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+e free vibration characteristic of spherical cap with general edge constraints is studied by means of a unifiedmethod.+e energy
method and Kirchhoff hypothesis are adopted to derive the formulas. +e displacement functions are improved based on the
domain decomposition method, in which the unified Jacobi polynomials are introduced to represent the displacement function
component along circumferential direction. +e displacement function component along axial direction is still the Fourier series.
In addition, the spring stiffness method forms a unified format to deal with various complex boundary conditions and the
continuity conditions at two adjacent segments. +en, the final solutions can be obtained based on the Ritz method. To prove the
validity of this method, the results of the same condition are compared with FEM, published literatures, and experiment. +e
results show that the present method has the advantages of fast convergence, high solution accuracy, simple boundary simulation,
etc. In addition, some numerical results of uniform and stepped spherical caps with various geometric parameters and edge
conditions are reported.

1. Introduction

Spherical caps have been widely used in many practical
engineering branches, such as pressure vessels, dome-shaped
structures, submarines, and nuclear power plants. +ese
structures usually bear different extreme loads caused by
wave, wind, and even earthquakes. +e dynamic excitations
caused excessive vibration and even resonance in complex
environmental conditions. +erefore, the analysis of free
vibration of spherical caps becomes really meaningful. +e
related literatures are reviewed below.

Gautham and Ganesan [1] conducted a research to deal
with the free vibration characteristics of isotropic and lami-
nated orthotropic spherical caps. Based on the first-order shear
deformation theory, a semianalytical shell finite element was
utilized to investigate the effect of geometric configurations on
vibration behavior of spherical caps. Singh and Mirza [2, 3]
studied the vibration characteristics of spherical shells with
various boundary restraints by means of FEM. Natural

frequencies of spherical shells with different geometry pa-
rameters have been analyzed. +en, the author presented
displacement fields of each segment by quintic Bezier func-
tions, which was proved efficient and accurate using only two
to four shell segments of spherical shells. Wu and Heyliger [4]
analyzed the free vibration of spherical caps on the basis of two-
dimensional first-order shear deformable shell theory. Hermite
interpolation polynomials and Fourier series were used in the
azimuthal and circumferential direction, respectively.

Meanwhile, many related investigations have been con-
ducted on typical curved shells and structures, such as the
GDQ method, Fourier–Ritz method, radial basis function
(RBF) method, and so on. Tornabene and Viola [5] studied the
dynamical behavior of hemispherical domes and spherical shell
panels on the basis of first-order shear deformation theory
(FSDT) and generalized differential quadrature (GDQ)
method. Jouneghani et al. [6] investigated vibrational behavior
of doubly curved shells on the basis of first-order shear de-
formation theory (FSDT) considering porosities. Hamilton’s

Hindawi
Shock and Vibration
Volume 2019, Article ID 7470460, 18 pages
https://doi.org/10.1155/2019/7470460

mailto:miaoxuhong@aliyun.com
https://orcid.org/0000-0002-4840-3509
https://orcid.org/0000-0002-5934-273X
https://orcid.org/0000-0002-0546-0490
https://orcid.org/0000-0002-2637-6466
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2019/7470460


principle and Navier’s solution method were both utilized to
derive the numerical results. Wang et al. [7–9] analyzed vi-
bration behavior of cylindrical shells on Pasternak foundation
by means of Fourier–Ritz approach. Jin et al. [10–12] analyzed
vibration behavior of cylindrical shells with general boundary
restraints by means of a generalized solution. +e vibration
behavior of a thin cylindrical shell with simply supported edges
was studied byWu et al. [13] bymeans of Hamilton’s principle.
Lagrange principle and Hamilton’s principle were utilized by
Hussain et al. [14] to investigate vibration of cylindrical shell
resting on Winkler and Pasternak elastic foundations. Zhou
et al. [15] analyzed the free vibration features of cylindrical
shells with elastic edge conditions. +e method of wave
propagations was utilized on the basis of Flügge thin shell
theory. +e author presented the displacement function by
Chebyshev polynomials and Fourier series. Tornabene et al.
[16] presented the radial basis function (RBF) method to study
vibration behavior of composite curved cases. Brischetto et al.
[17] introduced the zig-zag function to overcome the dis-
continuity of displacement function; free vibration of curved
plates was analyzed. Shi et al. [18] analyzed free vibration of
double-curved shallow shell structures by means of the im-
proved Fourier series method (IFSM); the excellent conver-
gence and accuracy of the presentedmethod have been proved.
Li et al. [19–22] extended the modified Fourier–Ritz approach
to evaluate the free vibration of rectangular plate, sector plate,
and cylindrical, conical, and spherical panels and shells of
revolution with general boundary conditions. Lee et al. [23]
applied Flügge’s thin shell theory and Rayleigh’s energy
method to analyze the free vibration characteristics of the
joined spherical-cylindrical shell with general edge constraints.
In addition, a modal test was conducted to validate the de-
pendability of the method. Shi et al. [24] analyzed vibration
behavior of double-curved shallow shells with complex edges
on the basis of the spectral-geometric Ritz method. +e dis-
placement component was expressed as the assembly of
Fourier series and assistant functions. +e reliability and ex-
actness of the method was proved through the comparison
between present method, FEM, and published literatures.
Wang et al. [25, 26] also proposed a unified formulation to
investigate vibration behavior of curved shells.

Meanwhile, structures with stepped thickness exist
widely in engineering application. +e dynamic features of
this kind of structure also attract researcher’s attention. Qu
et al. [27, 28] put forward the domain decomposition
method to investigate vibration behavior of stepped and
homogeneous conical shells with various boundary re-
straints. Zhang and Xiang [29] studied the vibration be-
havior of cylindrical shells with stepped thickness by means
of the state-space technique and domain decomposition
method. +e influence of shell thickness ratios, locations of
stepwise thickness variations, and step thickness ratios were
also discussed. Khalifa [30] investigated the vibration be-
havior of stepped cylindrical shells; however, the solution
process was realized through combination of the transfer
matrix approach and the Romberg integration method.
Fazzolari [31] carried out an investigation of vibration
characteristic of curved shells on the basis of the dynamic
stiffness method and higher order shear deformation theory.

Xie et al. [32] combined Flügge’s thin shell theory with the
power series method to investigate vibration characteristic of
stepped curved shells with different edge conditions.

As we can see from the literature review, most studies
mentioned above are restricted to classical edge constraints,
such as clamped, hinged, and free boundary. To the authors’
knowledge, few research studies have been conducted to study
the vibration characteristics of uniform and stepped spherical
caps with elastic edge conditions.+erefore, a unified method
is necessary and meaningful to establish to solve the vibration
behavior of uniform and stepped spherical caps with elastic
edge conditions. On the basis of theory of thin shell and the
domain decomposition method, spherical caps are separated
into sections along the meridian direction. +e displacement
components of spherical caps along meridian and circum-
ferential directions are presented by Jacobi polynomials and
Fourier series. +e boundary restraints and the internal in-
terfaces between two adjacent parts of spherical cap are
simulated through the penalty method. Final solutions are
derived on the basis of the Rayleigh–Ritz method.

2. Theoretical Model

2.1. Description of the Model. +e geometry symbol and
coordinate system of uniform and stepped spherical cap are
displayed in Figure 1. +e spherical cap is defined in a
spherical coordinate system (φ, θ, δ); the displacements of
the middle shore surface along meridian, circumferential,
and normal orientations are, respectively, represented by u,
v, and w. h and hi, respectively, denote the thickness of
uniform and stepped spherical cap. +e symbols R, Rc, Cs,
and φ1 denote the horizontal radius, radius, the center, and
center angle of spherical cap, respectively. Figure 2 shows the
differential element of the shell.

To increase the accuracy of calculations, the spherical cap
considered in current research is partitioned into Np shell
segments along meridian direction. In addition, these sec-
tions are considered as single component in the current
research. For stepped spherical cap, the number of partition
sections is related to the stepped number.

2.2. Energy Functional Expressions of Spherical Cap.
Based on the thin shell theory and Kirchhoff hypothesis
[33–35], relationship between strain, stress, and displace-
ment of the ith part of spherical cap can be obtained. By
means of Hooke’s law, stresses corresponding to strains
mentioned above are expressed as follows:
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where σi
φ and σi

θ are stresses along normal directions and σi
φθ

is the shear stress. ei
φ, ei

θ, and ci
φθ correspond to normal

strains and shear strains, respectively. +e signification of i
means ith section of the spherical cap. +e parameters
Qi,j(i, j � 1, 2, 6) signify the relation between stresses and
strains. +e expressions of Qi,j are as follows:
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where E and ] denote Young’s modulus and Poisson’s ratio,
respectively. Based on the elasticity theory, the expression
for strain energy stored in the spherical cap during elastic
deformation is
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where dV is the volume of element. +e volume can be
expressed as equation (4) in shell coordinates. In the for-
mulation (4), Rc is the radius of spherical cap; in addition,
−h/2≤ z≤ h/2.
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For the thin spherical cap, some items are simplified.+e
energy function is rewritten as follows:
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Meanwhile, the kinetic energy of spherical cap is defined
as follows:
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where the dot above u, v, and w represents differentiation
of displacement components with respect to time. +e
kinetic energy expression of equation (7) can be rewritten
as
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where ω denotes angle frequency of the spherical cap.

2.3. Edge Conditions and Connective Constraints of the
Spherical Cap. In the current research, the continuity and
the boundary restraints of spherical caps are simulated on
the basis of the penalty method. ku, kv, and kw represent
the preassigned stiffness of the translational spring along
u, v, and w directions; meanwhile, kr denotes stiffness of
rotational spring. Translational and rotational spring
stiffness values are, namely, penalty parameters. In other
words, arbitrary boundary restraints can be generated by
assigning the penalty parameters at appropriate values.
Stiffness values corresponding to general boundary re-
straints are displayed in Table 1. To simplify the study, CE,
SSE, and FE, respectively, denote clamped edge, shear
support edge, and free edge. +e spherical cap with elastic
boundary restraints is displayed in Figure 3. +e potential
energy stored in the boundary springs can be written as
follows:
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Figure 1: Symbols of geometric parameters and coordinates of spherical cap. (a) Uniform spherical cap. (b) Stepped spherical cap.
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Figure 2: Differential element of spherical cap.

Shock and Vibration 3



Ub �
1
2


2π

0

⎧⎨

⎩ku,0u
2
0 + kv,0v

2
0 + kw,0w

2
0

+ kr,0 −
u0 − zw0/zφ0( 

Rφ0

 

2⎫⎬

⎭Rc sinφ dθ

+
1
2


2π

0

⎧⎨

⎩ku,1u
2
1 + kv,1v

2
1 + kw,1w

2
1

+ kr,1 −
u1 − zw1/zφ1( 

Rφ1

 

2⎫⎬

⎭Rc sinφ dθ,

(9)

where ks,0(s � u, v, w, r) and ks,1, respectively, denote spring
stiffness value on the top and bottom side of spherical cap.
+e potential energy of the springs connecting two adjacent
sections of the spherical cap is expressed as follows:
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where the superscripts i and i+ 1, respectively, represent the
ith and i+ 1th section of the spherical cap. As a result, the
total potential energy corresponds to boundary restraints,
and connective relations are signified as

UBC � Ub + 

Np−1

i�1
U

i
s, (11)

where Np is the number of divided segments mentioned
above. +us, the complex boundary restraints can be easily
fulfilled by setting appropriate stiffness values to boundary
spring.

2.4. Unified Solutions and Calculation Procedures.
Suitable displacement function is a key point in guaranteeing
the accuracy of solution. +e displacement and rotation
components of spherical cap are expressed as Jacobi and
Fourier series, respectively.

As displayed in the classical references, Jacobi multi-
nomials [36] are valued within the limit of ϕ ∈ [−1, 1].
Typical Jacobi polynomials P

(α,β)

i (ϕ) of degree i are written
as follows in the current method:

P
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+e Jacobi polynomials are generalized polynomials
containing Chebyshev, Legendre, and Gegenbauer poly-
nomials. For example, the choice α � β � 0 yields the Leg-
endre polynomials, while choosing α� β� 1/2 gives the
Chebyshev polynomials. +e use of Jacobi polynomials
makes the choice of admissible function more flexible and
generalized in this paper. +e displacement components of
the spherical cap along meridian, circumferential, and
normal orientations can be written as
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Table 1: Spring stiffness values corresponding to various edge conditions.

BC ku,0, ku,1 kv,0, kv,1 kw,0, kw,1 kr,0, kr,1
FE 0 0 0 0
SSE 1014 1014 1014 0
CE 1014 1014 1014 1014

Axial elastic support kb 0 0 0
Circumferential elastic support 0 kb 0 0
Radial elastic support 0 0 kb 0
Rotational elastic support 0 0 0 kb
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Figure 3: Spherical cap with elastic boundary restraints.
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where Umn, Vmn, and Wmn are the Jacobi expanded co-
efficients corresponding to each displacement component;
P(α,β)

m (ϕ) are the Jacobi polynomials of mth order dis-
placement components along axial direction; t signifies time;
and ω denotes the circular frequency. n and m signify the
circumferential and axial wavenumber of the corresponding
mode shape, respectively. M and N are the maximum order
of displacement admissible functions. A linear trans-
formation φξ � [(φi+1

ξ −φ
i
ξ)/2]ϕ + (φi+1

ξ + φi
ξ)/2 is conducted

to transform φ ∈ [φi,φi+1] into range ϕ ∈ [−1, 1]. +e total
Lagrangian energy function of the spherical cap can be
expressed as

L � 
N

i�1
T

i −U
i

 −UBC. (14)

Based on the Rayleigh–Ritz method, the total energy of
spherical cap can be minimized with respect to the Jacobi
coefficients:

zL
zϑ

� 0, ϑ � Umn, Vmn, Wmn. (15)

Substituting equations (5)–(14) into equation (15), the
discretized equation of vibration of the spherical cap can be
expressed as the matrix form as

K−ω2
M T � 0. (16)

Symbols K and M of equation (16) separately signify
stiffness matrix and mass matrix of the spherical cap. +e
detailed description of equation (16) is given in Ap-
pendix. +e matrix of unknown Jacobi coefficients is
denoted as symbol T. +e eigenvalues of spherical cap
are, namely, modal frequencies that can be easily
achieved by solving equation (16). Meanwhile, mode
shapes of spherical cap can be obtained by the sub-
stitution of the corresponding eigenvectors into com-
ponents of displacement.
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Figure 4: Nondimensional frequency Ω of spherical cap with different spring stiffness values: (a) connective spring; (b) boundary spring.
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3. Vibration Characteristics of Spherical Cap
and Discussions

In this section, some results and discussions about free
vibration characteristics of uniform and stepped spherical
caps are presented to verify the exactness and flexibility of
the proposed method. Based on that, some new results are
obtained for uniform and stepped spherical caps subjected to
general boundary conditions. +e discussion is arranged as
follows: firstly, the excellent convergence of the present
method is demonstrated. +en, the exactness and de-
pendability of the current method when handling vibration
characteristic of uniform and stepped spherical caps are
verified. Lastly, more analytical results of uniform and
stepped spherical cap with classical and elastic edge con-
ditions are displayed. +e density of the material is
ρ � 7850 kg/m3, Poisson’s ratio ] � 0.3, and Young’s mod-
ulus is E � 210GPa. To avoid roundoff results, non-
dimensional frequency parameter is used unless otherwise
stated: Ω � ωRS

���
ρ/E


.

3.1. Convergence Studies. When the penalty parameters are
not defined as a suitable value, the solution may not con-
verge [37, 38]. So, it is necessary to conduct the convergence
study of current method. Figure 4 denotes nondimensional
frequency parameters of clamped hemispherical cap with
different connective and boundary spring stiffness values.
+e geometry dimensions and other parameters of the
hemispherical cap are as follows: Rc � 1m, h� 0.005m,
α� β�−0.5, and Np � 4.

As displayed in Figure 4, the nondimensional frequency
parameter converges to a stable value when the spring
stiffness of connective restraints and boundary edges is,
respectively, in the scope of kt � 1012 ∼ 1018 and
kt � 1011 ∼ 1018. +at is to say, stiffness values at this stage
can ensure clamped boundary restraints. Meanwhile, when
the stiffness values of boundary spring are less than 104, the
boundary conditions can be seen as free. When the spring

stiffness values are in the range of 105 to 109, the boundary
conditions can be regarded as elastic. In the current research,
the spring stiffness matching with free and clamped
boundary restraints is, respectively, set as 0 and 1014. +e
spring coefficient kb of elastic support is set as 108 in the
current research unless otherwise stated. +us, the spring
stiffness values of the general edge conditions can be
achieved as shown in Table 1.

+e nondimensional frequency parameters of the
current method with different segments are compared
with the results of FEM and related literature [39] in
Table 2. h/Rc and φ1 of spherical cap are, respectively,
0.005 and 60 degrees. +e FEM analysis was conducted by
means of ANSYS. +e elastic support edge constraints are
imitated by distributed springs which are made up by 160
COMBIN 14 elements. In addition, the spherical cap is
composed of four-node element shell 63. +ere are 120
and 180 shell elements along meridian and circumfer-
ential directions, respectively. +e mesh of the spherical
cap is fine enough to guarantee the accuracy. It can be
concluded from Table 2 that the current method con-
verges well when the shell segment (Np) is small. When the
shell segment (Np) reaches 4, convergence and exactness
are completely fulfilled. As seen in the table, a many
number of shell segments are not required in this study.
+e subsequent calculations will be conducted when the
shell segment (Np) is set as 4.

+e percentage error of parameter Ω about hemi-
spherical cap with different Jacobi parameters are displayed
in Figure 5. +e results when α� β� 0 are taken as the
reference value. +e geometric dimensions of the spherical
cap in Figure 5 are same as Figure 4. Figure 5 demonstrates
different Jacobi parameters almost have no effect on the
results of frequency parameter Ω. Meanwhile, the change
trend of the frequency parameter Ω varies with the different
values of circumferential wavenumber. However, even the
maximum percentage error does not exceed 3×10−5. +at is
to say, not only the special Jacobi polynomials (Legendre,
Chebyshev, etc.) can be utilized, all of the polynomials can

Table 2: Convergence study of the frequency parameters ωRS
����������
ρ(1− μ2)/E


with respect to the section number of spherical cap (Np).

n m
Number of the segments (Np) Ref [2] Ref [39] FEM

2 3 4 5 6 7 8 9 10

1

1 0.8229 0.8229 0.8228 0.8228 0.8228 0.8228 0.8228 0.8228 0.8228 0.8247 0.8228 0.8226
2 0.9147 0.9146 0.9145 0.9145 0.9145 0.9145 0.9145 0.9145 0.9145 0.9184 0.9145 0.9144
3 0.9448 0.9443 0.9445 0.9445 0.9445 0.9445 0.9445 0.9445 0.9445 0.9485 0.9446 0.9445
4 0.9708 0.9707 0.9703 0.9703 0.9703 0.9703 0.9703 0.9703 0.9703 0.9772 0.9705 0.9704
5 1.0101 1.0099 1.0098 1.0098 1.0098 1.0098 1.0098 1.0098 1.0098 1.0228 1.0099 1.0098

2

1 0.9195 0.9194 0.9193 0.9193 0.9193 0.9193 0.9193 0.9193 0.9193 0.9215 0.9192 0.9193
2 0.9508 0.9507 0.9505 0.9505 0.9505 0.9505 0.9505 0.9505 0.9505 0.9528 0.9504 0.9505
3 0.9791 0.979 0.9787 0.9787 0.9787 0.9787 0.9787 0.9787 0.9787 0.9819 0.9788 0.9788
4 1.0169 1.0167 1.0165 1.0165 1.0165 1.0165 1.0165 1.0165 1.0165 1.0184 1.0164 1.0164
5 1.0542 1.0541 1.0541 1.0541 1.0541 1.0541 1.0541 1.0541 1.0541 1.0685 1.0538 1.0539

3

1 0.9350 0.9349 0.9348 0.9348 0.9348 0.9348 0.9348 0.9348 0.9348 0.9369 0.9346 0.9347
2 0.9624 0.9623 0.9621 0.9621 0.9621 0.9621 0.9621 0.9621 0.9621 0.9652 0.9618 0.9620
3 0.9965 0.9964 0.9963 0.9963 0.9963 0.9963 0.9963 0.9963 0.9963 1.0007 0.9961 0.9962
4 1.0443 1.0442 1.0441 1.0441 1.0441 1.0441 1.0441 1.0441 1.0441 1.0474 1.0438 1.044
5 1.0938 1.0935 1.0932 1.0932 1.0932 1.0932 1.0932 1.0932 1.0932 1.1110 1.0931 1.0931
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also be used. Compared with other approaches, this is one
advantage of the current method.

3.2. Vibration Characteristics of Uniform and Stepped
Spherical Caps. Firstly, the accuracy and dependability of
the current method for solving the free vibration of the
uniform and stepped spherical caps will be confirmed. Af-
terwards, more results of spherical caps with various ge-
ometry parameters and boundary conditions are displayed.
Tables 3 and 4 demonstrate the exactness and reliability of
the current method for free vibration of uniform and
stepped hemispherical cap by comparing with the results of

related literature [39] and FEM (S4R model, 16830 ele-
ments). +e geometrical parameters of hemispherical cap in
Table 3 are chosen as follows: Rc � 1m and h� 0.01m. +e
radius of stepped hemispherical cap in Table 4 is the same as
Table 3. Meanwhile, the thickness of the top and bottom
section of stepped hemispherical cap is, respectively, 0.005m
and 0.01m.

It can be concluded from Tables 3 and 4 that the present
method has excellent numerical stability when handling free
vibration of uniform and stepped hemispherical cap with
general boundary conditions. In addition, the tiny distinc-
tion between the current method, related literature, and
FEM proves high accuracy of the current method.
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Figure 5: Fractional error of frequency parameters Ω of uniform spherical cap with different Jacobi parameters (BC: C–C).
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Table 3: Comparison of frequency parameters Ω of uniform hemispherical cap subjected to different edge conditions.

N m
SSE CE Axial elastic support

(kb � 1e8)
Present FEM Present Ref [39] Present FEM

1

1 0.560 0.562 0.568 0.567 0.237 0.236
2 0.885 0.884 0.893 0.893 0.877 0.875
3 0.960 0.962 0.965 0.965 0.953 0.952
4 0.996 0.998 1.002 1.002 0.984 0.985
5 1.034 1.035 1.044 1.045 1.011 1.012

2

1 0.900 0.911 0.901 0.901 0.173 0.175
2 0.966 0.968 0.966 0.966 0.918 0.946
3 0.997 0.998 0.998 0.997 0.968 0.965
4 1.025 1.023 1.031 1.029 0.996 0.997
5 1.066 1.065 1.079 1.077 1.029 1.025

3

1 0.946 0.948 0.948 0.947 0.161 0.163
2 0.988 0.987 0.989 0.988 0.945 0.943
3 1.023 1.022 1.024 1.022 0.982 0.984
4 1.065 1.064 1.066 1.065 1.011 1.012
5 1.113 1.115 1.123 1.119 1.052 1.053

Table 4: Frequency parameters Ω of stepped hemispherical cap with different boundary conditions using the current method and FEM.

n m
SSE CE Axial elastic support

(kb � 1e8)
Present FEM Present FEM Present FEM

1

1 0.6557 0.6555 0.6478 0.6480 0.2629 0.2630
2 0.9167 0.9165 0.9119 0.9118 0.8842 0.8841
3 0.9711 0.9709 0.9656 0.9655 0.9526 0.9528
4 0.9899 0.9897 0.9839 0.9840 0.9795 0.9797
5 1.0092 1.0091 1.0048 1.0045 0.9991 0.9993

2

1 0.8557 0.8556 0.8532 0.8530 0.1752 0.1755
2 0.9556 0.9555 0.9554 0.9555 0.9215 0.9217
3 0.9909 0.9908 0.9906 0.9902 0.9548 0.9546
4 1.0126 1.0125 1.0060 1.0061 0.9899 0.9900
5 1.0292 1.0290 1.0239 1.0240 1.0119 1.0121

3

1 0.8762 0.8761 0.8760 0.8762 0.1608 0.1609
2 0.9765 0.9763 0.9765 0.9768 0.9157 0.9158
3 1.0059 1.0058 1.0059 1.0061 0.9764 0.9165
4 1.0392 1.0394 1.0367 1.0369 1.0055 1.0056
5 1.0597 1.0589 1.0563 1.0565 1.0374 1.0375

(a) (b)

Figure 6: Modal measurement system and test objects. (a) Acceleration data acquisition system. (b) Impact hammer, accelerometer, and the
spherical cap.
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Altogether, the current method works well when handling
vibration analysis of uniform and stepped spherical cap with
general boundary conditions by means of a generalized
solution.

To further verify the accuracy of the current method, the
experiment test focusing on free vibration of a hemispherical
cap was carried out. It should be pointed out that the
spherical cap is isotropic.

Table 5: Natural frequencies (Hz) of the tested spherical cap using different methods.

Mode number (n, m) Current method Experiment Inaccuracy (%) FEM Inaccuracy (%)
(1,2) 5778.6 5788.5 0.17 5775.9 0.05
(2,2) 6055.3 6072.2 0.28 6052.5 0.05
(1,3) 6310.8 6323.1 0.19 6303.5 0.12
(2,3) 6439.7 6455.2 0.24 6432.3 0.11
(3,3) 6581.7 6608.8 0.41 6573.9 0.12

1st mode (n = 1, m = 1) 2nd mode (n = 2, m = 1)

(a)

1st mode (n = 1, m = 1) 2nd mode (n = 2, m = 1) 

(b)

1st mode (n = 1, m = 1) 2nd mode (n = 2, m = 1) 

(c)

Figure 7: Typical mode shapes of the spherical cap with free edge conditions using different methods. (a) Typical model test mode shapes of
the spherical cap with free boundary restraint. (b) Typical mode shapes of the spherical cap with free boundary restraint using FEM software.
(c) Typical mode shapes of the spherical cap with free boundary restraint using the current method.
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Table 6: Nondimensional frequency parameter of uniform hemispherical cap with different edge conditions.

n m
Boundary conditions

CE SSE Axial elastic support Circumferential elastic support Radial elastic support Rotational elastic support

1

1 0.5678 0.5601 0.2366 0.1902 0.1312 0.0112
2 0.8934 0.8852 0.8767 0.8779 0.8836 0.8764
3 0.9655 0.9604 0.9531 0.9533 0.9599 0.9536
4 1.0016 0.9959 0.9837 0.9838 0.9950 0.9865
5 1.0435 1.0343 1.0114 1.0114 1.0322 1.0182

2

1 0.9012 0.9004 0.1734 0.1741 0.2397 0.0346
2 0.9662 0.9661 0.9176 0.9175 0.9246 0.9177
3 0.9975 0.9970 0.9682 0.9682 0.9762 0.9697
4 1.0306 1.0254 0.9964 0.9964 1.0105 1.0006
5 1.0791 1.0665 1.0293 1.0293 1.0539 1.0380

3

1 0.9476 0.9459 0.1608 0.1611 0.3283 0.0702
2 0.9892 0.9878 0.9452 0.9452 0.9519 0.9460
3 1.0239 1.0231 0.9819 0.9819 0.9913 0.9843
4 1.0658 1.0654 1.0114 1.0114 1.0286 1.0171
5 1.1226 1.1130 1.0517 1.0517 1.0806 1.0625

Table 7: Nondimensional frequency parameter of uniform 60 degrees spherical cap with different edge conditions.

n m
Boundary conditions

CE SSE Axial elastic support Circumferential elastic support Radial elastic support Rotational elastic support

1

1 0.8668 0.8630 0.2822 0.2229 0.2215 0.0206
2 0.9727 0.9651 0.9435 0.9437 0.9540 0.9442
3 1.0305 1.0175 0.9906 0.9906 1.0120 0.9964
4 1.1231 1.0974 1.0390 1.0390 1.0861 1.0554
5 1.2777 1.2350 1.1297 1.1297 1.2057 1.1612

2

1 0.9745 0.9720 0.1614 0.1619 0.3248 0.0536
2 1.0284 1.0280 0.9663 0.9663 0.9788 0.9686
3 1.0927 1.0848 1.0098 1.0098 1.0390 1.0192
4 1.2040 1.1700 1.0758 1.0758 1.1331 1.0980
5 1.3895 1.3347 1.1957 1.1957 1.2773 1.2350

3

1 0.9978 0.9956 0.1513 0.1514 0.4081 0.0994
2 1.0588 1.0587 0.9844 0.9844 0.9999 0.9885
3 1.1444 1.1327 1.0352 1.0352 1.0721 1.0485
4 1.2876 1.2465 1.1245 1.1245 1.1895 1.1529
5 1.5093 1.4456 1.2772 1.2772 1.3602 1.3240

Table 8: Nondimensional frequency parameter of uniform 45 degrees spherical cap with different edge conditions.

n m
Boundary conditions

CE SSE Axial elastic support Circumferential elastic support Radial elastic support Rotational elastic support

1

1 0.9712 0.9710 0.3044 0.2513 0.2895 0.0315
2 1.0339 1.0246 0.9716 0.9716 0.9911 0.9752
3 1.1508 1.1120 1.0280 1.0280 1.0860 1.0474
4 1.3856 1.3141 1.1486 1.1486 1.2541 1.1953
5 1.7551 1.6509 1.3861 1.3862 1.5037 1.4665

2

1 1.0161 1.0137 0.1491 0.1494 0.3964 0.0791
2 1.1034 1.0987 0.9928 0.9928 1.0212 1.0009
3 1.2618 1.2123 1.0723 1.0723 1.1463 1.1014
4 1.5552 1.4657 1.2450 1.2450 1.3556 1.3057
5 1.9888 1.8658 1.5477 1.5477 1.6534 1.6430

3

1 1.0441 1.0438 0.1501 0.1502 0.4852 0.1424
2 1.1611 1.1453 1.0189 1.0189 1.0573 1.0320
3 1.3807 1.3159 1.1357 1.1357 1.2214 1.1753
4 1.7414 1.6371 1.3679 1.3679 1.4757 1.4420
5 2.2385 2.1012 1.7362 1.7362 1.8292 1.8450
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Table 9: Nondimensional frequency parameter of uniform 30 degrees spherical cap with different edge conditions.

n m
Boundary conditions

CE SSE Axial elastic support Circumferential elastic support Radial elastic support Rotational elastic support

1

1 1.0509 1.0509 0.3401 0.3023 0.3932 0.0573
2 1.2192 1.1616 1.0094 1.0093 1.0797 1.0308
3 1.6567 1.5103 1.1899 1.1898 1.3506 1.2739
4 2.4021 2.1843 1.6437 1.6435 1.7893 1.8050
5 3.4110 3.1362 2.3957 2.3964 2.4889 2.6276

2

1 1.1055 1.1004 0.1397 0.1399 0.5176 0.1421
2 1.3866 1.2949 1.0628 1.0628 1.1624 1.1030
3 1.9737 1.7928 1.3611 1.3611 1.5184 1.4768
4 2.8563 2.6055 1.9615 1.9615 2.0803 2.1540
5 3.9980 3.6856 2.8490 2.8490 2.8688 2.8690

3

1 1.1799 1.1560 0.1892 0.1893 0.6300 0.2519
2 1.5988 1.4723 1.1532 1.1532 1.2734 1.2144
3 2.3331 2.1221 1.5893 1.5893 1.7304 1.7333
4 3.3468 3.0680 2.3315 2.3315 2.4289 2.5504
5 4.6097 4.2700 3.3471 3.3471 3.4106 3.6318

Table 10: Nondimensional frequency parameter of stepped hemispherical cap with different edge conditions.

n m
Boundary conditions

CE SSE Axial elastic support Circumferential elastic support Radial elastic support Rotational elastic support

1

1 0.6956 0.6854 0.2263 0.1749 0.1388 0.0188
2 0.9392 0.9327 0.9033 0.9041 0.9116 0.9036
3 0.9699 0.9646 0.9581 0.9580 0.9620 0.9588
4 0.9946 0.9938 0.9880 0.9880 0.9945 0.9916
5 1.0250 1.0208 0.9968 0.9978 1.0176 1.0022

2

1 0.8180 0.8123 0.1475 0.1493 0.2365 0.0467
2 0.9777 0.9777 0.8526 0.8444 0.8526 0.8471
3 0.9899 0.9805 0.9775 0.9775 0.9776 0.9775
4 1.0115 1.0115 0.9984 0.9970 1.0017 1.0036
5 1.0522 1.0463 1.0110 1.0109 1.0129 1.0122

3

1 0.8572 0.8557 0.1388 0.1393 0.2365 0.0931
2 0.9926 0.9921 0.8836 0.8832 0.8526 0.8856
3 1.0054 0.9986 0.9928 0.9928 0.9776 0.9930
4 1.0310 1.0310 1.0104 1.0103 1.0017 1.0266
5 1.0796 1.0704 1.0309 1.0309 1.0129 1.0309
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Figure 8: Continued.
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+e material and geometrical parameters are chosen as
follows: ρ � 7850 kg/m3, ] � 0.3, E � 210GPa, Rc � 0.125m,
and h� 0.002m.+e boundary condition is free for isotropic
spherical cap due to the restraints of test environment. +e
electronics used to capture the frequencies and experimental
model are displayed in Figure 6. In the experiment, the
hammer (no. 3 in Figure 6) was used to strike different
positions of spherical cap in turn, and acceleration sensors

(no. 2 in Figure 6) with sensitivity of 100mv/g were used to
collect the vibration response at the same point. +en, the
time domain signals obtained by the dynamic signal testing
analyzer (no. 1 in Figure 6) were transformed into frequency
domain signals by Fourier transform. +e final results of
frequencies are shown in Table 5. Meanwhile, the mode
shapes of the spherical cap using experiment, FEM, and the
current method are displayed in Figure 7. It is clear that the
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Figure 8: Frequency parametersΩ of uniform spherical cap with different center angles and boundary conditions. (a) Axial elastic support
boundary condition. (b) Clamped boundary condition. (c) Shear support boundary condition. (d) Free boundary condition.
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Figure 9: Nondimensional frequency Ω of uniform spherical cap with various elastic support edge conditions.
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frequencies and modal shapes of current method matched
well with the modal test and FEM. For selected five modes,
the maximum error of the present method and experiment is
0.41%. +e reason for the error of the present method with
the test results is mainly the influence of elastic hoisting
boundary and random error.

Tables 6‒9 display the frequency parameter Ω of uniform
spherical caps with various center angles φ1 subject to general
boundary conditions, in which φ1 � 30, 45, 60, 90 degrees are
included.+e radius and thickness of spherical cap are 1m and
0.005m, respectively. Table 10 demonstrates the non-
dimensional frequency parameter of stepped hemispherical cap
with general boundary restraints. +e radius of stepped
hemispherical cap in Table 10 is Rc� 1m. However, the
thickness of the top, middle, and bottom section of stepped

hemispherical cap is, respectively, 0.005m, 0.01m, and 0.015m.
It can be seen from Tables 6–9 that frequency parameter Ω of
spherical cap increases with the axial modes when the cir-
cumferential wavenumber is a certain value. Besides, it is clear
that the boundary conditions have an important effect on the
vibration characteristics of spherical cap.

Figure 8 shows nondimensional frequency parametersΩ
of uniform spherical cap with different center angles and
boundary restraints (namely axial elastic support, clamped,
shear support, and free). It is easy to find that with the
increase of center angle, the frequency parameter of
spherical cap decreases, especially when the center angle is
smaller than 50 degrees.

Figure 9 demonstrates the nondimensional frequency
parameters Ω with three different elastic support boundary
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Figure 10: Frequency parameters Ω vs. stiffness of different elastic support springs.
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conditions (namely, axial, radial, and rotational); the second
and third circumferential modes with first five meridian
wavenumbers (i.e.,m� 1–5) are considered. Different elastic
support boundary restraints affect more heavily on the
frequency parameters Ω with low meridian wavenumbers.

Figure 10 displays the relation between nondimensional
frequency parameters Ω and stiffness of different elastic
supports. In the previous clamped boundary restraint
example, we soften the axial, radial, circumferential, and
rotational spring stiffness continuously from 1014 to 100,
respectively. +e nondimensional frequencies Ω of the
first circumferential mode and the first three meridian
wavenumbers are considered. +e similar trend in Fig-
ure 4 is discovered again when considering axial and
circumferential elastic supports, respectively. However,
the changes of stiffness value of radial and rotational
spring have little effect on the frequency parameters Ω.

4. Conclusions

+e paper presents a unified solution to investigate the
free vibration of uniform and stepped spherical caps with
elastic support edge constraints. Nondimensional fre-
quency parameters of spherical caps with various ge-
ometry specifications and edge conditions are displayed,
which may be useful for further research studies. +ere
are some conclusions obtained as follows:

(1) Frequency parameter Ω of spherical cap increases
with the meridian wavenumber when the circum-
ferential number is invariant.

(2) With the decrease of center angle, the frequency
parameter of spherical cap increases, especially when
the center angle is smaller than 50 degrees.

(3) +e effect of boundary spring stiffness on frequency
parameter of spherical cap varies greatly in different
directions.

(4) +ere is almost no effect of varying the radial and
rotational restraining springs on the frequency pa-
rameters, while the other restraining stiffness is kept
infinite. However, different trends appear when
considering axial and circumferential elastic supports.

Appendix

K � Kη + Kb + Ks, (A.1)

M � diag M
1
, M

2
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 , (A.2)

Kη � diag K
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Kb � diag Kb0, · · · , Kb1 , (A.4)
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Muu � ρhU
T
U,

Mvv � ρhV
T
V,

Mww � ρhW
T
W,

(A.7)

U � Pm ⊗Cn,

V � Pm ⊗ Sn,

W � Pm ⊗Cn,

(A.8)

Pm � P
(α,β)
0 (ϕ), P

(α,β)
1 (ϕ), · · · , P

(α,β)
m (ϕ), · · · , P

(α,β)

M (ϕ) ,

(A.9)

Cn � [cos(0θ), cos(1θ), · · ·, cos(nθ), · · · , cos(Nθ)],

(A.10)

Sn � [sin(0θ), sin(1θ), · · · , sin(nθ), · · · , sin(Nθ)],

(A.11)

K
i
η � 

φη,i+1

φη,i


2π

0

Kη,uu Kη,uv Kη,uw

KT
η,uv Kη,vv Kη,vw

KT
η,uw KT

η,vw Kη,ww

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
AB dφ dθ, (A.12)

Kη,uu � KEuuQ0 + DG uuQ1 + uuQ2 , (A.13)

Kη,uv � KEuvQ0 + DG uvQ1 + uvQ2 , (A.14)

Kη,uw � KEuwQ0 + DG uwQ1 + uwQ2 , (A.15)

Kη,vv � KEvvQ0 + DG vvQ1 + vvQ2 , (A.16)

Kη,vw � KEvwQ0 + DG vwQ1 + vwQ2 , (A.17)

Kη,ww � KEwwQ0 + DG wwQ1 + wwQ2 , (A.18)
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Kb0 � 
2π

0

Kb0,uu 0 Kb0,uw

0 Kb0,vv 0

KT
b0,uw 0 Kb0,ww

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

φ�φ0

B dθ, (A.19)

Kb0,uu � ku,0 + kr,0 U
T
U, (A.20)

Kb0,uw � −kr,0
1

Rφ
U

TzW

zφ
, (A.21)

Kb0,vv � kv,0V
T
V, (A.22)

Kb0,ww � kw,0W
T
W + kr,0

zW

zφ

TzW

zφ
, (A.23)

Kb1 � 
2π

0

Kb1,uu 0 Kb1,uw

0 Kb1,vv 0
KT

b1,uw 0 Kb1,ww

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

φ�φ1

B dθ, (A.24)

Kb1,uu � ku,1 + kr,1 U
T
U, (A.25)

Kb1,uw � −kr,1
1

Rφ
U

TzW

zφ
, (A.26)

Kb1,vv � kv,1V
T
V, (A.27)

Kb1,ww � kw,1W
T
W + kr,1

zW

zφ

TzW

zφ
, (A.28)

Kuiui
� ku + kr

1
R2
φ

⎛⎝ ⎞⎠U
T
i Uim, (A.29)

Kuiwi
� −kr

1
R2
φ
U

T
i

zWi

zφ (A.30)

Kvivi
� kvV

T
i Vi, (A.31)

Kwiwi
� kwW

T
i Wi + kr

1
R2
φ

zWi

zφ

TzWi

zφ
, (A.32)

Kuiui+1
� − ku + kr

1
R2
φ

⎛⎝ ⎞⎠U
T
i Ui+1, (A.33)

Kuiwi+1
� kr

1
R2
φ
U

T
i

zWi+1

zφ
, (A.34)

Kwiui+1
� kr

1
R2
φ

zWT
i

zφ
Ui+1, (A.35)

Kvivi+1
� −kvV

T
i Vi+1, (A.36)

Kwiwi+1
� −kwW

T
i Wi−1 − kr

1
R2
φ

zWi

zφ

TzWi+1

zφ
, (A.37)

Kui+1ui+1
� ku + kr

1
R2
φ

⎛⎝ ⎞⎠U
T
i+1Ui+1, (A.38)

Kui+1wi+1
� −kr

1
R2
φ
U

T
i+1

zWi+1

zφ
, (A.39)

Kvi+1vi+1
� kvV

T
i+1Vi+1, (A.40)

Kwi+1wi+1
� kwW

T
i+1Wi+1 + kr

1
R2
φ

zWT
i+1

zφ
zWi+1

zφ
. (A.41)

Data Availability

+e data used to support the findings of this study are in-
cluded within the article.

Conflicts of Interest

+e authors declare that they have no conflicts of interest.

Acknowledgments

+is study was funded by the National Natural Science
Foundation of China (51209052 and 51679053), National Key
Research and Development Program (2016YFC0303406),
Ph.D. Student Research and Innovation Fund of the Funda-
mental Research Funds for the Central Universities (HEU-
GIP201801), Fundamental Research Funds for the Central
University (HEUCFD1515 and HEUCFM170113), Assembly
Advanced Research Fund of China (6140210020105), and
Naval Pre-Research Project, China Postdoctoral Science
Foundation (2014M552661).

References

[1] B. P. Gautham and N. Ganesan, “Free vibration characteristics
of isotropic and laminated orthotropic spherical caps,”
Journal of Sound and Vibration, vol. 204, no. 1, pp. 17–40,
1997.

[2] A. V. Singh and S. Mirza, “Asymmetric modes and associated
eigenvalues for spherical shells,” Journal of Pressure Vessel
Technology, vol. 107, no. 1, pp. 77–82, 1985.

[3] A. V. Singh, “On vibrations of shells of revolution using bezier
polynomials,” Journal of Pressure Vessel Technology, vol. 113,
no. 4, pp. 579–584, 1991.

[4] Y.-C. Wu and P. Heyliger, “Free vibration of layered piezo-
electric spherical caps,” Journal of Sound and Vibration,
vol. 245, no. 3, pp. 527–544, 2001.

[5] F. Tornabene and E. Viola, “Vibration analysis of spherical
structural elements using the GDQ method,” Computers &
Mathematics with Applications, vol. 53, no. 10, pp. 1538–1560,
2007.

[6] F. Z. Jouneghani, R. Dimitri, M. Bacciocchi, and F. Tornabene,
“Free vibration analysis of functionally graded porous doubly-

16 Shock and Vibration



curved shells based on the first-order shear deformation
theory,” Applied Sciences-Basel, vol. 7, no. 12, p. 1252, 2017.

[7] Q. Wang, D. Shi, Q. Liang, and F. Pang, “Free vibrations of
composite laminated doubly-curved shells and panels of
revolution with general elastic restraints,” Applied Mathe-
matical Modelling, vol. 46, pp. 227–262, 2017.

[8] Q.Wang, D. Shi, F. Pang, and F. e Ahad, “Benchmark solution
for free vibration of thick open cylindrical shells on Pasternak
foundation with general boundary conditions,” Meccanica,
vol. 52, no. 1-2, pp. 457–482, 2017.

[9] Q. Wang, D. Shi, F. Pang, and Q. Liang, “Vibrations of
composite laminated circular panels and shells of revolution
with general elastic boundary conditions via fourier-ritz
method,” Curved & Layered Structures, vol. 3, no. 1,
pp. 105–136, 2016.

[10] G. Jin, T. Ye, Y. Chen, Z. Su, and Y. Yan, “An exact solution
for the free vibration analysis of laminated composite cy-
lindrical shells with general elastic boundary conditions,”
Composite Structures, vol. 106, pp. 114–127, 2013.

[11] G. Jin, T. Ye, X. Ma, Y. Chen, Z. Su, and X. Xie, “A unified
approach for the vibration analysis of moderately thick
composite laminated cylindrical shells with arbitrary
boundary conditions,” International Journal of Mechanical
Sciences, vol. 75, pp. 357–376, 2013.

[12] Y. Chen, G. Jin, and Z. Liu, “Free vibration analysis of circular
cylindrical shell with non-uniform elastic boundary con-
straints,” International Journal of Mechanical Sciences, vol. 74,
pp. 120–132, 2013.

[13] Z. Wu, G. Yao, and Y. Zhang, “Vibration analysis of a thin
eccentric rotating circular cylindrical shell,” Proceedings of the
Institution of Mechanical Engineers, Part C: Journal of Me-
chanical Engineering Science, vol. 233, no. 5, pp.1588–1600, 2019.

[14] M. Hussain, M. N. Naeem, and M. R. Isvandzibaei, “Effect of
Winkler and Pasternak elastic foundation on the vibration of
rotating functionally graded material cylindrical shell,” Pro-
ceedings of the Institution of Mechanical Engineers, Part C:
Journal of Mechanical Engineering Science, vol. 232, no. 24,
pp. 4564–4577, 2018.

[15] H. Zhou, W. Li, B. Lv, and W. L. Li, “Free vibrations of
cylindrical shells with elastic-support boundary conditions,”
Applied Acoustics, vol. 73, no. 8, pp. 751–756, 2012.

[16] F. Tornabene, N. Fantuzzi, E. Viola, and A. J. M. Ferreira, “Radial
basis function method applied to doubly-curved laminated
composite shells and panels with a general higher-order equiv-
alent single layer formulation,” Composites Part B: Engineering,
vol. 55, pp. 642–659, 2013.

[17] S. Brischetto, E. Carrera, and L. Demasi, “Free vibration of
sandwich plates and shells by using zig-zag function,” Shock
and Vibration, vol. 16, no. 5, pp. 495–503, 2009.

[18] D. Y. Shi, S. Zha, H. Zhang, and Q. Wang, “Free vibration
analysis of the unified functionally graded shallow shell with
general boundary conditions,” Shock and Vibration, vol. 2017,
Article ID 7025190, 19 pages, 2017.

[19] F. Pang, H. Li, Y. Du, S. Li, H. Chen, and N. Liu, “A series
solution for the vibration of mindlin rectangular plates with
elastic point supports around the edges,” Shock and Vibration,
vol. 2018, Article ID 8562079, 21 pages, 2018.

[20] H. Li, N. Liu, F. Pang, Y. Du, and S. Li, “An accurate solution
method for the static and vibration analysis of functionally
graded Reissner-Mindlin rectangular plate with general
boundary conditions,” Shock and Vibration, vol. 2018, Article
ID 4535871, 21 pages, 2018.

[21] L. Li, H. Li, F. Pang, X. Wang, Y. Du, and S. Li, “+e modified
Fourier-Ritz approach for the free vibration of functionally

graded cylindrical, conical, spherical panels and shells of
revolution with general boundary condition,” Mathematical
Problems in Engineering, vol. 2017, Article ID 9183924,
32 pages, 2017.

[22] H. Li, F. Pang, X. Wang, and S. Li, “Benchmark solution for
free vibration of moderately thick functionally graded
sandwich sector plates on two-parameter elastic foundation
with general boundary conditions,” Shock and Vibration,
vol. 2017, Article ID 4018629, 35 pages, 2017.

[23] Y.-S. Lee, M.-S. Yang, H.-S. Kim, and J.-H. Kim, “A study on
the free vibration of the joined cylindrical–spherical shell
structures,” Computers & Structures, vol. 80, no. 27–30,
pp. 2405–2414, 2002.

[24] D. Shi, Y. Zhao, Q. Wang, X. Teng, and F. Pang, “A unified
spectro-geometric-ritz method for vibration analysis of open
and closed shells with arbitrary boundary conditions,” Shock
and Vibration, vol. 2016, Article ID 4097123, 30 pages, 2016.

[25] Q. Wang, B. Qin, D. Shi, and Q. Liang, “A semi-analytical
method for vibration analysis of functionally graded carbon
nanotube reinforced composite doubly-curved panels and
shells of revolution,” Composite Structures, vol. 174, pp. 87–
109, 2017.

[26] Q. Wang, F. Pang, B. Qin, and Q. Liang, “A unified for-
mulation for free vibration of functionally graded carbon
nanotube reinforced composite spherical panels and shells of
revolution with general elastic restraints by means of the
Rayleigh–Ritz method,” Polymer Composites, vol. 39, no. 2,
pp. E924–E944, 2017.

[27] Y. Qu, Y. Chen, X. Long, H. Hua, and G. Meng, “Free and
forced vibration analysis of uniform and stepped circular
cylindrical shells using a domain decomposition method,”
Applied Acoustics, vol. 74, no. 3, pp. 425–439, 2013.

[28] Y. Qu, Y. Chen, Y. Chen, X. Long, H. Hua, and G. Meng, “A
domain decomposition method for vibration analysis of
conical shells with uniform and stepped thickness,” Journal of
Vibration and Acoustics, vol. 135, no. 1, article 011014, 2013.

[29] L. Zhang and Y. Xiang, “Exact solutions for vibration of
stepped circular cylindrical shells,” Journal of Sound and
Vibration, vol. 299, no. 4-5, pp. 948–964, 2007.

[30] A. M. Khalifa, “Exact solutions for the vibration of circum-
ferentially stepped orthotropic circular cylindrical shells,”
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