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Wheelset bearings are crucial mechanical components of high-speed trains. Wheelset-bearing fault detection is of great sig-
nificance to ensure the safety of high-speed train service. Convolution sparse representations (CSRs) provide an excellent
framework for extracting impulse responses induced by bearing faults. However, the performance of CSR on extracting impulse
responses is fairly sensitive to inappropriate selection of method-related parameters, and a convolutionmodel for representing the
impulse responses has not been discussed. In view of these two unsolved problems, a convolutional representation model of the
impulse response series is developed. A novel fault detection method, named adaptive CSR (ACSR), is then proposed based on
combinations of CSR andmethods for estimating three parameters related to CSR. Finally, the effectiveness of the proposed ACSR
method is validated via simulation, bench testing, and a real-life running test employing a high-speed train.

1. Introduction

Wheelset bearings are crucial mechanical components of
high-speed trains, and their major roles are to transform the
rotational motion of wheelsets to the linear motion of high-
speed trains, transmit driving motor torques, and bear the
vertical loads of frames and car bodies. During the long-term
running process of a high-speed train, the complex dynamic
actions on wheelset bearings inevitably lead to the initiation
and further extension of wheelset-bearing faults and finally
endanger train operational safety [1]. (erefore, it is of great
significance to detect wheelset-bearing faults to ensure the
safety of high-speed train service.

Vibration-based analyses, as feasible and effective tools
for the detection of wheelset-bearing faults, can provide
fruitful feature information regarding the working status of a
monitored bearing [2]. Once a defect appears on the surface
of a bearing component, a series of impulse responses in-
duced by the defect will be generated as the wheelset rotates.
However, when the defect enters and leaves the bearing
zone, the amplitudes of those impulse responses will be

modulated. When bearing rollers slip, the repetitive fre-
quencies of the impulse responses are modulated [3]. Under
certain conditions, impulse response series with different
resonance frequencies will be excited [4]. In addition,
measured noise and strong wheel-rail interference submerge
or pollute the weak impulse responses [5]. (e spectra of the
fault signals will be smeared. As a result, such problems
make the detection of wheelset-bearing faults complex and
difficult.

To effectively resolve those difficulties in detecting
wheelset-bearing faults, many advanced signal processing
methods have been proposed, which primarily include the
filter-based high-frequency resonance technique [6], short-
time Fourier transform (STFT) [7], Wigner–Ville distri-
bution (WVD) [8], empirical mode decomposition (EMD)
[9], wavelet transform (WT) [10, 11], and compressive
sensing (CS) [12, 13]. However, the inconvenient selection of
centre frequency and bandwidth hampers the wide appli-
cation of the filter-based high-frequency resonance tech-
nique [14]. STFT is inherently unsuited to analyse time-
varying signals [15]. (e cross terms of WVD on the
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multicomponent signals cause unexpected interference
when detecting faults [16]. As a result, EMD, WT, and CS
have been widely applied in the field of rotational machine
fault detection and have become the leading algorithms for
fault detection.

EMD, as an adaptive signal processing method, is
suitable for analysing nonlinear and nonstationary signals
and can be used to decompose analysed signals into sets of
intrinsic mode functions (IMFs) and residuals [17]. Hence,
EMD has been employed quite successfully in the fields of
fault diagnosis, failure detection, damage identification, and
health monitoring [18]. However, EMD suffers from the lack
of a theoretical foundation, and the definition of its IMF is
still controversial [19]. In addition, measured noise and
sampling errors easily result in the incorrect placement of
signal extremes, and EMD-sifting processes based on the
envelopes determined by incorrect extremes inevitably will
generate inaccurate or even erroneous IMFs. (us, EMD
performs poorly when used for fault detection in low signal-
to-noise ratio (SNR) or weak transient situations [20]. An
IMF could include several-mode resonance responses in-
duced by bearing faults because of EMDmode mixtures, and
the single-mode resonance responses induced by the bearing
faults could be divided into the different IMFs because of the
mode break. Mode problems caused by using EMD ad-
versely affect fault detection performance [21]. To alleviate
mode problems, variants of EMD (such as EEMD [22],
BEMD [23], CEMD [24], and MEMD [25]) have been de-
veloped. However, there is still no theory that guarantees
mode problems will be avoided.

WT can provide time-frequency information on the
impulse response induced by bearing faults. (e continuous
wavelet transform (CWT) and discrete wavelet transform
(DWT) methods have been successfully applied to fault
detection for rotational machinery [26] given their multi-
resolution merits. (e redundancy coefficients and huge
computational costs of CWT restrict its wide application in
practical engineering. With the fast iterative algorithm, the
DWT has gained fruitful application in mechanical fault
detection [27]. To improve the decomposition performance
of WT for high-frequency bands containing rich fault
modulation information, the wavelet packet transform was
proposed [28]. However, the decomposition quality of a
DWT heavily depends on the selection of themother wavelet
[29]. (e shift-variance characteristic of most DWTs causes
the impulse responses to be distorted [30]. (e fixed dyadic
frequency partitioning of DWTs easily generates scale
mixtures and scale breaks [31]. (e low oscillation of the
wavelet basis in a DWT weakens its ability to sparsely
represent impulses with highly oscillatory characteristics
[32]. To well match vibration signals containing multimode
resonance responses induced by composite faults, the
multiwavelet packet was proposed [20]. To realize the shift-
invariant function of WTs, the dual-tree complex wavelet
[30] and higher-density dyadic wavelet transform [33] were
developed. To improve the flexibility of the frequency
partitioning of WTs, overcomplete rational dilation discrete
wavelet transform was proposed [31]. To adjust WT oscil-
lations, the wavelet transformwith tunable Q-factor [32] and

ensemble superwavelet transform [34] were proposed.
(erefore, there are no WTs that have comprehensive
performance (such as self-adaption, shift invariance, flexible
partitioning of frequency bands, and tunable oscillations).

Sparse representation mainly consists of sparse coding
and dictionary design. Sparse coding models the analysed
signals as linear combinations of atoms in a redundant
dictionary. Dictionary design is, as much as possible,
adapted to the features of the vibration signals to well match
the high-level structures of the impulse responses embedded
in the vibration signals. Sparse representation is widely
employed and has yielded state-of-the-art results in multiple
fields of machine learning, neuroscience, signal processing,
image and audio processing, classification, and statistics
[35, 36]. In terms of sparse coding, its exact resolution is
usually an NP-hard problem [37]. (us, some pursuit al-
gorithms are considered instead, mainly including matching
pursuit [38] and basis pursuit [39]. For dictionary design, the
methods for constructing dictionaries include those for
explicit and implicit dictionaries. An implicit dictionary is a
dictionary that is directly inferred from input data using
machine learning techniques, including regular dictionary
learning [40] and shift-invariant dictionary learning (SIDL)
[41, 42]. By virtue of the excellent performance of sparse
representation for representing signals (such as flexibility,
sparsity, and superresolution), sparse representation-based
fault detection has become increasingly popular in the field
of mechanical fault detection. Sparse representation based
on matching pursuit and explicit dictionaries has been used
to extract impulse responses induced by rotational machine
faults for gear and bearing fault detection [43]. Sparse
representation, through the combination of basis pursuit
and explicit dictionaries, is employed to capture impulse
patterns for rotating machine fault diagnosis [44–46].
Dictionary learning has advantages and potential for mining
high-level structures embedded in signals. A nonlocal sparse
model based on regular dictionary learning has been pro-
posed [47]. SIDL can obtain single-value and jointly opti-
mized results over the entirety of vibration signals, unlike
regular dictionary learning. Sparse representation based on
pursuit algorithms and SIDL can be exploited to extract
impulse responses submerged in the vibration signals of
rotating machine systems [41, 42, 48, 49]. (ose findings
show that the fault detection performance of sparse repre-
sentation is superior to those of EMD and WT. In addition,
group sparsity is applied to bearing fault detection [50] but
requires prior knowledge of the impulsive periods.

Convolution sparse representation is another name for
SIDL-based sparse representation. A new approach based
on the alternating direction method of multipliers was
proposed in 2016 [51] and is called CSR (convolution
sparse representation based on the alternating direction
method of multipliers) in this paper. CSR realizes not only
SIDL but also shift-invariant sparse representations (SISC)
of vibration signals. (e strategy of the interleaved opti-
mization between SIDL and SISC rather than the alter-
nating optimization of SIDL and basis pursuit in traditional
SIDL-based sparse representation leads to higher com-
putational efficiencies and more accurate convolution
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sparse representations [52]. CSR has been applied to the
detection of faults in wheelset bearings [5]. Although CSR has
obtained satisfied fault detection results, convolution sparse
representation framework or model for representing impulse
response series has still not been discussed, and its fault
detection performance is sensitive to inappropriate selections
of method-related parameters. In view of these two unsolved
problems, a convolutional representation model of impulse
response series induced by bearing faults is proposed. A novel
fault detection method, which is named adaptive CSR
(ACSR), is then proposed in this paper.

(is paper is organized as follows. (e convolutional
representation model for characterizing impulse response
series induced by bearing defects is proposed in Section 2.
Section 3 introduces the basic theory of CSR and discusses
CSR-related parameters. A novel fault detection method,
ACSR, is proposed in Section 4. A simulation-based veri-
fication of ACSR is conducted in Section 5. An experimental
validation of ACSR is performed in Section 6. Section 7
concludes the paper.

2. Convolutional Representation Model of
Impulse Response Series

When there is a defect on the surface of a wheelset-bearing
component, an impulse response series (IRS) will be gen-
erated as the wheelset rotates. An impulse response caused
by the defect can be modelled as the impulse response of a
single degree of freedom mass-spring-damper system [3]:

r(t) � Ae
− βt sin 2πfrt( 􏼁u(t). (1)

Hence, the IRS with fault-characteristic frequency of T− 1
p

can be represented as [3]

s(t) � 􏽘
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where Am is the amplitude of the mth impulse response, u(t)

is a unit step function, Tp is the time period corresponding
to the fault-characteristic frequency, β is the structure
damper coefficient, fr is the excited resonance frequency, τi

represents the effects of the random slippage of the rollers
and is the ith realization of a zero mean, uniformly dis-
tributed random variable with standard deviations of
0.01Tp ∼ 0.02Tp, and s(t) is the IRS with M impulse
responses.

Because such vibrations are often measured using an
accelerometer, the measured vibration signal can be de-
scribed in an acceleration format [3], i.e.,

r″(t) � Le
− βt cos 2πfrt + θ( 􏼁u(t), (3)
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According to equations (2) and (3), the acceleration
version of the IRS, a(t), can be expressed as

a(t) � 􏽘
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(5)

Define impulse responses d(t) as

d(t) � exp(− βt)cos 2πfrt + θ( 􏼁u(t). (6)

Define time-location coefficients x(t) as

x(t) �
Lm, t � mTp + 􏽘

m

i�0
τi,

0, other.

⎧⎪⎪⎨

⎪⎪⎩
(7)

(e acceleration version of the IRS in equation (5) can be
modelled as the convolution of the defined impulse response
d(t) and associated defining time-location coefficients x(t):

a(t) � d(t)∗x(t). (8)

If the measured vibration signals contain C kinds of
impulse responses with different resonance frequencies, the
measure-version IRS can be modelled as

a(t) � 􏽘
C

c�1
dc(t)∗ xc(t) + N, (9)

where N denotes the measured noises, dc(t) is the cth
impulse response type, and xc(t) is the time-location co-
efficients related to dc(t).

(e convolution representation model for representing
the IRS in equation (9) can clearly represent the dynamic
interaction procedures of the defects of wheelset-bearing
components and their matching surfaces and the vibration
characteristics. To illustrate the physical meanings of the
convolution representation model, an example is shown in
Figure 1.

In Figure 1(b), impulse responses dc(t), c ∈ [1, C] can
describe the dynamic behaviour of the single strike of a
defect with its matching surface and are related to the
resonance frequencies and damping coefficients of the
resonances excited by the strike.(e nonzero elements of the
time-location coefficients can determine the time of fault
action by aligning the time coordinates in Figures 1(a) and
1(c). (e amplitudes of the nonzero elements of the time-
location coefficients can represent the amplitude-modula-
tion behaviour caused by alternately entering and leaving the
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wheelset-bearing load zone of the defective inner race or
rolling elements. (e time span between the nonzero ele-
ments of the time-location coefficients can characterize the
frequency modulation induced by the slippage of the rollers
or fluctuations in rotation speed. (ose zero elements of the
time-location coefficients properly can eliminate the mea-
sured noises. (erefore, the convolutional representation
model is fairly suitable for representing the impulse response
series caused by bearing faults. If there is a technique that
can directly infer the impulse responses dc(t) and time-
location coefficients xc(t) measured IRS in Figure 1(e).
Obviously, the information for detecting bearing faults will
be obtained.

3. Basic Theory of CSR

Convolutional sparse representation properly provides a
framework for inferring the impulse responses and time-
location coefficients from the measured vibration signals
a(t) in equation (9) and is expressed as [51]
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(10)

where ak(t) ∈ Rn denotes the kth set of analysed signals with
length n, dc(t) denotes different kinds of impulse responses,
xk,c(t) ∈ Rn− P+1 denotes time-location coefficients associ-
ated with the analysed signal ak(t) and impulse response
xk,c(t), p is the length of impulse response, λ ∈ R+ is a
regularization parameter, and the constraint on the norms of
shock responses dc(t) avoids the scaling ambiguity between
the impulse response and time-location coefficients.

(e solution methods to the optimization problem in
equation (10) can be divided into two categories: alternating
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Figure 1: Convolutional representation model of impulse response series. (a) Time-location coefficients. (b) An impulse response. (c) IRS.
(d) Measured noises. (e) Measure-version IRS.
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optimization and interleaved optimization. Alternating
optimization methods solve for impulse responses and time-
location coefficients using different optimal techniques, e.g.,
feature-sign search [52] or fast iterative shrinkage thresh-
olding [53] are used to optimize the time-location co-
efficients, and the Lagrange multiplier method [48] is
employed to optimize impulse responses. After many cal-
culation steps when updating the time-location coefficients,
switch to the impulse responses, and alternating execution of
the two optimization processes until convergence. However,
the interleaved optimization can simultaneously update the
impulse responses and time-location coefficients in a cal-
culation step using the same optimization method [51].
ADMM-based CSR is a kind of interleaved version of op-
timizing the convolution sparse representation in equation
(10). Interleaved optimization has much higher optimization
efficiency and obtains even more accurate results than al-
ternating optimization [51]. ADMM-based interleaved op-
timization includes shift-invariant sparsity coding and shift-
invariant dictionary learning in an optimization calculation
step.

After SIDL and SISC are performed on a set of signals
a1(t) a2(t) · · · aK(t)( 􏼁, different types of impulse re-

sponses dL
c (t) are obtained. (e time-location coefficients

xL
c (t) are inferred by the obtained impulse response-based

SISC of the signals a(t) � aT
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(erefore, IRSs embedded in measured signals are
extracted using the following formula:

IRSc � d
L
c (t)∗ x

L
c (t), c ∈ [1, C]. (12)

Although convolution sparse representation provides a
framework for extracting IRSs caused by wheelset-bearing
faults, and ADMM can effectively and efficiently solve CSR-
related optimization problems, practical research has dis-
covered that inappropriate selections of CSR-related pa-
rameters adversely influence the extraction of IRSs. CSR-
related parameters can be divided into two categories: the
boundary condition-related parameters listed in Table 1 and
signal feature-related parameters listed in Table 2.

Considering the CSR Fourier transform and sampling
frequency, the length of a single set signal n and the number
of analysed signal sets K can be set to 1024 and 8, re-
spectively. (e convergence conditions for CSR (primal
residuals of SISC rx, dual residuals of SISC sx, primal re-
siduals of SIDL rd, and dual residuals of SIDL sd) are
previously set to 0.001.

However, four parameters related to signal features
cannot be set beforehand and should be adaptively tuned
because the different measured signals contain different
types of impulse responses. (e types of impulse responses
are closely related to the orders of the excited resonance
frequencies induced by the wheelset bearing. (e impulse

responses with different resonance frequencies and damping
coefficients naturally have different impulse response
lengths. (e CSR-related regularization parameter reflects
the sparsity of the impulse responses and is tightly related to
the rotational speed and geometry parameters of the
wheelset bearing. (e selection of a suitable ADMM-related
penalty parameter ρ is critical to obtaining a good con-
vergence rate. (ere are two strategies for selecting ρ: the
increasing parameter scheme [52] and the adaptive method
[54]. Due to the good convergence performance of the
adaptive method, the adaptive method is employed in this
paper and can be described as [54]
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⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(13)

where r(j) � x(j)(t) − y(j)(t), s(j) � ρ(j)(y(j− 1)(t) − y(j)(t))

on the optimization process of equations (14) and (15), and
r(j) � d(j)(t) − g(j)(t), s(j)(t) � ρ(j)((g(j− 1)(t) − g(j)(t))

are residuals of dual variables, respectively. τ and μ are
constants, the typical values of which in [52] are τ � 2 and
μ � 10. (us, selecting the ADMM-related parameter ρ
becomes a determination of the initial value ρ(0). According
to the test in [52], ρ(0) � ξλ. For this paper, ξ was set to 100.
Next, the other three parameters will be discussed in detail.
To illustrate the influences caused by the different regula-
rization parameters, the IRS vs. λ were extracted and are
shown in Figure 2.

4. The Proposed ACSR

A novel fault detection named adaptive CSR (ACSR) is
proposed in this paper. (e procedure of the proposed
method is shown in Figure 3. It mainly contains four steps:

(1) Estimating the types of impulse responses C
(2) Estimating the length of impulse responses P
(3) Estimating the regularization parameter λ
(4) Extracting IRS using ACSR with optimal parameters

(Co, Po, λo)

4.1. Estimating the Types of Impulse Responses. According to
the physical definition of an impulse response in equation
(6), impulse responses are a function of resonance frequency
ωr and damping coefficient β. (e resonance frequency can
be used to identify different types of impulse responses [55].
(us, the dominant frequencies of the inferred impulse
responses from measured vibration signals can be used to
estimate the types of impulse responses C. When the ana-
lysed signals are executed by CSR with c, c impulse responses
can be obtained. (eir amplitude-frequency spectra are
obtained by Fourier transform taken on c learned impulse
responses, respectively. (e frequencies which the maximal
amplitudes point to are the extractedmain frequencies in the
amplitude-frequency spectra. (erefore, the real value of C
can be estimated by repeatedly executing CSR with C� 2,
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Table 1: Boundary condition-related parameters.

Parameters n K rx sx rd sd

Physical
meaning

(e length of the single set
signal

(e number of signal
sets

Primal
residuals

Dual
residuals

Primal
residuals

Dual
residuals

Preset values 1024 4 0.001 0.001 0.001 0.001

Table 2: Signal feature-related parameters.

Parameters C P λ ρ
Physical
meaning

Types of impulse
responses

(e length of impulse
responses

CSR-related regularization
parameter

ADMM-related penalty
parameter

–16

0

16

Ac
ce

le
ra

tio
n

(m
s–2

)

0.0000 0.1024 0.2048 0.3072 0.4096
Time (s)

(a)

–12

0

12

Ac
ce

le
ra

tio
n

(m
s–2

)

0.0000 0.1024 0.2048 0.3072 0.4096
Time (s)

(b)

–10

0

10

Ac
ce

le
ra

tio
n

(m
s–2

)

0.0000 0.1024 0.2048 0.3072 0.4096
Time (s)

(c)

–10

0

10

Ac
ce

le
ra

tio
n

(m
s–2

)

0.0000 0.1024 0.2048 0.3072 0.4096
Time (s)

(d)

–12

0

12

Ac
ce

le
ra

tio
n

(m
s–2

)

0.0000 0.1024 0.2048 0.3072 0.4096
Time (s)

(e)

Figure 2: IRSs extracted using CSR for different parameters λ. (a) Original sound, kurtosis value� 40.3023. (b) λ� 1, kurtosis val-
ue� 69.9564. (c) λ� 2, kurtosis value� 98.9707. (d) λ� 3, kurtosis value� 135.1575. (e) λ� 5, kurtosis value� 183.7083.
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P � 32, and λ � 5. If the differences between any two
dominant frequencies ΔfC are less than fsp

− 1 (fsp
− 1 means

the frequency resolution of Fourier transform, fs denotes
the sampling frequency and is 10000Hz, p is set to 32 in this
paper, and fsp

− 1 is equal to 312.5Hz), there are less than C

types of impulse responses. (en, C � C − 1, CSR is re-
peatedly executed to learn (C − 1) types of impulse re-
sponses, and the resulting dominant frequencies ΔfC− 1 are
calculated until the frequency differences of any two
dominant frequencies are more than the frequency reso-
lution. Otherwise, C � C + 1, CSR is repeatedly executed to
learn (C+ 1) types of impulse responses, their dominant
frequencies are calculated until at least one frequency dif-
ference ΔfC+1 is less than the frequency resolution, and C �

C − 1 (in this paper, the initial value of C is set to 2).(e final
value of C is output as the estimated real values of the types
of impulse responses embedded in the measured vibration
signals. In Section 5, the detailed procedures for calculating
the main frequencies when estimating C are shown in
Figures 4 and 5 for Case 1 and Case 2, respectively.

According to the above-discussed rules for estimating
the types of impulse responses C, in Case 1, when C was

initialized to 2, the difference between the two main fre-
quencies f1 � 2508Hz and f2 � 2439Hz, Δf2, was equal to
69Hz and was less than the frequency resolution in Figure 4.
(us, C�C − 1. (e type of impulse responses embedded in
the simulation signals of Case 1 was 1 and was identical to
the simulation setting. Similarly, there were two types of
impulse response for Case 2, i.e., there were two IRSs for
Case 2.

4.2. Estimating the Lengths of the Impulse Responses.
Although the full time-domain waveform of an impulse
response is contaminated by measured noise, the high
amplitude zone of an impulse response should have a larger
SNR than the low amplitude zone in Figure 6.

If only two extreme values y(t1) and y(t2) can be
precisely obtained in Figure 6, the two parameters: reso-
nance frequency fr and damping coefficient β for describing
an impulse response are indirectly computed and are
expressed as [55]

fr �
1
tn

�
1

t2 − t1
,

β �
1
2π

ln
y t1( 􏼁

y t1( 􏼁
􏼠 􏼡.

(14)

(erefore, extracting information on an impulse re-
sponse should contain at least two extreme values, i.e.,
Ne ≥ 2.

Ideally, when an impulse response properly has two
extreme values, and its length is p, the time difference be-
tween two extreme values tn � t1 − t2 � p(fs)

− 1. (e reso-
nance frequency associated with two extreme values fr can
be computed by the following formulation:

(a)
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C = C + 1
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Co

Y

Y

Y

Y

N

CSR
with
Co,

P = 32,
λ = 5

CSR
with

Ne > 2
po,
λ

Increasing P

poNe > 2

Maximal envelope
kurtosis vs λ λo

ACSR with Ne > 2, λ, λo

∆fc > fsP
–1

∆fc ≥ fsP
–1

∆fc+1 < fsP
–1

∆fc+1 ≤ fsP
–1

Figure 3:(e procedure for the proposed ACSR. (a) Estimating the
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impulse responses. (c) Estimating the regularization parameter.
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fr �
1
tn

�
fs

p
. (15)

(erefore, the resonance frequency of the leaned impulse
response fr should satisfy the following conditions:

fmin ≤fr � fsp
− 1 ≤ 0.5fs. (16)

As a result, a possible length of p should satisfy the
following relationship:

2≤P≤fsf
− 1
min, (17)

where fmin is the minimum resonance frequency and is
considered to be 300Hz in this paper. Higher vibration
frequencies necessitate smaller kernel function p lengths.
When the resonance frequency is equal to 0.5fs, the length
of kernel P is only larger than 2. When the resonance fre-
quency is 350Hz (fs � 10 kHz), P exceeds 28.5. (erefore, p
is initially set to 32 in this paper. If there are not two
complete maximum values in the learned kernel function,
the lengths of the impulse responses P should be increased to
represent the lower resonance frequency.

To illustrate the influence of different P on extracting IRSs,
impulse responses with different Pwere learned and are shown
in Figure 7, and the resulting IRSs were extracted and are
shown in Figure 8. (rough a careful analysis of Figures 8(a),
8(c), 8(e), and 8(g), the amplitudes and number of extracted
impulse responses were hardly influenced by the length of
impulse response. However, in Figures 8(b), 8(d), 8(f), and
8(h), the amplitudes of the envelope spectra of the IRS with

longer impulse responses are larger than those for the shorter
impulse response. (is is beneficial for detecting weak faults.
(erefore, it is reasonable to initially set P to 32 in this paper.

4.3. Estimating Regularization Parameter. In Figure 2, it can
be seen that the IRSs with different regularization param-
eters had different envelope spectra kurtoses and contained
different noise levels. (e number of impulse responses
decreased with increasing regularization parameter. Con-
versely, the noise contained in the extracted IRS increases.
(erefore, it is critical to determine a rational regularization
parameter value suitable for the analysed vibration signals. If
the quality of the extracted IRS can be measured by an index,
automatic parameter selection is feasible.

Envelope spectrum kurtosis, as an effective measure index
of impulsive feature distribution, could be used to accurately
evaluate the information capacity of bearing faults [46]. As the
number of periodic impulse responses increases, the envelope
spectrum kurtosis of the extracted IRS becomes larger.
However, when the number of periodic impulse responses
exceeds the actual value, the kurtosis of its envelope spectrum
will decrease with continuous increases in the regularization
parameter λ.(erefore, the variance of the envelope spectrum
kurtosis can reflect the impulsive feature distribution caused
by different values of the regularization parameter. (e
maximum kurtosis of the envelope spectrum points to the
desired result of the regularization parameter. (e envelope
spectrum kurtosis vs. λ in Section 5 for Case 1 and Case 2 were
calculated and are shown in Figures 9 and 10, respectively.

4.4. Extracting IRSs Using ACSR with Optimal Parameters.
After estimating the three parameters, an adaptive version of
CSR, which is called the ACSR with optimal parameters
(Co, Po, λo), was obtained. IRS can then be adaptively
extracted by ACSR. Its concrete steps are listed as follows:

(1) Learning the C types of the impulse responses from
the partition signals ak, k ∈ [1, K] using equations
(11) and (17) with the optimal parameters (Co, Po, λo)

(2) Inferring the time-location coefficients of the mea-
sured signals a using the sparse representation based
on the learned impulse responses using equation (12)
with the optimal parameters (Co, Po, λo)
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(3) Extracting IRSs convolving the learned impulse re-
sponses and resulting inferred time-location co-
efficients using equation (12).

5. Simulation Validation

To illustrate the effectiveness of the proposed method, two
classes of simulation signals with different resonances fre-
quencies are introduced in this section.

5.1. Case 1: Simulation Signals with One Type of Impulse
Response. (e simulation signals with a type of impulse
responses contained an IRS. IRS can be realized by the
instantiation of the related parameters in equation (9). (e
parameters are listed in Table 3.

(e simulated IRS at a SNR of − 10 dB is shown in
Figure 11. According to Figure 4 and the rules for de-
termining the number of types of impulse responses, there
should be one type of impulse response (C� 1). When P was
initially set to 32, the number of maximum values of the
learned impulse response shown in Figure 12 was more than
2. (erefore, the length of the kernel function in Case 1, P,
was set to 32. Finally, the envelope spectra kurtosis vs. λ are
shown in Figure 9, and the optimal target sparsity λo was 8.
(e learned impulse response and IRS extracted using ACSR
are shown in Figure 12. Fourier and Hilbert envelope spectra
of the extracted IRS are shown in Figure 13.

To illustrate the effectiveness of the proposed extracted
IRS method, two well-known fault detection methods,
spectral kurtosis [56] and EEMD [18], were used to analyse
the same signal in Figure 11(a), and the obtained results are
shown in Figures 14 and 15, respectively (to save space, the
first intrinsic mode function (IMF), which was much more
impulsive, is shown).

By comparing the time-domain waveform of the
extracted IRS in Figure 12(b) with Figures 14(a) and 15(a),
the proposed ACSR was able to extract the IRS containing 19
impulse responses from the simulation’s noisy signals.
However, the other two comparative methods failed to
extract distinct IRSs, and there was strong noise between
adjacent impulse responses. (is shows that the proposed
ACSR surely can characterize the kinematic process of the
bearing faults. By comparing the of envelope spectra in
Figures 13(b), 14(b), and 15(b), it can be seen that both the
amplitude and harmonic number of the fault-characteristic
frequency were larger than for the other two methods. In
addition, the fault-characteristic frequency harmonics ob-
tained by EEMD and spectra kurtosis were confused by some
uncorrelated spectra lines, indicating that the proposed
ACSR had good performance when extracting IRSs caused
by wheelset bearings.

5.2. Case 2: Simulation Signals with Two Types of Impulse
Responses. (e simulation signals with two types of impulse
responses contained two IRSs. Each of the IRSs can be
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Table 3: Simulation parameters for Case 1.

Am (m) β fr (Hz) fp (Hz) M C

0.00000005 1300 2500 49.1 19 1
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individually realized by instantiating the related parameters
in equation (9). (e parameters are listed in Tables 4 and 5.

(e simulated IRSs at an SNR of − 1 dB are shown in
Figure 16(a). (e Fourier and envelope spectra of the
simulated signals are shown in Figures 16(b) and 16(c),

respectively. (e fault frequency f1 was obtained, but fault
frequency f2 almost cannot be seen in the envelope spectra in
Figure 16(c). (e proposed ACSR was used to process the
simulation signals in Figure 16(a). When C was set as 2, two
main frequencies can be seen in Figure 5(a); f1 was equal to
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Figure 11: Simulated IRS: (a) original signals; (b) its Fourier spectra; (c) its envelope spectrum.
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Figure 12: Extracted IRS: (a) learned impulse response; (b) extracted IRS.
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1195Hz and f2 was equal to 3000Hz. (e difference in the
two main frequencies was 1805Hz, which was greater than
the frequency resolution of 312.5Hz. According to the rule

for estimating the number of impulse responses, C�C+ 1
and was set to 3, and three main frequencies can be seen in
Figure 5(b). (e difference between the main frequency f2
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Figure 13: (a) Fourier spectra of the extracted IRS; (b) Hilbert envelope spectra of the extracted IRS.
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Figure 14: Results obtained by (a) spectra kurtosis: (b) purified signal; (c) Hilbert envelope spectra.
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Figure 15: Results obtained by EEMD: (a) first IMF; (b) envelope spectra of the first IMF.

Table 4: Simulation parameters in the first IRS.

A1 (m) β1 fr1 (Hz) f1 (Hz) M1 C

0.00000005 1500 3000 32.7 12 2

Table 5: Simulation parameters in the second IRS.

A2 (m) β2 fr2 (Hz) f2 (Hz) M2 C

0.00000003 1000 1200 81 31 2
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(2951Hz) and f3 (3030Hz) was less than the frequency
resolution of 312.5Hz. (erefore, the number of the type of
impulse responses should have been 2. When Pwas set to 32,
the number of maximum values of the learned impulse
responses shown in Figure 17 exceeded 2. (erefore, P was
set to 32 for Case 2. (e curves of the envelope spectra
kurtosis vs. different values of the regularization parameter
are shown in Figure 10. (e regularization parameters λ1o

and λ2o for impulse responses 1 and 2 were 7.5 and 5.5,
respectively. (e IRSs extracted using ACSR are shown in
Figure 17. (e Fourier and envelope spectra of IRS1 and
IRS2 are shown in Figure 18.

To illustrate the advantage of the proposed ACSR, two
comparative methods (spectra kurtosis and EEMD) were
employed to analyse the simulation signals in
Figure 16(a), and the results are shown in Figures 19 and
20, respectively (the previous two IMFs are shown due to
their higher impulsiveness). On the one hand, by com-
paring the extracted time-domain waveforms in
Figures 17(b) and 17(d), 19(a), and 20(a) and 20(c), it can

be seen that the proposed ACSR can clearly extract IRSs
for which there is almost any amount of noise in two
adjacent impulse responses and can isolate two ISRs. (is
is advantageous for characterizing the actions of wheelset-
bearing faults. On the other hand, from the envelope
spectra in Figures 18(b) and 18(d), 19(b), and 20(b) and
20(d), the amplitudes and harmonic numbers of the fault-
characteristic frequencies of the IRSs extracted using the
proposed ACSR were larger than those for the other two
comparative methods, and the envelope spectra of the
IRSs extracted using the proposed ACSR were almost
unconfused by noise, indicating that the fault detection
performance of ACSR was good.

6. Experimental Verification

To further test the effectiveness and fault detection per-
formance of the proposed ACSR for practical vibration
signals, bench and running tests, respectively, were carried
out.
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Figure 16: Simulated IRSs: (a) original signal; (b) its Fourier spectra; (c) its envelope spectra.
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6.1. BenchTest. (e wheelset-bearing test bench used for the
practical test of the proposed method is shown in Figure 21.
(e test bench consisted of a motor, driving wheel, loading
device, wheelset, and axle box. (e motor delivered driving

power at different motor speeds. (e driving power was
conveyed to the driving wheel through rubber belts. (e
traction power of the driving wheel was then transmitted to
the wheelset. Faults on the outer and inner races, which are

0.00320.0016 0.00240.00080.0000
Time (s)

–0.6

–0.3

0.0

0.3

0.6
Ac

ce
le

ra
tio

n 
(m

s–2
)

(a)

0.1024 0.2048 0.3072 0.40960.0000
Time (s)

–18

–9

0

9

18

Ac
ce

le
ra

tio
n 

(m
s–2

)

(b)

0.00320.0016 0.00240.00080.0000
Time (s)

–0.4

0.0

0.4

0.8

Ac
ce

le
ra

tio
n 

(m
s–2

)

(c)

0.1024 0.2048 0.3072 0.40960.0000
Time (s)

–8

–4

0

4

8

Ac
ce

le
ra

tio
n 

(m
s–2

)

(d)

Figure 17: IRSs extracted using ACSR: (a) learned impulse response 1; (b) extracted IRS1; (c) learned impulse response 2; (d) extracted IRS2.
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Figure 18: (a) Fourier spectra of the extracted IRS1; (b) Hilbert envelope spectra of the extracted IRS1; (c) Fourier spectra of the extracted
IRS2; (d) Hilbert envelope spectra of the extracted IRS2.
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Figure 19: Processing results obtained using spectra kurtosis: (a) fast kurtogram; (b) purified signal; (c) Hilbert envelope spectra.
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Figure 20: Processing results obtained using EEMD: (a) IMF1; (b) envelope spectra of IMF1; (c) IMF2; (d) envelope spectra of IMF2.
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shown in Figure 22, were introduced to the roller bearing
installed in the axle box (see Figure 23(b) for the axle box and
the accelerometer mounted on it). Figure 23(a) also shows a
photo of the test bench. (e fault bearing parameters are
listed in Table 6.

(e vibration signals collected from the wheelset-
bearing system test bench are shown in Figure 24 when the
outer race of the wheelset bearing had the faults shown in
Figure 22. (e rotational frequency of the wheelset, fo,
was 15.4 Hz and corresponded to the running speed of 150
kmh− 1. Its sampling frequency was 10 kHz. In the enve-
lope spectra of the measured signals, there was only the
basic frequency of the inner race fault, fBPFI, but there
were no spectral lines about the outer-race fault-charac-
teristic frequency fBPFI. fBPFI and fBPFO are expressed as
follows:

fBPFI ��
Nb

2
1 +

Bd

Pd

cos(ϕ)􏼠 􏼡fo,

fBPFO �
Nb

2
1 −

Bd

Pd

cos(ϕ)􏼠 􏼡fo,

(18)

where Nb is the roller number, Pd is the pitch diameter, Bd is
the roller diameter, ϕ is the contact angle, and fo is the
rotational speed of the wheelset. According to the param-
eters listed in Table 6, the outer-race fault-characteristic

frequency fBPFO was 124.9Hz, and the inner-race fault-
characteristic frequency, fBPFI, was 168.1Hz.

(e proposed ACSR was used to analyse the measured
vibration signals in Figure 24(a). (e main frequencies for
estimating the types of impulse responses embedded in
measured vibration signals were calculated and are shown in
Figure 25.

According to the rule for estimating the types of impulse
responses, there should have been 2 types of impulse re-
sponses. When Pwas initially set to 32, the extreme points of
the learned impulse responses in Figures 26(a) and 26(c)
were larger than 2. (erefore, P was set to 32. (e curve of
the envelope spectra kurtosis with different values of the
regularization parameters is shown in Figure 27. (e two
optimal regularization parameters related to the impulse
responses d1 and d2 were λ1o � 19.5 and λ2o � 20.5,
respectively.

(e learned impulse responses and extracted IRSs are
shown in Figure 26. (e envelope spectra of IRS1 and IRS2
are shown in Figures 28 and 29, respectively. As seen in
Figures 26(b) and 26(d), IRSs induced by the outer fault and
inner fault were clearly extracted using the proposed ACSR.
(e fault-characteristic frequencies of the outer and inner
faults and their harmonics can be seen in Figures 28(a) and
28(b), respectively. To illustrate the increased ability of the
proposed ACSR for detecting wheelset-bearing faults,
spectra kurtosis and EEMD were employed to analyse the

(a) (b)

Figure 22: Photo of the faults (a) on the outer race and (b) on the inner race.

Wheelset

Axle box and bearing

Loading device

(a)

Axle box

Accelerometer

(b)

Figure 23: Photos of (a) test bench and (b) measurement sensor.
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same vibration signals in Figure 24(a), and the results of the
analyses are shown in Figures 30 and 31, respectively. For
EEMD, IMF1, IMF3, and most of the impulsive features are
shown. (e two comparative methods only found the fault
on the outer race.

6.2. Real-Life Running Test in aHigh-Speed Train. To test the
fault detection performance of ACSR under the practical
running conditions of a high-speed train, an accelerometer
was installed on the axle box cover of a high-speed train, as
shown in Figure 32. (e tested wheelset bearing used with
the high-speed train was identical to that used with the
bench test, and its parameters are listed in Table 6. When the
roller of the wheelset bearing had a defect, the vibration
acceleration signals were collected from the axle box cover of

the running high-speed train at a speed of 200 kmh− 1(the
corresponding rotational frequency of wheelset was 20.6Hz)
and are shown in Figure 33. (e sampling frequency of the
measured vibration signals was 10 kHz. (e roller-charac-
teristic frequency fBSF was 134.6Hz. (e roller-character-
istic frequency is defined as

fBSF �
Pd

Bd

1 −
Bd

Pd

(cos ϕ)
2

􏼠 􏼡fo. (19)

As seen in Figure 33(c), the roller-characteristic frequency
and its harmonics could not be discovered from the envelope
spectra of the original measured signals for fault detection.

ACSR was therefore used to process the measured
signals in Figure 33(a). (e main frequencies for esti-
mating the types of impulse responses were calculated

Table 6: Rolling bearing test parameters.

Roller number Roller diameter (mm) Pitch diameter (mm) Contact angle (rad)
19 26.9 180 0.1571
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Figure 24: Measured signals: (a) time-domain waveform; (b) Fourier spectra of (a); (c) envelope spectra of (a).
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Figure 25: Main frequencies for estimating the impulse response types.
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Figure 26: Learned impulse responses and extracted IRSs: (a) the first type of impulse response (IR1); (b) IRS1 of IR1; (c) the second type of
impulse response IR2; (d) IRS2 of IR2.
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and are shown in Figure 34. According to the rule for
estimating the optimal number of types of impulse re-
sponses, C was equal to 2. In the learned impulse re-
sponse in Figure 35, the number of maximum extreme
values for each type of learned impulse responses
exceeded 2. (e length of the kernel function was
therefore set to 32. (e curves for selecting the optimal
values of the regularization parameter were calculated
and are shown in Figure 36. (e regularization parameter

related to IRS1, λ1o, was 20, and that related to IRS2, λ2o,
was 13. (e learned impulse responses and extracted IRSs
obtained using ACSR are shown in Figure 35. (e Fourier
and envelope spectra of the extracted IRSs are shown in
Figure 37. In Figure 35(d), the vibration behaviour when
the faulty roller alternatively entered and left the bearing
zone (BZ) or nonbearing zone can be distinctly seen. (e
fault-characteristic frequency of the roller and its har-
monics were extracted for detecting the wheelset-bearing
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Figure 28: (a) Fourier spectra of IRS1; (b) envelope spectra of IRS1.
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Figure 29: (a) Fourier spectra of IRS2; (b) envelope spectra of IRS2.
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Shock and Vibration 19



0.1024 0.2048 0.3072 0.40960.0000
Time (s)

–36

–18

0

18

36
Ac

ce
le

ra
tio

n 
(m

s–2
)

(a)

200 400 6000
Frequency (Hz)

0

1

2

Ac
ce

le
ra

tio
n 

(m
s–2

) fBPFO

2fBPFO
3fBPFO

(b)

0.1024 0.2048 0.3072 0.40960.0000
Time (s)

–14

0

14

28

Ac
ce

le
ra

tio
n 

(m
s–2

)

(c)

200 400 6000
Frequency (Hz)

0.0

0.8

1.6

Ac
ce

le
ra

tio
n 

(m
s–2

) fBPFO

2fBPFO 3fBPFO

4fBPFO

(d)

Figure 31: Processing results obtained using EEMD: (a) IMF1; (b) envelope spectra of IMF1; (c) IMF3; (d) envelope spectra of IMF3.
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Figure 32: (a) Measurement sensor installed on the axle box cover; (b) structure diagram of the wheelset bearing.
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Figure 33: Measured vibration signals: (a) original signal; (b) Fourier spectra of (a); (c) envelope spectra of (a).
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Figure 34: Main frequencies for estimating the types of impulse responses.
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Figure 35: Learned impulse responses: (a) IR1; (b) IRS1 of IR1; (c) IR2; (d) IRS2 of IR2.
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Figure 37: Fourier and envelope spectra: (a) Fourier spectra of IRS1; (b) envelope spectra of IRS1; (c) Fourier spectra of IRS2; (d) envelope
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Figure 38: (e defect on the tested wheel tread.
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Figure 39: Results obtained using (a) spectra kurtosis: (b) purified signal; (c) Hilbert envelope spectra.
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Figure 40: Results obtained using EEMD: (a) IMF1; (b) envelope spectra of IMF1; (c) IMF3; (d) envelope spectra of IMF3.
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fault, as shown in Figure 37(d). (e rotational frequency
fo of the wheelset and its harmonics can be observed in
Figure 37(b). In accordance with the vibrational feature,
there should have been a defect on the wheel tread. When
the tested wheelset was carefully checked, the wheel tread
was found to have the defect shown in Figure 38.

To compare the performances of the proposed ACSR
with the well-known spectra kurtosis and EEMD methods,
two comparative methods were used to analyse the mea-
sured vibration signals in Figure 33(a). (e analysed results
are shown in Figures 39 and 40. As seen in Figure 39(a), the
extracted IRSs were distorted. From Figure 39(b), it can be
seen that the spectra kurtosis only found the basic frequency
of the roller-fault-characteristic frequency. In Figures 40(a)
and 40(c), there was strong noise in the two impulse re-
sponses. As a result, the fault action of the roller could not be
characterized. As shown in Figures 40(b) and 40(d), the basic
frequency of the roller-fault-characteristic frequency could
only be detected from the envelope spectra of the IMFs,
indicating that the proposed ACSR performed better when
detecting wheelset-bearing faults under the running con-
ditions of the high-speed train.

7. Conclusion

In this paper, a novel fault detection method named ACSR
was proposed:

(1) A convolutional representation mode for charac-
terizing impulse response series was developed. An
IRS induced by bearing faults can be described as the
convolution of an impulse response and the resulting
time-location coefficients.

(2) ACSR was proposed based on the combination of
CSR and a method for estimating three parameters
(the number of types of impulse responses C, length
of impulse response P, and regularization parameter
related to the convolution sparse representation λ).

(3) (e capacity of ACSR for characterizing and
detecting bearing faults was validated by simulation
and bench and real-line tests. Compared to spectra
kurtosis and EEMD, ACSR can not only extract full
IRSs but also isolate IRSs induced by multiple faults
in a wheelset-bearing system. (erefore, ACSR’s
performance for detecting wheelset-bearing faults is
superior to that for two other comparative methods.

In addition, ACSR provides a route for estimating the
states of wheel treads using the measured vibration signals of
axle boxes. (is will be further investigated in the future.
Using the Matlab.2014a platform on a Dell Inspiron 14 laptop
computer, themean calculation time of SIDL and SISC for the
tested signals in Figure 33(a) was approximately 52 seconds.
(e real-time performance of ACSR needs to be improved.
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