analyzed, i.e., I and A are constants.

When the beam is subjected to a nonuniform prestress
distribution, the free vibration differential equation can be
derived as

EI
z4w(x, t)

zx4 + ρA
z2w(x, t)

zt2
−A · σ(x)

z2w(x, t)

zx2 � 0, (2)

where σ(x) is the cross section stress distribution function of
the beam.

By using variable separation, the solution of equation (2)
can be set as follows:

w(x, t) � W(x) U1 cosωt + U2 sinωt( , (3)

where W(x) is the vibration mode function, U1 and U2 are
constants, and ω is the natural frequency.
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+e modal differential equation can be obtained by
substituting equation (3) into equation (2), which is shown
as follows:

EI
d4W(x)

dx4 −ω
2ρA · W(x)−A · σ(x)

d2W(x)

dx2 � 0. (4)

In order to solve equation (4), the solution of equation
(4) is set as

W(x) � U3e
sx

. (5)

When the beam is axially uniformly prestressed, σ(x) �

σ0 is a constant. +en, the root of the equation can be
obtained as follows:

s
2
1, s

2
2 �

σ0A
2EI
±

�������������

σ0A
2EI

 
2

+
ρAω2

EI



, (6)

where s1 is a real number and s2 is an imaginary number.
+en, the vibration mode function W(x) can be

expressed as the following trigonometric function according
to equations (5) and (6):

W(x) � a cosh s1x + b sinh s1x + c cos is2x + d sin is2x,

(7)

where a, b, c, and d are the coefficients and i is the
imaginary unit, i2 � −1.

+erefore, when the beam is subjected to axial uniform
prestress, i.e., as a constant, the corresponding natural
frequency and vibration mode function can be obtained
according to equations (6) and (7).

However, in practical engineering, there may be non-
uniform stress distributions in the beam structure. +e
simple stress distribution form, such as ball screw, has
different stresses in the two segments of the ball screw
separated by the point of force in machining. +e complex
stress distribution form, such as welding beam structure,
may have a continuously changing stress distribution. So,
the application range of the vibration mode function ob-
tained in equation (7) is very limited. Nevertheless, equation
(4) is difficult to solve when σ(x) is a variable with x.

In order to effectively analyze the vibration character-
istics of beams under nonuniform prestress, a discrete vi-
bration analysis method is proposed in this paper based on
the vibration analysis of beams subjected to uniformly
distributed prestress. +e connection between each segment
is established according to the continuity of beams. +e
method can be applied to the bending vibration analysis of
beams under multiple boundary conditions.

According to equations (6) and (7), the beam natural
frequencies can be obtained through simple calculation
when it is subjected to axial uniform prestress. +en, the
corresponding vibration mode function can be obtained.
+erefore, the beamwith nonuniform prestress is discretized
into multiple segments. When the beam is divided into
enough segments, each segment can be approximately
regarded as being uniformly prestressed.

Without loss of generality, the beam with length L is
divided into N segments, each of which is l � L/N, as is

shown in Figure 1. Actually, the length of each segment of
beam is not necessarily L/N, which can be divided according
to the actual stress distribution form. +e jth segment is
taken as the analysis object. +e uniform prestress of the
segment is set as σj. +e length of the jth segment is
lj � l � L/N. +e coordinate of the initial point of jth
segment in the global coordinate system is xj−1, and the
coordinate of the final point in the global coordinate system
is xj, i.e., x ∈ [xj−1, xj]. +e corresponding vibration mode
function can be expressed as follows:

Wj(x) � aj cosh s1,j x−xj−1  + bj sinh s1,j x− xj−1 

+ cj cos is2,j x−xj−1  + dj sin is2,j x− xj−1 ,

(8)

where s21,j, s22,j � (σjA/2EI) ±
���������������������
(σjA/2EI)2 + (ρAω2/EI)


. ω

is the natural frequency of the whole beam with length L.
x0 � 0, xN � L.

Similarly, the corresponding mode function of (j + 1)th
segment of the beam can be expressed as

Wj+1(x) � aj+1 cosh s1,j+1 x−xj  + bj+1 sinh s1,j+j x−xj 

+ cj+1 cos is2,j+1 x−xj  + dj+1 sin is2,j+1 x−xj ,

(9)

where x ∈ [xj, xj+1], s21,j+1, s22,j+1 � (σj+1A/2EI) ±
����������������������
(σj+1A/2EI)2 + (ρAω2/EI)


.

According to the continuity of the beam, the displace-
ment, rotation angle, bending moment, and shear stress of
the beam in the jth and the (j + 1)th sections at the joint
point xj are equal [20], which is shown in the following
equations:

Wj xj  � Wj+1 xj+1 , (10)

Wj
′ xj  � Wj+1′ xj+1 , (11)

W ″j xj  � W ″j+1 xj+1 , (12)

W
(3)
j xj  � W

(3)
j+1 xj+1 . (13)

Equation (14) can be obtained by substituting equations
(8) and (9) into equations (10)∼(13):

B(j+1) � Zj ∗B(j), (14)

where B(j) � [aj, bj, cj, dj], B(j+1) � [aj+1, bj+1, cj+1, dj+1].

Zj �

m1n1 m1n2 m2n3 m2n4

s1,j

s1,j+1
m1n2

s1,j

s1,j+1
m1n1 −

i∗ s2,j

s1,j+1
m2n4

i∗ s2,j

s1,j+1
m2n3

−m4n1 −m4n2 −m3n3 −m3n4

−
s1,j

i∗ s2,j+1
m4n2 −

s1,j

i∗ s2,j+1
m4n1

s2,j

s2,j+1
m3n4 −

s2,j

s2,j+1
m3n2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(15)
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where

m1 �
s21,j − s22,j+1

s21,j+1 − s22,j+1
,

m2 �
s22,j − s22,j+1

s21,j+1 − s22,j+1
,

m3 �
s22,j − s21,j+1

s21,j+1 − s22,j+1
,

m4 �
s21,j − s21,j+1

s21,j+1 − s22,j+1
,

n1 � cosh s1,jlj,

n2 � sinh s1,jlj,

n3 � cos i∗ s2,jlj ,

n4 � sin i∗ s2,jlj .

(16)

+erefore, the relationship between B(1) and B(N) can be
obtained as

B(N) � Z∗B(1), (17)

where Z � ZN−1ZN−2 . . . Z2Z1 can be obtained according to
equation (15).

According to equation (17), the coefficients of the vi-
bration mode function of both 1st and Nth segment of the
beam can be represented by B(1) � [a1, b1, c1, d1].
+erefore, the equation about the coefficients B(1) can be
obtained by substituting the boundary conditions at both
ends of the beam corresponding to x � 0 and x � L into the
mode function equation (8):

Γ ∗B(1) � 0, (18)

where the matrix Γ is obtained according to the boundary
conditions at both ends of the beam and contains the pa-
rameter ω (natural frequency).

Since there must be a mode function of the beam,
B(1) ≠ 0. To make equation (18) true, the determinant of Γ
should be zero, which is shown in the following equation:

|Γ| � 0. (19)

According to equation (19), the natural frequencies ω of
beam with corresponding constraint form under axial

nonuniform prestress can be obtained.+e coefficients of the
vibration mode functions of 1st segment of the beam can be
obtained by substituting the obtained natural frequencies
into equation (18). +en, the vibration mode function of 1st
segment of the beam can be determined.+e vibration mode
functions of each segment of the beam can be obtained by
substituting B(1) into equation (14). +erefore, the vibration
mode functions of the whole beam with corresponding
constraint form can be obtained under axial nonuniform
prestress.

3. Verification of the Correctness of the
Proposed Method

In order to verify the correctness of the method proposed in
this paper, a simply supported beam subjected to axial
uniform prestress is taken as the analysis object, and the
calculation results of the proposed method are compared
with those of the traditional method [11, 21] which is
employed to analyze the uniformly prestressed beams.

+e calculation formula of natural frequencies for
transverse vibration of simply supported beam under axial
uniform stress is given in reference [11, 21], i.e.,

ωn �
π2

L2

���
EI

ρA



n
4

+
n2PL2

π2EI
 

1/2

, (20)

where L is the total length of the beam, P is the axial tensile
force, and n indicates the order of the natural frequency
(n � 1, 2, 3, . . .).

+e beam is divided into two sections, each with a length
of 0.5 l. Each section is subjected to uniform prestress
σj � (P/A)(j � 1, 2). +e natural frequencies are calculated
with the method proposed in this paper and the traditional
method, respectively.

+e boundary conditions at both ends of the simply
supported beam are zero displacement and bending mo-
ment, i.e.,

W1(0) � 0,

W ″1 (0) � 0,

WN(L) � 0,

W ″N(L) � 0,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(21)

where N � 2 since the beam is divided into 2 sections.
Equations (8) and (9) are substituted into equation (21),

which is shown in the following equations:

l l l l l

j

X

Y

0 xj–1 xj L

l

Figure 1: Section diagram of the beam.
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1 0 1 0

s211 0 s221 0
 

a1

b1

c1

d1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

� Γ10

a1

b1

c1

d1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

� 0, (22) ΓN0

aN

bN

cN

dN

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
� 0, (23)

where

ΓN0 �
cosh s1NlN(  sinh s1NlN(  cos i∗ s2NlN(  sin i∗ s2NlN( 

s21N cosh s1NlN(  s21N sinh s1NlN(  s22N cos i∗ s2NlN(  s22N sin i∗ s2NlN( 

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦. (24)

+en, equation (17) is substituted into equation (23) to
obtain matrix Γ, which consists of Γ1 and ΓN:

Γ1
ΓN

 

a1

b1

c1

d1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

� Γ

a1

b1

c1

d1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

� 0, (25)

where Γ1 � Γ10, ΓN � ΓN0 · Z.
+erefore, the natural frequencies can be obtained

according to equation (19).
+e specific parameters take l � 1m, ρ � 7830 kg/m3, E �

2.19 × 1011 Pa, μ � 0.3, d � 0.02m, and P � 1000N. +e
calculation results are shown in Table 1.

As shown in Table 1, when two decimal places are
retained, the errors of the first four orders natural fre-
quencies calculated by the method proposed in this paper
and the method in reference [11, 21] are 0.00.

To further illustrate the correctness of the method, an
experiment was carried out. +e first-order natural fre-
quency of a beam with a diameter of 0.006m was tested
under different axial tensile force. +e material of the beam
was SUS303. +e test length of the beam was 0.51m. +e
force hammer, laser accelerometer, and tension machine
were used for excitation, signal acquisition, and application
of axial tensile force, respectively. +e axial tensile force was
firstly acted by the tension machine. After the axial tensile
force was stable, the beam was hammered and the accel-
eration signal was collected by laser accelerometer.+em+ p
international SO Analyzer was used to signal collection
(used in conjunction with laser accelerometer) and analysis.
+e test device is shown in Figure 2. +e results are obtained
as Table 2 and Figure 3. According to the results of analysis
and experiment, the correctness of the method proposed in
this paper can be verified.

4. Bending Vibration Analysis of
a Nonuniformly Prestressed Ball Screw

Based on the proposed method, the quasistatic analysis of
a tensioned ball screw during the cutting process is carried

out, i.e., the axial force applied on the ball screw is a constant
during analysis.

During analysis, both ends of the ball screw are fixed
and there is a prestretch of L′ −L in the ball screw,
resulting in prestress σ0. In order to simplify the analysis,
the ball screw is simplified to a cylindrical beam.
Meanwhile, the influence of the prestretch L′ − L on the
total length L is ignored since L′ − L is much smaller than
L. In this paper, only the effect of the axial force on the
vibration characteristics of ball screw is considered be-
cause the ball screw only constrains the degree of freedom
of the axial translation of the slide table. In general, only
one slide table is installed on the ball screw for mounting
the tool holder. +erefore, the ball screw is divided into
two sections, and it is considered that each section of ball
screw is uniformly stressed, respectively, in this paper.+e
simplified model is shown in Figure 4, and the three-
dimensional model of the linear guideway and ball screw
system is shown in Figure 5.

Under the hypothesis of small amplitude vibrations,
it is neglected the constraint constituted by the slide
guide for the presence of backlash. +e transversal
component of the cutting force is therefore not absorbed
by the slide guide. Consequently, the boundary condi-
tions at both ends of the simplified model shown in
Figure 4 are that both the displacement and the rotation
angle are zero.

W1(0) � 0,

W1′(0) � 0,

WN(L) � 0,

WN
′ (L) � 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(26)

+erefore, matrix Γ can be obtained similar to Section 2,
which is shown as

Γ �
Γ1

ΓN

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ �
Γ10

ΓN0 · Z

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦, (27)

where
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Γ10 �
1 0 1 0

0 s11 0 i∗ s21
 ,

ΓN0 �
cosh s1NlN(  sinh s1NlN(  cos i∗ s2NlN(  sin i∗ s2NlN( 

s1N sinh s1NlN(  s1N cosh s1NlN(  −i∗ s2N sin i∗ s2NlN(  i∗ s2N cos i∗ s2NlN( 
 ,

(28)

where

N � 2, s
2
1,j, s

2
2,j �

σjA

2EI
±

�������������

σjA

2EI
 

2

+
ρAω2

EI




,

j � 1, 2.

(29)

+e natural frequencies of the transverse vibration of the
ball screw can be obtained by substituting equation (27) into
equation (19). +en, the proportional relationship between
a1, b1, c1, and d1 can be obtained according to equation
(26), and B(2) � [a2, b2, c2, d2] can also be obtained
according to equations (17) and (30). Moreover, the vi-
bration mode function of the ball screw can be achieved
according to B(1) and B(2), which is shown as

a1 : b1 : c1 : d1 � 1 :
Γ(3, 1)−Γ(3, 3)

Γ(3, 2)− s11/i∗ s21( Γ(3, 4)
: − 1 :

s11

i∗ s21

Γ(3, 1)−Γ(3, 3)

Γ(3, 2)− s11/i∗ s21( Γ(3, 4)
, (30)

W(x) �
a1 cosh s1,1 x− x0(  + b1 sinh s1,1 x−x0(  + c1 cos is2,1 x−x0(  + d1 sin is2,1 x− x0( , 0≤x≤ l1,

a2 cosh s1,2 x− x1(  + b2 sinh s1,2 x−x1(  + c2 cos is2,2 x−x1(  + d2 sin is2,2 x− x1( , l1 ≤x≤L,
 (31)

Table 1: Comparison of calculation results of natural frequencies of simply supported beam under axially uniform prestress between two
methods.

Order
Calculation results of natural frequencies (Hz)

Error
+is paper Reference [11, 21]

1 42.74 42.74 0.00
2 167.37 167.37 0.00
3 375.05 375.05 0.00
4 665.81 665.81 0.00

Table 2: First-order natural frequency of the beam under different axial tensile forces.

Axial tensile force (N)
First-order natural frequency (Hz)

Error (%)
+is paper Experiment

0 45.49 44.5 2.18
265 56.62 55.5 1.98
505 65.07 66 −1.43
775 73.43 75 −2.14
1005 79.86 81 −1.43

(a)

Laser accelerometer

Test beam
Tension machine

Force hammer

(b)

Figure 2: +e natural frequency test of the prestressed beam. (a) +e test beam. (b) +e test device.
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where x0 � 0, x1 � l1.
�e following typical ball screw parameters are taken to

analyze l � 1m, ρ � 7830 kg/m3, E � 2.19 × 1011 Pa, μ �
0.3, d � 0.02m, andL′ −L � 0.04mm. �e natural fre-
quencies of ball screw with predeformation are calculated, as
is shown in Table 3. �e eect of the predeformation on the
�rst-order natural frequency is shown in Figure 6.

According to Table 3 and Figure 6, it can be seen that
prestress has certain in�uence on the natural frequencies
of the ball screw. �e �rst-order natural frequency of the
ball screw increases with the increase of the predeformation.

�e natural frequency presents a power level change f �
a · (ΔL + b)1/2 with the change of predeformation ΔL, which
is consistent with the relationship between angular fre-
quency and stress in reference [16]. A sudden change occurs
when ΔL approaches −1 × 10−3 m in Figure 6. �is phe-
nomenon is due to the instability of the ball screw.

L′
L

Fl1

Figure 4: Simpli�ed model of the ball screw.
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Figure 3: �e test results of the beam under dierent axial tensile forces (solid line: frequency response function; dotted line: coherence
function). (a) F� 265N. (b) F� 505N. (c) F� 775N. (d) F� 1005N.

Ball screw
Linear guideway

Slide table

Figure 5:�ree-dimensional model of the linear guideway and ball
screw system.
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Figure 6: Eect of the predeformation on the �rst-order natural
frequency.

Table 3: Natural frequencies of ball screw with predeformation.

Order
Frequency (Hz)

Nonstress Prestretching L′ −L � 0.04mm Dierence
1 94.16 95.99 1.83
2 259.55 262.05 2.5
3 508.83 511.57 2.74
4 841.12 844 2.88
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In fact, for the beam structure with fixed supports at both
ends, the critical force of its instability is shown in the
following equation [22] when subjected to pressure:

Fcr �
π2EI

(0.5L)2
, (32)

where L is the total length of the beam.
It can be obtained that the critical force of the ball screw

analyzed in this paper is Fcr � 67904N by substituting the
parameters into equation (32). +e corresponding pre-
deformation is −9.8696 × 10−4 m, which is consistent with
the mutation phenomenon in Figure 6.

Furthermore, the influence of the location and amplitude
of the axial force on natural frequencies of ball screw is
researched.+e first two natural frequencies of the ball screw
corresponding to different locations and amplitudes of the
axial force are calculated as shown in Figure 7.

As shown in Figure 7, the first two natural frequencies
show a trend of simple harmonic variation with the
movement of the force point from x � 0 to x � L, where the
direction from x � 0 to x � L is the direction of force F. +e
period of second-order frequency is twice that of first-order
frequency. +e force F has almost no influence on the
natural frequencies of the ball screw as the force position at
the centre point of the screw.Moreover, the greater the force,
the greater the change in natural frequency.

+e first-order natural frequency will affect the devel-
opment of the maximum speed of the ball screw (generally,
the speed of the ball screwmust be lower than 80% of the first
critical speed to avoid severe bending vibrations). +erefore,
the influence of the cutting force on the first-order natural
frequency of the ball screw is further studied. +e first-order
natural frequencies under different forces are calculated
when the force position is 0.3 L as shown in Figure 8. +e
results show that the natural frequency decreases with the
increase of the applied force. According to equation (2), the
natural frequencies of ball screw are actually directly related
to stress in the ball screw. Meanwhile, the diameter of the
ball screw will influence its stress. Hence, the change rate of

first natural frequency with an axial component of the
cutting force (1000N) relative to that without cutting force
for different diameters of ball screw is calculated as shown in
Figure 9. According to Figure 9, the change rate of the first
natural frequency exceeds 20% when the diameter is less
than 0.006m. +e results further illustrate that the greater
the stress in the ball screw, the greater the change in natural
frequency. Consequently, the cutting force will reduce the
screw transversal stiffness when the force point is in some
positions. In some cases, it is even possible that the first
critical speed can be reached during operation.

5. Instantaneous Frequency of Tensioned Ball
Screw during the Cutting Process

In the fourth section, quasistatic analysis of ball screw is
carried out. However, the axial force applied on the ball
screw changes at all times during machining. +erefore, the
natural frequencies also vary with the axial force.

In order to research the instantaneous frequencies of
tensioned ball screw during the cutting force, a surfacing
machining process is carried out to obtain the typical varying
axial cutting force. +en, the data are employed to calculate
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Figure 7: Influence of the location and amplitude of the axial force on natural frequencies of the ball screw. (a) First-order natural frequency.
(b) Second-order natural frequency.
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Figure 8: First natural frequencies of ball screw under different
forces (d � 0.02m, force position is 0.3 L).
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the instantaneous frequencies based on the method pro-
posed in this paper. +e processing parameters of the
process are shown in Table 4. +e axial cutting force is
acquired by Kistler9129AA, as shown in Figure 10. 2-second
cutting force data in stable machining state are intercepted in
the paper, and the time domain signal is shown in Figure 11.

As the ball screw constrains the degree of freedom of the
axial translation of the slide table while the linear guideway
constrains the other five degrees of freedom of the slide table;
it is easy to analyze that the axial force applied on the ball
screw is equal to the axial cutting force applied on the cutting
tool.+en, according to the data obtained by the test, the first
two instantaneous frequencies of tensioned ball screw are
calculated with the initial location of the force in x � 0.25 L.
+e results are shown in Figure 12.

According to Figure 12, the axial cutting force has certain
influence on the natural frequencies of the tensioned ball
screw. +e maximum natural frequency of the first order is
95.89Hz while the minimum natural frequency of the first
order is 95.89Hz.+e influence of the axial cutting force will
be greater when the axial cutting force is greater or the ball
screw stiffness is lower. +erefore, the frequency range
should be taken into account in the design process rather
than simply considering the frequency without prestress.

6. Conclusion

In this study, to investigate the influence of the cutting
process on the natural frequency of tensioned ball screw,
a new method to analyze the bending vibration of a beam
under nonuniform prestress is proposed. +is method is
suitable for vibration analysis of beams under different
boundary conditions. +e numerical results show that axial
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Figure 12: First two instantaneous frequencies of tensioned ball
screw during the cutting process.
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Figure 10: Surfacing machining process.
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Figure 11: Time domain signal of axial cutting force.

Table 4: Processing parameters of the process.

Spindle
speed

Feed
rate

Cutting
quantity
(one side)

Workpiece
material

1000 r/min 300mm/min 1mm 45#
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force applied on the ball screw produced in the cutting
process has a certain influence on the dynamic character-
istics of the ball screw. A surfacing machining process is
carried out, and the cutting force data are obtained to
calculate the instantaneous frequency of ball screw.
According to the research in this paper, the frequency range
should be considered in the design process of ball screws and
machine tools.
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