
Research Article
A Hybrid Smoothed Finite Element Method for Predicting the
Sound Field in the Enclosure with High Wave Numbers

Haitao Wang ,1,2 Xiangyang Zeng,1,2 and Ye Lei1,2

1School of Marine Science and Technology, Northwestern Polytechnical University, Xi’an 710072, China
2Key Laboratory of Ocean Acoustics and Sensing, Northwestern Polytechnical University,
Ministry of Industry and Information Technology, Xi’an, China

Correspondence should be addressed to Haitao Wang; wht@nwpu.edu.cn

Received 19 January 2019; Accepted 15 March 2019; Published 1 April 2019

Academic Editor: Simone Cinquemani

Copyright © 2019 HaitaoWang et al. )is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Wave-based methods for acoustic simulations within enclosures suffer the numerical dispersion and then usually have evident
dispersion error for problems with high wave numbers. To improve the upper limit of calculating frequency for 3D problems, a
hybrid smoothed finite element method (hybrid SFEM) is proposed in this paper. )is method employs the smoothing technique
to realize the reduction of the numerical dispersion. By constructing a type of mixed smoothing domain, the traditional node-
based and face-based smoothing techniques are mixed in the hybrid SFEM to give a more accurate stiffness matrix, which is widely
believed to be the ultimate cause for the numerical dispersion error. )e numerical examples demonstrate that the hybrid SFEM
has better accuracy than the standard FEM and traditional smoothed FEMs under the condition of the same basic elements.
Moreover, the hybrid SFEM also has good performance on the computational efficiency. A convergence experiment shows that it
costs less time than other comparison methods to achieve the same computational accuracy.

1. Introduction

Small enclosures, such as small studios and aircraft cabins,
are typical environments that require high sound quality and
low noise level in people’s daily life. Prediction on acoustic
behavior inside small enclosures using a simulation method
has been a basic step in the design of such spaces. )e finite
element method (FEM) is accepted as an effective numerical
strategy for solving low-frequency acoustic field [1]. How-
ever, it is well known that the accuracy of the FEM tends to
deteriorate with increasing wave number [2, 3]. Many efforts
are currently spent on improving performance of the wave-
based solution with high wave numbers [4–8].

To obtain precise results in the higher frequency range in
FEM, a widely used strategy is reducing the element size and
subsequently obtaining fine elements from the model.
However, this strategy actually works within the framework
of the standard FEM. It does not essentially avoid the
problem of precision degradation at midfrequencies and
often leads to a heavy computational burden. )erefore,

numerical methods that try to essentially improve the ac-
curacy with high wave numbers based on the mathematical
modifications have attracted much attention.

)e precision degradation of the standard FEM in
midfrequencies is mainly caused by the numerical disper-
sion [9], which is generated due to the discrete form of the
model. In the discrete model, the speed of sound is usually
higher than the real one in the continuous medium. It means
that the sound wave seems to propagate in some media
which are stiffer than the real medium. )at is the reason
why the standard FEM is usually called an “overly stiff”
method. For one-dimensional problems, the studies have
demonstrated that the dispersion error can be avoided.
While for two- and three-dimensional problems, it has been
proven that no methods are dispersion free [10–13].

Among different attempts to reduce the dispersion
error, the smoothing technique-based approach that pro-
posed and quickly developed in the past decade shows
strong competitiveness from both aspects of computational
accuracy and efficiency. )e smoothing technique-based

Hindawi
Shock and Vibration
Volume 2019, Article ID 7137036, 9 pages
https://doi.org/10.1155/2019/7137036

mailto:wht@nwpu.edu.cn
http://orcid.org/0000-0002-2107-6130
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2019/7137036


method was originally proposed in the mechanical field.
Liu extended the strain smoothing technique in meshless
method [14] to the finite element method and named the
resulting method the smoothed finite element method
(SFEM) [15, 16]. In this method, a set of compatible strain
fields named smoothing domains is constructed based on
the standard finite element mesh system. )en the stiff
matrix in the system equation is reconstructed based on
these smoothing domains. By solving the new system
equation, the SFEM can achieve better solution at higher
frequencies with making very little changes to the standard
FEM formulation. Based on the good performances in the
mechanical field, the SFEM was naturally introduced into
acoustic simulations. Studies have found that it is capable
of offering simple and practical ways to weaken the in-
fluence of the numerical dispersion. More accurate results
can be achieved with high wave numbers by using the
smoothing technique. It indicates that the smooth tech-
nique can effectively “soften” the overly stiff FEM model.

)e smoothing technique in SFEM usually can be per-
formed based on different types of smoothing domains which
are created from the nodes, edges, cells, or faces of the ele-
ments. )erefore, the SFEM can be generally categorized into
the following types, the node-based smoothed finite element
method (NS-FEM) [17], the edge-based smoothed finite el-
ement method (ES-FEM) [18–21], the cell-based smoothed
finite element method (CS-FEM) [22, 23], and the face-based
smoothed finite element method (FS-FEM) [24–26]. Among
these SFEMs, the NS-FEM possesses a special property that
the stiff matrix obtained by NS-FEM is “softer” than the exact
one. In such a condition, upper bound solution can be ob-
tained with respect to the exact solution. However, the NS-
FEMmakes the stiffness matrix “overly soft,” which leads that
the NS-FEM does not show evident advantage on the
computational accuracy. On the contrary, other SFEMs show
opposite properties for 3D acoustic problems. )ey provide
softer stiff matrices than the standard FEM, but the stiffness
matrices are still overestimated than the exact one. )erefore,
lower bound solutions can be obtained with respect to the
exact solution by using these SFEMs.

To further improve the performance of the smoothed
methods, the α-FEM [27–30] was proposed by mixing the
node-based technique and the standard FEM. Due to the fact
that the NS-FEM has opposite properties on the stiffness
with respect to the standard FEM, the α-FEM can obtain
good features from both techniques and therefore give closer
stiffness to the exact one once the smoothing domains are
properly constructed. More recently, the theory of mixed
smoothed methods was further developed and the β-FEM
[31, 32], which mixes the node-based technique and the
edge-based technique, was proposed and used for solving the
mechanical problems. Since the smoothed techniques usu-
ally have better accuracy than the standard FEM, the β-FEM
including the combination of both smoothing techniques
has potential to achieve better accuracy than the α-FEM.

Inspired by the idea of β-FEM, a hybrid smoothed finite
element method (hybrid SFEM) for solving 3D acoustical
problems is proposed in this paper. )e essential idea of the
hybrid SFEM is to construct a stiffness model by mixing the

node-based and face-based techniques. Based on the truth
that the number of faces in a tetrahedron element is always
less than that of the edges, the face-based smoothing domains
are much easier to be constructed than the edge-based
smoothing domains. )erefore, the proposed hybrid SFEM
has high efficiency on constructing the mixed smoothing
domains.)e numerical verifications have demonstrated that
the proposed method is capable of significantly reducing the
numerical dispersion and giving more accurate results.

2. Hybrid SFEM for Acoustic
Simulation in Enclosure

2.1. Acoustic Simulation in Enclosure. Consider a steady-
state acoustic problem in an enclosure. A closed boundary
surrounds a bounded fluid domain V, which is characterized
by its speed of sound c and its ambient fluid density ρ0. )e
fluid domain is excited at a circular frequency ω by using an
acoustic point source with prescribed volume velocity q
located at position rq � [xq, yq, zq]T. Assuming that the
system is linear, the fluid is inviscid, and the process is
adiabatic, the steady-state acoustic pressure p in the problem
domain is governed by using the Helmholtz equation:

∇2p + k
2
p + jρ0ωq � 0, (1)

where ∇2 is the Laplacian operator, k denotes the wave
number and is defined by ω/c, and j is the imaginary unit.

By using the weighted residual method and applying the
boundary condition, the integral equation to calculate the
sound pressure can be obtained as follows:

􏽚
Ω
∇p · ∇p− k

2
p · p− jρ0ωpqω􏼐 􏼑dΩ + 􏽚

Γ
jρ0ω

p

Z
· pdΓ � 0,

(2)

where Ω and Γ represent the problem domain and the
boundary domain, respectively. Z is the specific acoustic
impedance of the boundary.

By dividing the problem domain into discretizing form,
the sound pressure at any position in the problem domain
can be expressed by

p � 􏽘
n

i�1
Nipi� NTp, (3)

where n is the number of nodes, N is the vector of the shape
functions, and p is the vector of nodal sound pressures yet to
be determined.

By substituting equation (3) into equation (2), the system
equation to solve the discretizing nodal pressure can be
finally obtained as follows:

K + jωC−ω2M􏼐 􏼑p � F, (4)

where K� 􏽒Ω(∇N)(∇N)TdΩ is defined as the stiffness
matrix,M � (1/c2)􏽒ΩNN

TdΩ is defined as the mass matrix,
C � (ρ0/Z)􏽒ΓNN

TdΓ is defined as the damping matrix, and
F � 􏽒Ωjρ0ωNqωdΩ is the load vector.

2.2. Briefing of NS-FEM and FS-FEM. It has been mentioned
that the standard FEM usually behaves overly stiff in the

2 Shock and Vibration



calculation. To soften the stiffness of the FEMmodel by using
the smoothing technique, a set of smoothing domains needs
to be constructed based on the basic elements first. Assuming
the fluid domain inside a 3D cavity has been divided into
tetrahedral elements, the smoothing domains of the NS-FEM
and FS-FEM based on these basic elements are illustrated in
Figure 1.

)e smoothing domains for NS-FEM are generated
based on the nodes of the elements such thatΩNS � ∪Nn

m�1Ω
NS
m

and ΩNSi ∩Ω
NS
j � ∅ for i≠ j. Here Nn is the total number of

nodes in the problem domain,ΩNSm is the smoothing domain
associated with the node m. Moreover, when there are two or
more elements sharing the node m, ΩNSm can be formed by
using ΩNSm � ∪Nm,e

t�1 Ω
NS
m,t, where Nm,e is the number of ele-

ments that share node m. As illustrated in Figure 1(a), in the
condition of tetrahedron element, ΩNSm,t is formed by con-
necting the node m, three central points of the edges, and the
centroid of the element. According to this method to
construct the smoothing domain, all the subsmoothing
domains are nonoverlapping each other and also without
gaps to fill the whole problem domain.

In NS-FEM formulation, the gradient smoothing op-
eration is applied over each smoothing domain on the
gradient of acoustic pressure ∇p, and the smoothed gradient
of acoustic pressure for ΩNSm can be written as

∇p ΩNSm􏼐 􏼑 �
1

Vm

􏽚
ΩNSm

∇pdΩ, (5)

where Vm is the volume of the smoothing domain ΩNSm .
By applying the divergence theorem, the smoothed

gradient of acoustic pressure can be expressed in terms of
acoustic pressure:

∇p ΩNSm􏼐 􏼑 �
1

Vm

􏽚
Γm

p · ndΓ, (6)

where Γm denotes the boundary of the smoothing domain
ΩNSm and n is the vector of the components of the outward
normal vector to the boundary Γm and is expressed by
n � [nx, ny, nz]T.

By using the FEM shape function for field variable in-
terpolation in the form of equation (3), the acoustic pressure
at a position x on the boundary of the smoothing domain is
calculated by

p(x) � 􏽘
I∈Dm

NI(x)pI, (7)

where Dm is a set of the so-called supporting nodes of node
m, which is a group of nodes belonging to the elements that
shares the node m. NI(x) is the shape function of node I,
and pI is the nodal acoustic pressure.

By substituting equation (7) into equation (6), the
smoothed gradient of pressure can be written as follows:

∇p ΩNSm􏼐 􏼑 �
1

Vm

􏽚
Γm

􏽘
I∈Dm

NI(x)pI
⎛⎝ ⎞⎠ · n(x)dΓ

� 􏽘
I∈Dm

BNS
mIpI � BNS

m

⌢
p,

(8)

where BNS
m

⌢
� [BNS

m1,B
NS
m2, . . . ,BNS

mJ] is vector of the so-called
smoothed derivative of the shape function and J denotes the

number of nodes in the set Dm. )e Ith element of BNS
m

⌢
can

be calculated by the following form:

BNS
mI �

1
Vm

􏽚
Γm

NI(x) · n(x)dΓ. (9)

By replacing ∇p in equation (2) with ∇p, the local
smoothed stiffness matrix for the smoothing domain ΩNSm

can be obtained:

KNS
m � 􏽚

Ωm

BNS
m

⌢
􏼒 􏼓

T

BNS
m

⌢
dΩ � BNS

m

⌢
􏼒 􏼓

T

BNS
m

⌢
Vm. (10)

)en, the global smoothed stiffness matrix can be as-
sembled by the local smoothed stiffness matrix over each
smoothing domains as

KNS
� 􏽘

Nn

m�1
KNS

m . (11)

Similar to the NS-FEM, the FS-FEM also requires that
the problem domain is divided into smoothing domains,
while these smoothing domains are constructed based on the
faces of the basic elements such that ΩFS � ∪Nf

m�1Ω
FS
m and

ΩFSi ∩Ω
FS
j � ∅ for i≠ j. When there are two elements

sharing the face m,ΩFSm can be formed byΩFSm � ∪2t�1Ω
FS
m,t. As

illustrated in Figure 1(b), in the condition of tetrahedron
element,ΩFSm,t is formed by connecting the three nodes of the
face m and the centroid of the element. Based on the same
derivation, the global smoothed stiffness matrix for FS-FEM
can be derived as

KFS
� 􏽘

Nf

m�1
KFS

m , (12)

where Nf is the total number of the faces of the basic ele-
ments. KFS

m is the local smoothed stiffness matrix for the
smoothing domain ΩFSm .

2.3.Hybrid SFEM. Considering the overestimation property
of FS-FEM and the unique underestimation property of NS-
FEM, the smoothing domains for the hybrid method are
constructed as illustrated in Figure 2.

In this paper, the strategy for constructing the smoothing
domain is developed based on the tetrahedron element
which is a type of element that can be used to simply discrete
the complicated-shaped spaces. As illustrated in Figure 2, a
single element is divided into two types of smoothing do-
mains, namely, the node-based and the face-based
smoothing domains. Each edge of the element is trun-
cated by two points which locate on the 1/4 positions of the
edge, which can be expressed by the relation that l1 � 2l2.
After the smoothing domains are formed in each element,
the local smoothing domains can be subsequently con-
structed by combining the ones in neighboring elements as
mentioned in the last subsection.
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Based on the hybrid node-based and face-based
smoothing domains, the global hybrid smoothed sti�ness
matrix can be obtained by

K � KNS + KFS � ∑
Nn

m�1
KNS
m + ∑

Nf

m�1
KFS
m . (13)

�is equation demonstrates that the smoothed sti�ness
matrix is constructed using the shape functions but not the
derivatives of the shape functions. �is implies that the
requirement on the nodal shape function is further weak-
ened compared to the standard FEM [33, 34]. By replacing
the sti�ness matrix in equation (4) with the smoothed
sti�ness matrix, the hybrid SFEM is formulated and can be
used to calculate the sound �eld in an enclosure.

3. Numerical Verification

�is section discusses the results of a numerical veri�cation
performed on a convex 3D cubic cavity as shown in
Figure 3(a). �e interior of the cavity with dimensions 1 ×
1.2 × 1.4m is �lled with air characterized by speed of sound
c� 344m/s and density ρ0 � 1.21 kg/m

3. �ere is a sound
source and a receiver located inside the cavity, and their
locations are (0.1, 0.1, 0.1)m and (0.74, 0.71, 0.93)m,
respectively.

For the standard FEM, the cavity is divided into 384
tetrahedron elements as shown in Figure 3(b). �ese ele-
ments are also used as the basic elements for NS-FEM, FS-
FEM, and the proposed hybrid SFEM.�e impedance of the
inner surfaces is set to be 400ρ0c.

To evaluate the performance of the proposed method on
reducing the numerical dispersion, the modal frequencies
are �rstly calculated using the proposed method and
compared with those obtained using the standard FEM, NS-
FEM, and FS-FEM. �e modal frequencies are also calcu-
lated using the normal-mode theory and used as the stan-
dard reference result. �e comparisons and relative errors
are illustrated in Figure 4.

Figure 4(a) illustrates that all methods are capable of
giving the same results with the reference results at low
mode orders. With the increase of the mode order, the
results of the wave-based methods begin to deviate from
those of the normal-mode theory. It is evident that larger
mode order will cause larger deviation of the results, which
means the accuracy degradation of the wave-based
methods become larger with increasing the wave num-
ber. It can also be found that the results of NS-FEM are
always smaller than the reference results, while other
methods give larger results. It demonstrates that NS-FEM
has a special property that it is “overly soft” to simulate the
acoustic �eld. By considering the normal-mode theory as
the reference method, the relative errors in Figure 4(b)
show that the proposed hybrid SFEM has better accuracy
than other methods. It gives the same results with the
reference method at low mode orders. Moreover, its

l1

l2

l2

Node of the element
Centroid point of the tetrahedron element
1/4 point of the edge

Figure 2: Mixed smoothing domain constructed based on the
tetrahedron elements.

NS
m,tΩ

Node m

Node of the element
Centroid point of the
tetrahedron element
Centroid point of the edge

(a)

FS
m,tΩ

Face m
Node of the element
Centroid point of the
tetrahedron element
Centroid point of the edge

(b)

Figure 1: Node-based and (a) face-based (b) smoothing domains constructed based on the tetrahedron element.

4 Shock and Vibration



relative errors are basically smaller than 2%, while other
methods have evident larger errors.

�e calculations on the modal frequencies have pre-
liminarily proved that the proposed hybrid SFEM has better
accuracy than other wave-based methods. To give a further
veri�cation, the distributions of sound pressure level at the
top surface of the cavity are also compared as illustrated in
Figure 5. �e acoustic velocity vectors are also illustrated in
Figure 6.

According to the aforementioned element setup of this
problem, the average nodal spacing is about 0.33m, which
gives a frequency limit of about 171Hz by “the rule of
thumb.” To investigate the performance of the proposed

method, the results at 270Hz are compared here. Note that
since Figure 4(b) has demonstrated that the standard FEM
has the largest errors and it is no longer included in the
comparisons in the following veri�cations.

Figure 5(c) illustrates that the NS-FEM solution shows
obvious dispersion error, as most of the contours of the
sound pressure level are departing from the reference so-
lution. Both the FS-FEM and hybrid SFEM can provide
similar contours to the reference, while the Hybrid SFEM
has better accordance with the reference than the FS-FEM at
the corner positions. �e acoustic velocity vectors shown in
Figure 6 also illustrate the e�ectiveness of the proposed
method. Figure 6(b) show that the vectors have very similar

o
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m
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Figure 3: Schematics of the 3D cubic cavity and its discrete form. (a) �e cubic cavity and its dimensions. (b) �e tetrahedron elements of
the �uid domain.
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Figure 4: (a)�e �rst 11 modal frequencies obtained by the reference method, standard FEM, hybrid SFEM, NS-FEM, and FS-FEM. (b)�e
relative errors of the standard FEM, hybrid SFEM, NS-FEM and FS-FEM.
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directions and lengths with the reference results, while other
methods have larger di�erences.

At last, the frequency responses at the receiver are
calculated using di�erent methods and illustrated in Fig-
ure 7. It shows that all the wave-based methods have sat-
isfactory accuracies when the frequency is less than 175Hz.
However, the accuracies of all the methods tend to de-
teriorate by increasing the calculating frequency. It can be
seen that the NS-FEM starts to have dispersion error at about
185Hz, which demonstrates that the NS-FEM has worse
performance on weakening the numerical dispersion than
other methods based on the same basic elements. Moreover,
the modal frequencies obtained by the NS-FEM are less than
the exact ones. It proves that the NS-FEM holds the char-
acteristic of behaving “softly” compared with the exact
sti�ness.�en, it can be seen that the proposed hybrid SFEM
and the FS-FEM start to have dispersion error at about
250Hz. By analyzing the di�erences of the modal fre-
quencies, it can be found that the hybrid SFEM has less
dispersion error than the FS-FEM. �e comparisons in this
�gure demonstrates that the hybrid SFEM can give more
precise results than the other two methods based on the
same basic elements.

�e calculating e�ciency is another basic index to
evaluate the performance of a wave-based method.
According to the basic theory of the proposed method, it can
be known that the di�erences of the methods on the

computational time are mainly caused by di�erent con-
structing methods of the sti�ness matrices. To clearly il-
lustrate the relations between the computational time and
accuracy of di�erent methods, the modal frequency which is
only related to the sti�ness matrix and the mass matrix is
chosen as the analysis parameter and a convergence analysis
is performed and shown in Figure 8. In this numerical
experiment, the former 20 orders of themodal frequencies of
the aforementioned cubic cavity are calculated by the
standard FEM, NS-FEM, FS-FEM, and the hybrid SFEM.
Based on these results, the average relative errors de�ned by
the following equation are calculated:

ε � 1
20
∑
20

m�1

fm − f̃m
f̃m

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
× 100%, (14)

where fm and f̃m denote the mth order of the modal fre-
quency calculated by the wave-based method and reference
method, respectively.

�e average relative errors of di�erent methods are all
obtained under 4 di�erent meshing densities, for which the
number of the basic tetrahedron elements is 162, 384, 750,
and 1296, respectively. All the calculations are performed
under the con�guration of Inter® Core™ i3-4150CPU
@3.50GHz, 16GB RAM.

It is well known that the computational e�ciency of the
wave-based method is closely related with the number of
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Figure 5: Distributions of sound pressure level at the top surface of the cavity at 270Hz. (a) Reference method. (b) Hybrid SFEM. (c) NS-
FEM. (d) FS-FEM.

6 Shock and Vibration



0 0.5 1
x (m)

0

0.5

1

y (
m

)

(a)

0 0.5 1
x (m)

0

0.5

1

y (
m

)

(b)

0 0.5 1
x (m)

0

0.5

1

y (
m

)

(c)

0 0.5 1
x (m)

0

0.5

1

y (
m

)

(d)
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elements in the calculation. In this case, if the calculations
are performed based on the same basic elements, it is evident
that the standard FEM will cost least time to complete the
calculations, while the smoothed methods will cost more
time, and the hybrid SFEM will cost the most time. )is is
because that, in the smoothed finite elements methods, the
construction of the stiffness matrix is performed based on
the smoothing domains of which the number is usually
larger than the basic element. However, the conclusion will
be much more different if the efficiency is analyzed from a
convergence aspect of view. Figure 8 shows that the hybrid
SFEM can achieve the highest accuracy in terms of the same
computational time among different methods. Meanwhile,
the hybrid SFEM costs least time to obtain the results that
have the same average relative errors with other methods.

4. Conclusion

In this work, a hybrid SFEM is proposed and applied for 3D
acoustic simulation in a small enclosure. In this method, the
traditional node-based and face-based smoothed finite element
methods are mixed to form a new smoothed model through
constructing the mixed smoothing domains. According to the
smoothed theory, the exact solution is bounded by the results
of the NS-FEM and FS-FEM. )erefore, the hybrid SFEM is
promising to achieve better accuracy by obtaining the con-
tributions from both smoothed methods. )rough the for-
mulation and numerical verifications, the results show that the
hybrid SFEM has better accuracy than the standard FEM, NS-
FEM, and FS-FEM based on the same basic elements. )e
verifications demonstrate that the hybrid SFEM is effective to
reduce the numerical dispersion and improve the upper limit
of the calculating frequency.
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[3] F. Ihlenburg and I. Babuška, “Finite element solution of the
Helmholtz equation with high wave number part II: the h-p
version of the FEM,” SIAM Journal on Numerical Analysis,
vol. 34, no. 1, pp. 351–358, 1997.

[4] B. Yue and M. N. Guddati, “Dispersion-reducing finite ele-
ments for transient acoustics,” Journal of the Acoustical So-
ciety of America, vol. 118, no. 4, pp. 2132–2141, 2005.

[5] B. V. Genechten, O. Atak, B. Bergen et al., “An efficient wave-
based method for solving Helmholtz problems in three-
dimensional bounded domains,” Engineering Analysis with
Boundary Elements, vol. 36, no. 1, pp. 63–75, 2012.

[6] K. Christodoulou, O. Laghrouche, M. S. Mohamed, and
J. Trevelyan, “High-order finite elements for the solution of
Helmholtz problems,” Computers & Structures, vol. 191,
pp. 129–139, 2017.

[7] H. Wu, W. Ye, and W. Jiang, “Isogeometric finite element
analysis of interior acoustic problems,” Applied Acoustics,
vol. 100, pp. 63–73, 2015.

[8] P. Bouillard and S. Suleau, “Element-free Galerkin solutions for
Helmholtz problems:formulation and numerical assessment of
the pollution effect,” Computer Methods in Applied Mechanics
and Engineering, vol. 162, no. 1–4, pp. 317–335, 1998.

[9] S. Irimie and P. Bouillard, “A residual a posteriori error es-
timator for the finite element solution of the Helmholtz
equation,” Computer Methods in Applied Mechanics and
Engineering, vol. 190, no. 31, pp. 4027–4042, 2001.

[10] I. Babuška, F. Ihlenburg, E. T. Paik, and S. A. Sauter, “A
generalized finite element method for solving the Helmholtz
equation in two dimensions with minimal pollution,” Com-
puter Methods in Applied Mechanics and Engineering, vol. 128,
no. 3-4, pp. 325–359, 1995.

[11] P. Bouillard and F. Ihlenburg, “Error estimation and adap-
tivity for the finite element method in acoustics: 2D and 3D
applications,” Computer Methods in Applied Mechanics and
Engineering, vol. 176, no. 1–4, pp. 147–163, 1999.

[12] A. Deraemaeker, I. Babuška, and P. Bouillard, “Dispersion
and pollution of the FEM solution for the Helmholtz equation
in one, two and three dimensions,” International Journal for
Numerical Methods in Engineering, vol. 46, no. 4, pp. 471–499,
1999.

[13] I. M. Babuskat and S. A. Sautert, “Is the pollution effect of the
FEM avoidable for the Helmholtz equation considering high
wave numbers?,” SIAM Review, vol. 42, no. 3, pp. 451–484,
2000.

[14] J.-S. Chen, C.-T. Wu, S. Yoon, and Y. You, “A stabilized
conforming nodal integration for Galerkin mesh-free
methods,” International Journal for Numerical Methods in
Engineering, vol. 50, no. 2, pp. 435–466, 2001.

[15] G. R. Liu, T. T. Nguyen, K. Y. Dai, and K. Y. Lam, “)eoretical
aspects of the smoothed finite element method (SFEM),”
International Journal for Numerical Methods in Engineering,
vol. 71, no. 8, pp. 902–930, 2007.

[16] G. R. Liu, “A Generalized gradient smoothing technique and
the smoothed bilinear form for Galerkin formulation of a
wide class of computational methods,” International Journal
of Computational Methods, vol. 5, no. 2, pp. 199–236, 2008.

[17] G. R. Liu, T. Nguyen-)oi, H. Nguyen-Xuan, and K. Y. Lam,
“A node-based smoothed finite element method (NS-FEM)
for upper bound solutions to solid mechanics problems,”
Computers & Structures, vol. 87, no. 1-2, pp. 14–26, 2009.

[18] X. Y. Cui, G. R. Liu, G. Y. Li, G. Y. Zhang, and G. Zheng,
“Analysis of plates and shells using an edge-based smoothed

8 Shock and Vibration

mailto:wht@nwpu.edu.cn
mailto:wht@nwpu.edu.cn


finite element method,” Computational Mechanics, vol. 45,
no. 2-3, pp. 141–156, 2010.

[19] Z. C. He, G. R. Liu, Z. H. Zhong, G. Y. Zhang, and
A. G. Cheng, “Coupled analysis of 3D structural-acoustic
problems using the edge-based smoothed finite element
method/finite element method,” Finite Elements in Analysis
and Design, vol. 46, no. 12, pp. 1114–1121, 2010.

[20] Z. C. He, G. Y. Li, Z. H. Zhong et al., “An ES-FEM for accurate
analysis of 3D mid-frequency acoustics using tetrahedron
mesh,” Computers & Structures, vol. 106-107, pp. 125–134,
2012.

[21] Z. C. He, G. Y. Li, G. R. Liu, A. G. Cheng, and E. Li, “Nu-
merical investigation of ES-FEM with various mass re-
distribution for acoustic problems,” Applied Acoustics,
vol. 89, pp. 222–233, 2015.

[22] L. Y. Yao, D. J. Yu, X. Y. Cui, and X. G. Zang, “Numerical
treatment of acoustic problems with the smoothed finite el-
ement method,” Applied Acoustics, vol. 71, no. 8, pp. 743–753,
2010.

[23] L. Y. Yao, D. J. Yu, and J. W. Zhou, “Numerical treatment of
2D acoustic problems with the cell-based smoothed radial
point interpolation method,” Applied Acoustics, vol. 73, no. 6-
7, pp. 557–574, 2012.

[24] T. T. Nguyen, G. R. Liu, K. Y. Lam, and G. Y. Zhang, “A face-
based smoothed finite element method (FS-FEM) for 3D
linear and nonlinear solid mechanics problems using 4-node
tetrahedral elements,” International Journal for Numerical
Methods in Engineering, vol. 78, pp. 324–353, 2009.

[25] Z. C. He, G. R. Liu, Z. H. Zhong, X. Y. Cui, G. Y. Zhang, and
A. G. Cheng, “A coupled edge-/face-based smoothed finite
element method for structural-acoustic problems,” Applied
Acoustics, vol. 71, no. 10, pp. 955–964, 2010.

[26] G. Wang, X. Y. Cui, Z. M. Liang, and G. Y. Li, “A coupled
smoothed finite element method (S-FEM) for structural-
acoustic analysis of shells,” Engineering Analysis with
Boundary Elements, vol. 61, pp. 207–217, 2015.

[27] G. R. Liu, T. T. Nguyen, and K. Y. Lam, “A novel alpha finite
element method (αFEM) for exact solution to mechanics
problems using triangular and tetrahedral elements,” Com-
puter Methods in Applied Mechanics and Engineering, vol. 197,
no. 45–48, pp. 3883–3897, 2008.

[28] Z. C. He, G. R. Liu, Z. H. Zhong, G. Y. Zhang, and
A. G. Cheng, “Dispersion free analysis of acoustic problems
using the alpha finite element method,” Computational Me-
chanics, vol. 46, no. 6, pp. 867–881, 2010.

[29] Z.-Q. Zhang and G. R. Liu, “Solution bound and nearly exact
solution to nonlinear solid mechanics problems based on the
smoothed FEM concept,” Engineering Analysis with Boundary
Elements, vol. 42, pp. 99–114, 2014.

[30] E. Li, Z. C. He, X. Xu, and G. R. Liu, “Hybrid smoothed finite
elementmethod for acoustic problems,”ComputerMethods in
Applied Mechanics and Engineering, vol. 283, pp. 664–688,
2015.

[31] W. Zeng, G. R. Liu, D. Li, and X. W. Dong, “A smoothing
technique based beta finite element method (βFEM) for
crystal plasticity modeling,” Computers & Structures, vol. 162,
pp. 48–67, 2016.

[32] W. Zeng, G. R. Liu, C. Jiang, T. Nguyen-)oi, and Y. Jiang, “A
generalized beta finite element method with coupled
smoothing techniques for solid mechanics,” Engineering
Analysis with Boundary Elements, vol. 73, pp. 103–119, 2016.

[33] G. R. Liu, “On G space theory,” International Journal of
Computational Methods, vol. 6, no. 2, pp. 257–289, 2009.

[34] G. R. Liu, “A weakened weak (W2) form for a unified for-
mulation of compatible and incompatible methods, part I:
theory and part II: applications to solid mechanics problems,”
International Journal for Numerical Methods in Engineering,
vol. 81, pp. 1093–1156, 2010.

Shock and Vibration 9



International Journal of

Aerospace
Engineering
Hindawi
www.hindawi.com Volume 2018

Robotics
Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

 Active and Passive  
Electronic Components

VLSI Design

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Shock and Vibration

Hindawi
www.hindawi.com Volume 2018

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Electrical and Computer 
Engineering

Journal of

Advances in
OptoElectronics

Hindawi
www.hindawi.com

Volume 2018

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2013
Hindawi
www.hindawi.com

The Scientific 
World Journal

Volume 2018

Control Science
and Engineering

Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com

 Journal ofEngineering
Volume 2018

Sensors
Journal of

Hindawi
www.hindawi.com Volume 2018

International Journal of

Rotating
Machinery

Hindawi
www.hindawi.com Volume 2018

Modelling &
Simulation
in Engineering
Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Chemical Engineering
International Journal of  Antennas and

Propagation

International Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Navigation and 
 Observation

International Journal of

Hindawi

www.hindawi.com Volume 2018

 Advances in 

Multimedia

Submit your manuscripts at
www.hindawi.com

https://www.hindawi.com/journals/ijae/
https://www.hindawi.com/journals/jr/
https://www.hindawi.com/journals/apec/
https://www.hindawi.com/journals/vlsi/
https://www.hindawi.com/journals/sv/
https://www.hindawi.com/journals/ace/
https://www.hindawi.com/journals/aav/
https://www.hindawi.com/journals/jece/
https://www.hindawi.com/journals/aoe/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/jcse/
https://www.hindawi.com/journals/je/
https://www.hindawi.com/journals/js/
https://www.hindawi.com/journals/ijrm/
https://www.hindawi.com/journals/mse/
https://www.hindawi.com/journals/ijce/
https://www.hindawi.com/journals/ijap/
https://www.hindawi.com/journals/ijno/
https://www.hindawi.com/journals/am/
https://www.hindawi.com/
https://www.hindawi.com/

