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A dynamic model of the rotating shrouded blade is established, considering the shroud mass, the Coriolis force, and the
centrifugal stiffening effect. And a macroslip model of dry friction with variable normal load is established to simulate the
separation-contact-stick-slip state of the shroud.*e Lagrangian equation is utilized to solve the differential motion equation, and
the Galerkin method is used for discretization. *e influence of shroud structure’s parameters such as rotational speed, contact
angle, friction coefficient, clearance, and shroud position on the damping effect of the shroud is reviewed by means of amplitude-
frequency response and energy through the Newmark-β numerical method.*e results demonstrate that the damping effect of the
shroud by contact is more obvious than by friction and the amplitude-frequency curve of the shrouded blade shows a strong hard
nonlinear phenomenon.

1. Introduction

As an important component of aero-engines, blades are
subjected to high-cycle fatigue. In order to make the rotating
blade more reliable, the method of adding shrouds to the
blade is often used to solve the problem in engineering. *e
shroud can increase the rigidity and the natural frequency of
the blade, and when the blade is vibrating, the working
surface of the shroud can rub against each other to absorb
vibration energy [1]. *e process of contact vibration with
shrouded blades is very complex and usually includes
separation-contact-stick-slip states, with typical nonlinear
characteristics.

Due to the complexity of nonlinear problems, it is
difficult to obtain accurate dynamic responses. *erefore,
many researchers use the “macroslip” model to study the
motion of the contact surface of the shroud. *is method
regards the contact surface as a rigid body; when sliding, all
the points on the contact surface are in the same state, and

the contact can be approximated as point-to-point [2–4].
Menq and Yang [5] suggested that the friction interface is an
elastic body if the normal load acting on the interface is high
enough, and it is capable of modeling partial slip before all
points slip. So, they investigated a two-dimensional model
by assuming points of contact move in a circular path and
dividing the contact into the parallel connection of some
small macroslip model elements. In addition, the lumped
mass model can be used to analyze the damping mechanism
of the shrouded blade easily. At early stages, Menq et al. [6]
analyzed the nonlinear friction of the contact surface by
establishing a lumped mass model of a bladed disk with the
shroud. Muszynska and Jones [7] simplified the shrouded
blade into a lumpedmass of multi-degree-of-freedommodel
and studied the dynamic response of the two-degree-of-
freedommodel as well as the four-degree-of-freedommodel.
Recently, Nan and Ren [8] modeled the shrouded blade as
a mass-spring model and considered couplings of axial and
tangential displacement of the shrouded blade. He et al. [9]

Hindawi
Shock and Vibration
Volume 2019, Article ID 6594345, 16 pages
https://doi.org/10.1155/2019/6594345

mailto:chfli@mail.neu.edu.cn
http://orcid.org/0000-0001-6335-5608
http://orcid.org/0000-0001-9044-4657
http://orcid.org/0000-0002-2786-2490
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2019/6594345


established a lumped mass model of integrally shrouded
group blades considering centrifugal stiffening of the blade
as well as rubbing and impact between adjacent shrouds.
Machado et al. [10] compared and analyzed the most
common compliant contact force models of the last de-
cades, and results in terms of the dynamic simulations of
multibody systems are presented, which allow the com-
parison of the similarities and differences among the
models considered.

As technology progressed, researchers began to use
continuum models to study the shrouded blades. At first,
Bab et al. [11] studied the effects of flexible blades and rigid
blades on the system, and they found the system with rigid
blades becomes completely stable in higher values of the
mass eccentricity compared to the system with flexible
blades. Choi and Chou [12] modeled a shrouded blade as
a pretwisted Timoshenko beam with varying cross section
and used the modified differential quadrature method to
analyze the vibration of elastically supported blades.
However, they only considered the effect of the shroud’s
mass and did not study the effect of the contact surface.
Szwedowicz et al. [13] studied the free and forced vibration
of shrouded blade-disk systems through the analytical
method and validated the analytical model by experiment,
but they only considered the frictional effects. Cao et al.
[14] proposed an approximate approach to study the
dynamic responses of blades constrained by friction in-
terfaces and investigated the nonlinear dynamic charac-
teristics of blades. Cao et al. [15] investigated a full-circle
stage of steam turbine with shroud and labyrinth seals
under the steam exciting force by numerical simulator
CFX. Chu et al. [16] used the average method to establish
a nonlinear equation of motion and used blade’s bending
stiffness as the shroud’s collision stiffness to study the
rubbing response of the shrouded blade. Based on previous
research [8], Nan [17] developed a model composed of
springs and a cantilever beam carrying a mass to simulate
the shrouded blade, considering the effects of the cen-
trifugal stiffening, spin softening, and Coriolis force. Ma
et al. [18] established a dynamic model of rotating
shrouded blades and analyzed the effects of symmetric and
asymmetric shroud gaps, rotational speeds, and aero-
dynamic force amplitudes on the dynamic characteristics
of shrouded blades. Based on their previous work, Xie et al.
[19] used two different impact models to analyze the effects
of different parameters on the vibration responses of the
shrouded blades. In previous studies, the blades were
considered as beam model, but Ghazavi et al. [20] con-
sidered the blades as inverted pendulums, and the effect of
rotor and blade damping as well as rotating speed is
investigated.

In addition, some researchers used the finite element
(FE) model to study the shrouded blade. Petrov [21] used the
finite element method to analyze the influence of parameters
such as the friction coefficient, contact surface stiffness
(normal and tangential coefficients), clearances, in-
terferences, and the normal stresses at the contact interfaces

on the vibration response of the blade. Gu et al. [22–24]
proposed a three-dimensional numerical friction contact
model to investigate the nonlinear vibration of a damped
blade through the FE model. Zucca et al. [25] computed the
actual contact area on the shroud surface and the distri-
bution of normal static loads through the FEmodel. Liu et al.
[26, 27] proposed an improved hybrid frequency-time do-
main method to efficiently study the nonlinear response of
blade systems subject to dry friction damping and estab-
lished a shrouded blade model with frictional contact by the
finite element method. *rough different contact surfaces
and different loading methods, the friction force was de-
termined and the contact state between the contact surfaces
of the shroud was analyzed.

In previous studies, researchers have constantly been
improving the contact model of the shroud and used
a variety of methods to solve the response of the blade, but
few scholars analyzed the damping mechanism of the
shroud comparing the damping effect of friction and
contact and consider the influences of the shroud mass,
and the contact force generated by the shroud during the
contact process is not always linear. Based on Hunt KH’s
[28] nonlinear contact theory and considering the in-
fluences of the shroud mass, this paper established
a contact force model with dry friction model to simulate
the contact state of rotating shrouded blades. *en, taking
the rotational speed, contact angle, friction coefficient,
clearance, and shroud position as parameters, the vibra-
tion mechanism of the rotating shrouded blade is in-
vestigated from the perspective of nonlinear response and
energy.

2. Dynamic Model and Equation

When the number of shroud blades on the disk is more
than 6, the whole group of integrally shrouded blades will
form a circular structure. In order to study the influence of
contact force and friction force to the vibration charac-
teristics of shrouded blades, it is reasonable to establish
a model with three shroud blades, and the model diagram
of shrouded blades is shown in Figure 1(a), and considering
the mass of shroud and the rotational effects of the
shrouded blade, a schematic of shrouded blades and the
corresponding coordinate system is shown in Figure 1(b).
*e cantilever Euler–Bernoulli beam is used to simulate the
flexible shrouded blade clamped on the rigid disk. Since the
contact force and friction force in the proposed model are
characterized by the relative motion, to simplify calcula-
tions, the blades on the right and left side will be assumed as
fixed ground.

In Figure 1(b), OXYZ is the global coordinate; oxyz is
the local coordinate of an arbitrary point Q on the blade;
and Rd, ΩL, δ, ms and 􏽥L represent disk radius, rotational
speed (rad/s), the length of blade, the clearance between
adjacent shrouds, shroud mass, and the position of the
shroud, respectively. It is worth noting that the x, y, and z
directions are in accordance with the radial, flexural, and
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swing directions of the rotating blade. In order to solve the
kinetic energy of the blade, the displacement vectors rQ of
an arbitrary point Q in the global coordinate system can be
expressed as

rQ � A1 rQ0 + δQ􏼐 􏼑 � A1

Rd + x + u

v

w

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

rQ0 �

Rd + x

0

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

δQ �

u

v

w

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

(1)

A1 �

cos ϑ sin ϑ 0
−sin ϑ cos ϑ 0

0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (2)

where x is the position of the Q point on the x-axis of the
local coordinate system and u, v, and w are the displace-
ments of the Q point along the x, y, and z axes of the local
coordinate system, respectively. A1 is the transformation
matrix of the local coordinate system to the global co-
ordinate system, ϑ � Ωt.

It is worth noting that because this paper considers the
influence of the shroud mass, it is also necessary to solve the
kinetic energy of the shroud, and the displacement vectors rs
of shroud in the global coordinate system can be expressed
as

rs � A1 rs0 + δs( 􏼁 � A1

Rd + 􏽥L + uL􏽥

vL􏽥

wL􏽥

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

rs0 �

Rd + 􏽥L

0

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

δs �

uL􏽥

vL􏽥

wL􏽥

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

(3)

where 􏽥L is the position of the shroud on blade. In this paper,
􏽥L � 2L/3; uL􏽥, vL􏽥, andwL􏽥are the displacements of the shroud
along the x, y, and z axes of the local coordinate system,
respectively.

*e velocity vector vQ of point Q and the velocity vector
vs of the shroud can be written as

vQ � _rQ,

vs � _rs.
􏼨 (4)

So, the total kinetic energy Tof the shrouded blade can be
written as

T � Tb + Ts,

Tb �
1
2

􏽚
L

0
Δmv2Qdx �

1
2
ρA 􏽚

L

0
_r2Qdx,

Ts �
1
2
ms _r

2
s ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(5)
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Figure 1: (a) *e model diagram of shrouded blades. (b) Schematic diagram of rotating shrouded blades in a constant speed.
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where ρ denotes the density of blade and A is the cross-
sectional area of the blade.

Substituting formulas (1)∼(4) into formula (5),

Tb �
1
2

􏽚
L

0
􏼔 _u

2
+ _v

2
+ _w

2
+ 2Ωv _u− 2Ωu _v− 2Ω Rd + x( 􏼁 _v

+Ω2 Rd + x( 􏼁
2

+ 2Ω2 Rd + x( 􏼁u +Ω2 u
2

+ v
2

􏼐 􏼑􏼕ρAdx,

Ts �
1
2
ms􏼔 _u

2
L􏽥 + _v

2
L􏽥 + _w

2
L􏽥 + 2ΩvL􏽥 _uL􏽥 − 2ΩuL􏽥 _vL􏽥

− 2Ω Rd + x + 􏽥L( 􏼁 _vL􏽥+Ω2 Rd + x + 􏽥L( 􏼁
2

+ 2Ω2 Rd + x + 􏽥L( 􏼁uL􏽥+Ω2 u
2
L􏽥 + v

2
L􏽥􏼐 􏼑􏼕.

(6)

*e effect of the shroud on the structural stiffness of the
blade is ignored, so the total potential energy U of the blade
is given as

U �
1
2

􏽚
L

0
EA

zu

zx
􏼠 􏼡

2

dx +
1
2

􏼢􏽚
L

0
EIz

z2v

zx2􏼠 􏼡

2

dx

+ 􏽚
L

0
fc

zv

zx
􏼠 􏼡

2

dx􏼣 +
1
2

􏼢 􏽚
L

0
EIy

z2w

zx2􏼠 􏼡

2

dx

+ 􏽚
L

0
fc

zw

zx
􏼠 􏼡

2

dx􏼣,

(7)

where E is the modulus of elasticity, Iz is the cross section
inertia moment of z direction of blade, Iy is the cross section
inertia moment of y direction of blade, and fc(x) is the
centrifugal force and the expression is

fc(x) �

ρAΩ2 􏽚
L

x
Rd + x( 􏼁dx + msΩ

2
Rd + 􏽥L( 􏼁, 0≤x≤ 􏽥L,

ρAΩ2 􏽚
L

x
Rd + x( 􏼁dx, 􏽥L<x≤ L.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(8)

By using the Galerkin method to discretize the radial,
flexural, and swing displacements of blade with their first n
modes and introducing the generalized coordinates qui(t),
qvi(t), and qwi(t), according to the assumed mode method,
the radial displacement u(x, t), flexural displacement v(x, t),
and swing displacement w(x, t) of the blade can be trans-
formed into

u(x, t) � 􏽘
n

i�1
φi(x)qui(t) � φTqu,

v(x, t) � 􏽘
n

i�1
ϕi(x)qvi(t) � ϕTqv,

w(x, t) � 􏽘
n

i�1
ηi(x)qwi(t) � ηTqw,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(9)

where φi(x), ϕi(x), and ηi(x) are the ith mode shape functions
for radial, flexural, and swing vibrations, respectively, whose
expressions can be written as follows [18]:

φi(x) � sin
2i− 1
2

πx

L
􏼒 􏼓,

ϕi(x) � ch
λi

L
x− cos

λi

L
x−

shλi − sin λi

chλi + cos λi

sh
λi

L
x− sin

λi

L
x􏼠 􏼡,

ηi(x) � ch
λi

L
x− cos

λi

L
x−

shλi − sin λi

chλi + cos λi

sh
λi

L
x− sin

λi

L
x􏼠 􏼡,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(10)

where i� 1, 2, 3, . . ., n (n is the number of modal truncation),
and in this paper, n� 3. λi is the eigenvalue of the ith mode
shape function in flexural and swing direction, which can be
obtained by the frequency equation [18]:

1 + cos λichλi � 0. (11)

Substituting the discrete displacement of the blade into
the kinetic energy and potential energy equation, by using
the Lagrange equation, the equations of motion of the
shrouded blade can be written as

M €X +(C + G) _X + Kb + Kc + Ks( 􏼁X � F, (12)

where X is the generalized coordinates vector and M, G, C,
Kb, Kc, and Ks are the mass matrix, Coriolis force matrix,
damping matrix, structural stiffness matrix, centrifugal
stiffening matrix, and spin softening matrix, respectively. F
is the external force vector that contains external excitation,
contact force, and friction force; the expressions of contact
force and friction force will be derived in the next section;
the sinusoidal excitation (F0 sin ωt) is used as the external
excitation and is applied in the flexural and swing directions
of the blade. Because the damping coefficient is mainly
obtained by the test, this paper uses the Rayleigh damping
model to describe the damping of the blade, and the ex-
pression can be written as

C � α0M + β0Kb, (13)

where α0 � 4π((ξ2/ω2)− (ξ1/ω1))/((1/ω2
2)− (1/ω2

1)); β0 �

(1/π)(ξ2ω2 − ξ1ω1)/(ω2
2 −ω2

1); ω1 and ω2 are first- and
second-order circular frequency, respectively; ξ1 and ξ2 are
the first- and second-order damping coefficient, respectively;
all the above expressions of these matrices are shown in
Appendix.

3. Contact Model

Figure 2 is a specific model diagram of the shroud blade, in
which the shroud is equivalent to a spring kh, and the blade
located in the middle bears the contact force and friction
from the left or right-side shroud when vibrating, where α is
the contact angle of the shroud, δ is the clearance between
the adjacent shrouds, kt is the shear stiffness of friction
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model, dl
t and dr

t are the tangential displacement of the left
and right-side shroud, respectively, and d1

n and dr
n are the

normal displacement of the left and right-side shroud.
Based on the contact theory proposed by Hunt and

Crossley [28], the normal pressure on the total contact
surface FN can be expressed as

FN � F
l
N + F

r
N, (14)

F
l
N �
−kh dr

n − δ( 􏼁
3/2

, δ < dr
n,

0, dl
n ≤ δ,

⎧⎨

⎩

F
r
N �

kh dl
n

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌− δ􏼒 􏼓
3/2

, dl
n <−δ,

0, −δ ≤ dl
n,

⎧⎪⎪⎨

⎪⎪⎩

(15)

where Fl
N represents the contact force when themiddle blade

is in contact with the left-side shroud and Fr
N represents the

contact force when the middle blade is in contact with the
right-side shroud, since it is assumed that the blades on both
sides are fixed; so, according to the geometric relationship,

dl
n � dr

n � v
L􏽥sin α−w

L􏽥cos α,

dl
t � dr

t � v
L􏽥cos α + w

L􏽥sin α.

⎧⎪⎨

⎪⎩
(16)

*e friction model is considered as a macroscopic slip
model with the variable normal load, and the total friction
force Ff can be expressed as

Ff � F
l
f + F

r
f ,

F
l
f �

kt dl
t −wl􏼐 􏼑, kt dl

t −wl

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌< μFl
N,

μFNl sgn( _wl), kt dl
t −wl

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≥ μFl
N,

⎧⎪⎨

⎪⎩

F
r
f �

kt dr
t −wr( 􏼁, kt dr

t −wr
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌< μFr
N,

μFNr sgn _wr( 􏼁, kt dr
t −wr

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≥ μFr

N,

⎧⎨

⎩

(17)

where Fl
f denotes the friction force when the middle blade is

in contact with the left-side shroud and Fr
f denotes the

friction force when the middle blade is in contact with the
right-side shroud. wr and _wr are the displacement and ve-
locity of frictional damper of the right-side contact surface,
respectively. wl and _wl are the displacement and velocity of

frictional damper of the left-side contact surface,
respectively.

Taking the left-side contact surface as an example, when
the elastic force kt|d

l
t −wl| generated by the shear spring on

the contact surface is less than the sliding friction force μFl
N,

the contact surface will be in a stick state, and thus the
velocity of the frictional damper _wr � 0; when the elastic
force generated kt|d

l
t −wl| is greater than the sliding friction

force μFl
N, the contact surface will be in a slip state, so the

velocity of the frictional damper _wr � _d
l
t
; then, we can obtain

_wl �
0, stick,

_d
l
t, slip.

⎧⎨

⎩ (18)

*e value of wl can be obtained in the iterative calcu-
lation process:

wl q �

wl (q−1), stick,

wl (q−1) + _d
l
t (q−1) × Δt, slip,

⎧⎪⎨

⎪⎩
(19)

where q represents the order of the iterations and _d
l
t rep-

resents the velocity of the left-side contact surface.

_d
l
t � _v

L􏽥sin α− _w
L􏽥cos α. (20)

4. Numerical Examples and Discussion

*e vibration characteristics of the shrouded blade are
closely related to the rotational speed and the structural
parameters of the shroud, such as contact angle, friction
coefficient, clearance, and shroud position. Alterations in
these structural parameters affect the response character-
istics of the blade and then affect the damping effect of the
shroud. *erefore, by analyzing the influence of these
structural parameters on the response characteristics of the
blade, the damping mechanism of the shroud can be deeply
understood.

*e parameters of the rotating shrouded blade are given
in Table 1.

*e analytical model of the shroud blade is verified by
comparing the natural frequencies with the corresponding
finite element model. *e Beam188 element and the Mass21
element are used to simulate the model of the shrouded
blade with concentrated mass at a distance of 2/3 from the
root. And the first three orders of bending frequencies fn1,
fn2, and fn3 are shown in Figure 3, which shows that the
results of the analytical model are very consistent with the
results of the finite element model, with only a largest error
about 4.55% for the second natural frequency.

4.1. Rotational Speeds. Taking the GE90 engine as an ex-
ample, its working speed is 10396 r/min. *erefore, the
speed of 1000 rad/s is selected as the study parameter, and
considering the starting and stopping process of the engine,
500 rad/s and 800 rad/s are also selected as the study pa-
rameters. In order to investigate the effect of rotational speed
on the response characteristics of the blade, the amplitude-
frequency curves at different rotational speeds of the

α wr

kt

wl

kh

kh

Z(w)

Y(v) O(X)
dt

l
dt

r

kt

dn
r

dn
l

δ δ

Figure 2: A specific model diagram of shrouded blades.
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shrouded blade’s tip as well as the nonshrouded blade’s tip
are depicted in Figure 4. One can observe from Figure 3 that
the resonance frequency increases with the increase of ro-
tational speed, but the resonance peak decreases with the
increase of rotational speed. Especially, the resonance peak
of the shrouded blade is much lower than that of the
nonshrouded blade, and the resonance frequency of
a shrouded blade is larger than the nonshrouded blades. In
addition, the amplitude-frequency curves of the shrouded
blade show a strong hard nonlinearity; it is because the
existence of shroud is equivalent to increasing the constraint
stiffness of the blade, so the natural frequency of the blade
will increase, and the contact force and friction generated by
shroud are nonlinear, resulting in a hard nonlinear phe-
nomenon. And due to the existence of hard nonlinearity, the
vibration amplitude of the blade is reduced, so the stability of
the blade response is increased, which indicates that the
shroud brings an obvious damping effect.

For the sake of further studying the influence of rota-
tional speed, it is necessary to analyze the contact force and
the friction force on the shroud’s contact surface at different
rotational speeds. To make the phenomenon more obvious,
the resonant frequency corresponding to the highest point of
each curve in Figure 4 is selected as the external excitation

frequency. Figures 5(a) and 5(b) show the variations in
contact force and friction force at different rotational speeds,
respectively. dn (contains dl

n and dr
n) represents the dis-

placement of the shrouded blade along the normal direction
of the shroud’s contact surface; dt (contains dl

t and dr
t )
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Figure 3: Dynamic frequencies obtained from FE model and analytical model.

Table 1: *e parameters of the rotating shrouded blade.

No. Physical quantity (symbol) Value/unit
1 Disk radius (Rd) 350mm
2 Blade length (L) 150mm
3 Blade width (b) 60mm
4 Blade thickness (h) 7 mm
5 Shroud mass (ms) 0.04396 kg
6 Shroud position (􏽥L) 2/3× L
7 Young’s modulus (E) 200GPa
8 Poisson’s ratio (v) 0.3
9 Density (ρ) 7850 kg/m3

10 Clearance (δ) 0.1mm
11 Friction shear stiffness (kt) 1× 107N/m
12 Contact stiffness (kh) 1× 107N/m
13 Contact angle (α) π/4
14 *e coefficient of friction (μ) 0.2
15 Excitation amplitude (F0) 350N
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Figure 4: *e amplitude-frequency curves at different rotational
speeds.
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represents the displacement of the shrouded blade along the
tangential direction of the shroud’s contact surface. It can be
observed from the Figures 5(a) and 5(b) that with the in-
crease of the rotational speed, the maximum value of the
contact force and the friction force all show the same trend,
and the maximum value of both decreases as the rotational
speed increases.

When the shroud contacts with the adjacent shroud,
a portion of the shrouded blade’s energy is stored due to the
shroud’s elastic deformation as the shroud is equivalent to
a spring kh in this paper, and the corresponding expression
in a single motion cycle of the rotating shrouded blade is as
equation (21). Meanwhile, a portion of the shrouded blade’s
energy is dissipated due to the friction of the contact surface.
*erefore, from the perspective of energy, we can investigate
the damping situation of the shroud more deeply and can
compare the damping effect of the contact and the friction.
*e root mean square value of the maximum energy of the
rotating shrouded blade in a single motion cycle is selected
as the total energy. By comparing the ratio of the elastic
potential energy by the contact force and the consumed
energy by the friction force to the total energy of the
shrouded blade in one single motion cycle, we can study the
damping contributions provided by contact and friction
forces during blade vibration.

EF � 􏽘 F
l
Nq d

r
nq − δ􏼐 􏼑 + F

r
Nq d

l
nq

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌− δ􏼒 􏼓􏼔 􏼕, (21)

where q represents the order of the iterations, in a single
motion cycle.

Figure 6(a) is the ratio of elastic potential energy stored
by the contact force in one motion period of the shrouded
blade at different speeds and Figure 6(b) is the ratio of energy
dissipated by the friction force in one motion period of the
shrouded blade at different speeds. It can be observed from
Figures 6(a) and 6(b) that with the increase of the rotational
speed, the maximum value of the energy storage ratio and
the maximum value of the energy dissipation ratio all show
the same trend as Figures 5(a) and 5(b). It is also noteworthy

that the ratio of energy dissipated by the friction force is
lower than the ratio of energy stored by the contact force,
which can be demonstrated that during the vibration
damping process of the shroud, the contact force plays
a more significant role than the friction force.

4.2. Contact Angles. For the sake of studying the effect of the
contact angle on the damping effect of the shroud, the
amplitude-frequency curves of the shrouded blade’s tip at
different contact angles are shown in Figure 7, with the
rotational speed of 1000 rad/s. It can be observed from
Figure 7 that the resonance frequency keeps increasing as the
contact angle increases. However, the resonance peak shows
a different trend; the resonance peak decreases with the
contact angle varying from 30° to 45°, but when the contact
angle varies from 45° to 90°, the resonance peak starts to
increase.*erefore, when the contact angle is 30°, the shroud
has the worst damping effect, and when the contact angle is
45°, the shroud has the best suppression effect on the res-
onance peak of the blade; when the contact angle is 90°, the
shroud has the greatest increase in the frequency. It is worth
noting that as the contact angle increases, the hard non-
linearity of the amplitude-frequency curve becomes obvious.

In order to study the influence of the contact angle on the
damping effect of the shroud, the curves of the contact force
and the friction force at the different contact angles can be
drawn as shown in Figures 8(a)–8(c), with the rotational
speed of 1000 rad/s and the resonant frequency corre-
sponding to the highest point of each curve in Figure 7
selected as the external excitation frequency. It can be ob-
served from Figure 8(a) that as the contact angle increases,
the maximum value of the contact force increases contin-
uously, but when the contact angle increases to 60°, the
increase in the maximum value of the contact force starts to
decrease. And in Figure 8(b), as the contact angle increases,
the range of the friction force begins to narrow, but the
maximum the friction force begins to increase. *is is be-
cause the contact force generated by the contact surface of
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Figure 5: *e curves of force at different speeds. (a) Contact forces. (b) Friction forces.
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the shroud is also greater when the contact angle is large; the
friction force generated when the contact surface slips is also
increased. Especially, in Figure 8(c), when the contact angle
is 90°, the type of the friction force curve changes. *is is
because the displacement in the friction direction is only
provided by the vibration displacement of the shrouded
blade in the swing direction and the shroud blade’s vibration
in the swing direction is very weak and the friction force is
small.

In order to investigate the effect of the contact angle on
the damping effect of the shroud from the perspective of
energy, the energy storage ratios of the contact force at
different contact angles are shown in Figure 9(a), and the
energy dissipation ratios of the friction force for different
contact angles are shown in Figure 9(b) with the rotational
speed of 1000 rad/s. *e energy stored through contact
increases with the contact angle rising from 30° to 90°. *e
energy dissipated through friction increases with the in-
crease of the contact angle from 30° to 45°; however, after the
contact angle reaches 45°, the energy dissipated through

friction starts to decrease. When the contact angle is 90°, the
energy dissipated through friction decreases to zero, thus
resulting in a phenomenon in which the resonance ampli-
tude becomes smaller at the contact angle of 45° in Figure 7.

4.3. FrictionCoefficients. *e amplitude-frequency curves of
the shrouded blade’s tip at different friction coefficients are
shown in Figure 10, with the rotational speed of 1000 rad/s.
As the friction coefficient varies from 0 to 0.5, the resonant
peak of the blade decreases continuously, which means that
the shroud structure has a better suppression effect on the
resonant peak of the blade when the friction coefficient is
larger. However, the resonance frequency of the blade hardly
changes with the friction coefficient varying from 0 to 0.5.
And as the friction coefficient increases, the hard nonlinear
phenomenon of the amplitude-frequency curve becomes
weak.

In order to further investigate the influence of the
friction coefficient on the damping effect of the shroud, the
curves of the contact force and the friction force at different
friction coefficients are shown in Figures 11(a) and 11(b),
with the rotational speed of 1000 rad/s and the resonant
frequency corresponding to the highest point of each curve
in Figure 10 selected as the external excitation frequency. As
the friction coefficient varies from 0 to 0.5, the maximum
value of the contact force decreases, but the maximum value
of the friction force keeps increasing. *erefore, when the
friction coefficient is larger, the contact surface can generate
greater friction force to suppress the resonance amplitude of
the blade.

For the sake of investigating the influence of the friction
coefficient on the damping effect of the shroud from the
perspective of energy, the energy storage ratios of the contact
force at different friction coefficients are shown in
Figure 12(a), and the energy dissipation ratios of the friction
force at different friction coefficients are shown in
Figure 12(b), with the rotational speed of 1000 rad/s. As the
friction coefficient varies from 0 to 0.50, the energy stored
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through the contact force has decreased slightly, but the energy
dissipated through the friction force increases continuously.

4.4.Clearances. *e variation of clearance will affect the ease
of shroud’s contact and further affect the damping effect of
the shroud. So, to study the effect of the clearance on the
damping effect of the shroud, the amplitude-frequency
curves of the shrouded blade’s tip at different clearances are
shown in Figure 13, with the rotational speed of 1000 rad/s.
When the clearance rises from 0mm to 2.0mm, the resonant
amplitude of the blade increases and the resonance fre-
quency decreases. Especially, when the clearance rises to
2.0mm, the resonance peak greatly increases. When the
clearance reduces to 0mm, the resonant amplitude decreases
and the resonant frequency has a large improvement.
*erefore, large clearance is not conducive to the damping
effect of the shroud. It is worth noting that the hard non-
linear phenomenon of the amplitude-frequency curve of the
shrouded blade becomes very obvious when the clearance is
increased to 0.5mm.

In order to further study the effect of the clearance on the
damping effect of the shroud, the curves of the contact force
and the friction force at different clearances can be drawn as
shown in Figures 14(a) and 14(b), with the rotational speed
of 1000 rad/s and the resonant frequency corresponding to

the highest point of each curve in Figure 13 selected as the
external excitation frequency. With the clearance increasing,
the range of the null contact force is gradually widening,
which indicates that the condition for contact between
adjacent shrouds becomes more restrictive and requires
more significant displacement of the shrouded blade. In
addition, the maximum contact force and friction force
greatly reduce with the increasing clearance.

For the purpose of investigating the effect of the
clearance on the damping effect of the shroud from the
perspective of energy, the energy storage ratios of the contact
force at different clearances are shown in Figure 15(a) and
the energy dissipation ratios of the friction force at different
clearances are shown in Figure 15(b), with the rotational
speed of 1000 rad/s. As the clearance increases, the energy
stored by the contact force and the energy dissipated by the
friction force are reduced in the resonance region. Espe-
cially, when the clearance reaches 2.0mm, the shroud
structure can only transfer energy by contact and friction in
the resonance region when the shrouded blade vibrates.

4.5. Shroud Positions. *rough the above analysis, it can be
concluded that the damping effect of the shroud has a very
important relationship with the contact force and the fric-
tion force generated on the contact surface and the energy
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Figure 8: *e curves of force at different angles. (a) Contact forces. (b) Friction forces (30°, 45°, 60°, and 75°). (c) Friction forces (90°).
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value transferred through contact and friction. According to
equations (14) and (16), the contact force and the friction
force generated by the contact surface have an important
relationship with the relative displacement of the contact
surface.

*erefore, for studying the effect of the different shroud
positions on the damping effect of the shroud, the ampli-
tude-frequency curves of the shrouded blade’s tip at different
shroud positions are depicted in Figure 16, with the rota-
tional speed of 1000 rad/s. L is the length of the blade, 1/4× L
indicates that the shroud position is near the root of the
blade, and 1× L indicates that the shroud position is at the
tip of the blade. It can be observed from Figure 16 that when
the shroud position is near the blade root, the shroud
structure has almost no damping effect, and the amplitude-
frequency curve shows a linear variation. When the shroud
position is rising to the middle of the blade, the damping
effect of the shroud starts to become obvious, the resonance
peak of the blade reduces, and the resonance frequency
increases greatly, which indicates that the closer the shroud
structure is to the tip of the blade, the better the damping
effect is.

In order to further study the influence of the position on
the damping effect of the shroud, the curves of the contact
force and the friction force at different shroud positions are
depicted in Figures 17(a) and 17(b), with the rotational
speed of 1000 rad/s and the resonant frequency corre-
sponding to the highest point of each curve in Figure 16
selected as the external excitation frequency. As the position
rises, the maximum value of both the contact force and the
friction force increases, but after the position rises to 2/3× L,
the maximum values of the contact force and the friction
force start to decrease.

For the purpose of investigating the effect of position
on the damping effect of the shroud from the perspective of
energy, the energy storage ratios of the contact force at
different shroud positions are depicted in Figure 18(a) and
the energy consumption ratios of the friction force at

different shroud positions are depicted in Figure 18(b),
with the rotational speed of 1000 rad/s. When the position
is located at the root of the blade, the energy transferred by
the contact force and the friction force is almost zero. And
when the shroud is rising to the middle of the blade, the
energy transferred by the contact force as well as the
friction force becomes obvious. More importantly, when
the shroud is located at the tip of the blade, the stored
energy ratio approaches 1.4% and the energy dissipated
through friction is only 0.6%. It is further explained that
the damping effect of the shroud by contact is more ob-
vious than by friction.

5. Conclusions

In this paper, the dynamic equation of the rotating shrouded
blade considering the shroud mass is established, and the
expression of dry friction and contact forces is derived. *e
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Figure 15: *e energy ratio at different clearances. (a) *e ratio of energy storage by the contact force. (b)*e ratio of energy consumption
by the friction force.
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mechanism of the contact vibration of the flexible rotating
shrouded blade is analyzed, and the effect of the rotational
speed, contact angle, friction coefficient, clearance, and
shroud position on the vibration response is investigated.
Some conclusions can be summarized as follows:

(1) *e amplitude-frequency curve of the shrouded
blade exhibits a hard nonlinear phenomenon com-
pared to the blade without shroud, and when vi-
brating, the resonance amplitude of the shrouded
blade is lower, and the resonance frequency is larger,
indicating that the introduction of the shroud brings
a good vibration damping effect.

(2) In the parameters studied, since the centrifugal
stiffening effect, when the rotational speed is in-
creased, the resonance frequency of the blade also
increases. When the contact angle becomes large, the

resonance frequency increases, and the resonance
amplitude decreases; however, when the contact
angle reaches 60°, the resonance amplitude increases.
As the coefficient of friction increases, the resonance
amplitude decreases. And when the clearance is
reduced or the shroud position is raised, the reso-
nance amplitude is decreased while the resonance
frequency is increased.

(3) In the studied parameter, the energy storage ratio of
the contact force is always higher than the energy
consumption ratio of the friction force, and only
when the friction coefficient is taken as 0.5, the ratio
of those two is relatively close. It shows that the
contribution of contact force is more obvious than
that of friction when the shroud shows the damping
effect.
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Figure 17: *e curves of force at different shroud positions. (a) Contact forces. (b) Friction forces.
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Appendix

Matrix Elements and Vectors Related to the
Shrouded Blade

(1) *e generalized coordinates vector X:

X � 􏼂qu1(t) . . . qui(t) . . . qun(t), qv1(t) . . . qvi(t)

. . . qvn(t), qw1(t) . . . qwi(t) . . . qwn(t)􏼃
T

.

(A.1)

(2) Mass matrix of the shrouded blade M:

M �

M1 0 0

0 M2 0

0 0 M3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (A.2)

where M1(i, j) � ρA 􏽒
L

0 φi(x)φj(x)dx + msφi(
􏽥L)φj

(􏽥L), M2(i, j) � ρA 􏽒
L

0 ϕi(x)ϕj(x)dx + msϕi(
􏽥L)ϕj

(􏽥L), M3(i, j) � ρA 􏽒
L

0 ηi(x)ηj(x)dx + msηi(
􏽥L)ηj(

􏽥L),
i, j � 1, 2, . . . , n.

(3) Coriolis matrix G:

G �

0 G1 0

G2 0 0

0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (A.3)

where G1(i, j) � 2ρA _ϑ􏽒
L

0 φi (x)ϕj(x)dx + 2ms
_ϑφi

(􏽥L)ϕj(
􏽥L), G2(i, j) � −2ρA _ϑ􏽒

L

0 ϕi(x)φj (x)dx− 2ms
_ϑϕi(

􏽥L)φj(
􏽥L), i, j � 1, 2, ..., n.

(4) Structural stiffness matrix Kb:

Kb �

Kb1 0 0

0 Kb2 0

0 0 Kb3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (A.4)

where Kb1(i, j) � EA 􏽒
L

0 φi
′(x)φj
′(x)dx, Kb2(i, j) �

EIz 􏽒
L

0 ϕ
″
i (x)ϕ″j(x)dx, Kb3(i, j) � EIy 􏽒

L

0 η
″
i (x)η″φ(x)

dx, i, j � 1, 2, . . . , n.
(5) Centrifugal stiffening matrix Kc:

Kc �

0 0 0

0 Kc1 0

0 0 Kc2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (A.5)

where Kc1(i, j) � (1/2)ρA _ϑ
2
[􏽒

􏽥L
0 fc(x)ϕi

′(x)ϕj
′(x)

dx + 􏽒
L

􏽥L fc(x)ϕi
′(x)ϕj
′(x)dx], Kc2(i, j) � 1/2ρA _ϑ

2

[􏽒
􏽥L
0 fc(x)ηi

′(x)ηj
′(x)dx + 􏽒

L

􏽥L fc(x)ηi
′(x)ηj
′(x)dx], i,

j � 1, 2, . . . , n.
(6) Spin softening matrix Ks:

Ks �

Ks1 0 0

0 Ks2 0

0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (A.6)

where Ks1(i, j) � −ρA 􏽒
L

0 φi(x)φj(x)dx −msφi(
􏽥L)φj

(􏽥L), Ks2(i, j) � −ρA 􏽒L
0 ϕi(x)ϕj(x)dx−msϕi(

􏽥L)ϕj

(􏽥L), i, j � 1, 2, ..., n.
(7) Canonical external force vector F:

F �

0

F1
F2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (A.7)

where F1(i, 1) � ϕi(L/2)F0 sin(ωt) + ϕi(
􏽥L)(Fl

N + Fr
N)

sin θ + ϕi(
􏽥L)(Fl

f + Fr
f )cos θ, F2(i, 1) � ηi(L/2) F0 sin

(ωt)− ηi(
􏽥L)(Fl

N + Fr
N)cos θ + ηi(

􏽥L)(Fl
f + Fr

f ) sin θ, i �

1, 2, . . . , n.

Nomenclature

A1: Transformation matrix of the local
coordinate system to the global coordinate
system

A: Cross-sectional area of the blade
B: Blade width
C: Rayleigh damping matrix
dl
t, dr

t : Tangential displacement of the left and right
shroud

dl
n, dr

n: Normal displacement of the left and right
shroud

dt, dn: Displacement of shrouded blade along the
tangential and normal direction of the
contact surface

E: Young’s modulus
EF: Elastic potential energy stored by the contact

force in a single motion cycle
F: External force vector
FN, Ff : Total contact force and friction force
Fl
N, Fr

N: Contact force of the left-side and right-side
shroud

Fl
f , Fr

f : Friction force of the left-side and right-side
shroud

F0: Excitation amplitude
fc(x): Centrifugal force and the expression
fn1, fn2, fn3: First three orders of bending frequencies
G: Coriolis force matrix
H: Blade thickness
Iy, Iz: Area moment of inertias about y and z axes

of the blade section
Kb, Kc, Ks: Structural stiffness matrix, centrifugal

stiffening matrix, and spin softening matrix
kh: Contact stiffness
kt: Shear stiffness of friction model
L: Blade length
􏽥L: Shroud position
M: Mass matrix
ms: Shroud mass
N: Number of modal truncations
qui(t), qvi(t),
qwi(t):

Generalized coordinates

Rd: Radius of the disk
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rQ0, rs0: Position vector of an arbitrary point and
shroud in local coordinate

rQ, rs: Displacement vector of an arbitrary point
and shroud in global coordinate

T, Tb, Ts: Total kinetic energy of shrouded blade and
kinetic energy of blade and shroud

U: Total potential energy of shrouded blade
u, u􏽥L: Radial displacement of arbitrary point Q and

shroud
vQ, vs: Velocity of arbitrary point Q and shroud
v, v􏽥L: Flexural displacement of arbitrary point Q

and shroud
w, wL􏽥: Swing displacement of arbitrary point Q and

shroud
wl, wr: Displacement of frictional damper of the

left-side and right-side contact surface
_wl, _wr: Velocity of frictional damper of the left-side

and right-side contact surface
X, _X, €X: Generalized displacement, velocity, and

acceleration vectors
(·): d/dt
α: Contact angle
δ: Shroud clearance
δQ, δs: Displacement vector of an arbitrary point

and shroud in local coordinate
λi: Eigenvalue of the ith mode shape function
μ: Coefficient of friction
υ: Poisson’s ratio
ρ: Blade density
ω: External excitation frequency
ω1, ω2: First- and second-order circular frequency

of blade
Ω: Rotation speed of blade
ϑ: Angle between local coordinate and global

coordinate
Δm: Mass of arbitrary point Q
φi(x), ϕi(x),
ηi(x):

ith modal shape functions in radial, flexural,
and swing directions.
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