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(is paper presents a developed dislocation superimposed method (DSM) for automatically extracting the component of
impulsive signals from abnormal noise signals of an engine at a single speed range on the basis of the initial DSM. (is method
consists of three steps: using a correlation analysis to select an appropriate starting superposition point, superimposing abnormal
sound signals to improve the signal-to-noise ratio, and intercepting superimposed signals to separate the fault component.
Experimental results show that the developed DSM can effectively extract the fault characteristics of cylinder knocking and
connecting rod bearing knocking. (e developed approach can be applied to separate the fault characteristics of other types of
rotating machines.

1. Introduction

An automobile engine is a core component of a car powered
by fuel, and its structure is complicated. (e failure of a part
not only affects the machine operation but may also cause
considerable economic losses or even catastrophic conse-
quences. Common engine failures include wear, distortion,
cavitation, and corrosion, and different faults can be de-
tected in various approaches, such as tail gas, power and
speed, oil, and vibration and noise analytical methods [1–5].

In comparison with other detection methods, the use of
acoustic signals for extracting fault components has the
advantage of detection without disassembling devices. (e
abnormal noise and vibration signals of an engine often
contain considerable dynamic information about the engine
state, including fault components, acoustic signals of other
components working properly, and background noise [6].
(e fault component of some faults often has quasi-
periodicity. By processing abnormal sound signals, the
extracted fault component can be used as an effective basis
for analysing the cause of engine fault. As the fault com-
ponent of abnormal signals has a low signal-to-noise ratio,
the extraction of fault components is often the most

important and difficult problem, which directly affects the
accuracy and reliability of diagnosis [7]. Methods for pro-
cessing abnormal noise signals mainly include fast Fourier
transform (FFT), wavelet transform, and empirical mode
decomposition (EMD) [5, 8, 9]. Classical signal processing
methods, such as FFT and short-time Fourier transform,
cannot analyse strong nonlinear and nonstationary signals.
Wavelet analysis can have good localization characteristics
in the time and frequency domains; thus, it is often used to
extract time-frequency characteristics [10]. Figlus [11] used a
continuous wavelet transform (CWT) to process vibration
signals qualitatively, and they quantitatively identified the
damage degree of the timing chain tensioner. Figlus [5, 12]
used the discrete wavelet transform (DWT) and wavelet
packet decomposition to detect the valve clearance of a diesel
engine automatically. Albarbar [13] proved that CWT is
sensitive to the engine speed and load change by using it to
manage diesel engine acoustic signals. Shirazi and Mahjoob
[14] used the DWT transfer vibration signals of a typical
four-cylinder engine from the time domain to the time-
frequency domain for fault detection. Although the wavelet
transform has the advantage of multiresolution analysis of
signals, appropriate wavelet basis functions are difficult to be
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selected before processing signals [15]. To solve this prob-
lem, Huang et al. [9] proposed the EMD, which can effi-
ciently decompose nonlinear and nonstationary signals
without any set of basis functions. Vernekar et al. [16]
presented an engine gearbox fault diagnosis on the basis of
EMD and naive Bayes algorithm to manage vibration sig-
nals. (ey classified healthy and different simulated faulty
conditions of gear and bearing, and results showed that the
classification accuracy of their method can reach 98.88%.
Zhao et al. [17] combined the EMD and autoregressive
model to diagnose the faults of crankshaft bearing and
connecting rod bearing and obtained the fault spectrum. To
overcome the noise effects, Xu et al. [18] proposed a new
method for engine vibration diagnosis on the basis of an
EMD adaptive threshold filter and presented the correlation
dimension. Experimental results indicated that the proposed
method can effectively remove the noise of engine vibration
signal and improve the accuracy and efficiency of EMD. Ye
and Shao [19] introduced a new inspection method based on
EMD and envelope spectrum analysis to analyse vibration
signals. Results showed that the proposed method has ex-
cellent performance in quality inspection in the presence of
abnormal clearance between the engine crankshaft and
connecting rod. Tan et al. [20] used the EMD method to
remove diesel engine vibration signals. Test results indicated
that the true vibration signal from the diesel engine could be
obtained by reconstructing the remaining IMF components.
Although EMD has been successfully applied in the field of
fault diagnosis, it has limitations, such as the frequent oc-
currence of mode mixing. To overcome this problem, Wu
and Huang [21] proposed ensemble empirical mode de-
composition (EEMD) in 2009. EEMD adds finite amplitude
Gauss white noise to the signal when the signal is decom-
posed, thereby eliminating mode mixing to a certain extent.
Wang et al. [6] presented a new adaptive wavelet packet
thresholding function based on adaptive wavelet threshold
denoising, EEMD, and correlation dimension for vibration
signal denoising.(is new method can effectively extract the
impact signal features induced by vibrations. Zhang et al.
[22] used EEMD and other methods to process engine
abnormal sound and the frequency-dependent contribu-
tions of different engine parts to different test points under
different speeds.

In recent years, numerous scientists have proposed
processing methods for nonstationary signals. Smith [23]
introduced the local mean decomposition (LMD) method in
2005. Frei and Osorio [24] presented the intrinsic time-scale
decomposition (ITD) method in 2007. However, similar to
the EMD, the LMD and ITD have the disadvantage of mode
mixing. In 2015, Dayong et al. [25] proposed a dislocation
superimposed method (DSM) on the basis of the random
decrement technique. In comparison with other methods,
the DSM is simple and will not change the concerned
component in the mixed signal. (e fault component is a
quasi-periodic signal; thus, it requires people to select the
starting point and superposition length when DSM is used to
process abnormal acoustic signals, which greatly reduce the
efficiency of processing experimental data. (is paper
presents a developed DSM for automatically extracting the

impulsive fault component from the abnormal noise signal
of an engine.

2. DSM Review

(e mathematical model of DSM is defined by using the
following equation:

A(n) �
1

k + 1
􏽘

k+1

j�1
A(n + jT), (1)

where A(n) is the original signal, k denotes the superposition
number (k� 1, 2, 3, . . .), and T represents a superposition
step.

Figure 1 presents a simple example of the DSM, whereA1
and A2 are two periodic signals with different periods and
amplitudes, in which A1 indicates the target signal and its
period is T. A3 refers to a synthetic signal of A1 and A2. To
extract A1 from the mixed signal A3, A3 is moved to the right
for T and then added with A3 to obtain A4. (e period of A1
does not change, but the amplitude is doubled during su-
perposition, whereas A2 is destroyed. Repeating the previous
process can increase the amplitude of the target signal.
Dividing the superimposed signal by the corresponding
superposition number can obtain the target signal.

A correlation analysis is performed between separated
signal A5 and target signal A1 to calculate their similarity.
(e correlation coefficient can be calculated by equation (2),
where v is the length of signals A1 and A5. (e larger the |ρ|,
the stronger the correlation between two signals. (e DSM
can extract periodic signals from the mixed signal. As the
superposition number increases, the extraction result be-
comes further accurate:
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􏽐
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􏽐
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n�1 A5(n)−A5( 􏼁

2
􏽱 .

(2)

3. Introduction of Improved DSM

A slight change in the engine speed is observed. (us, the
impulsive fault components generated by certain parts are
quasi-periodic signals, as shown in Figure 2, which could not
be extracted by moving the fault component cycle. (ere-
fore, artificially selecting a suitable starting point is necessary
at the front end of each dislocation superimposed in-
terception signal containing fault components. To overcome
the shortcomings of human participation in processing data,
this paper presents a developed DSM for automatically
extracting impulsive fault components from the abnormal
noise signal of an engine. (is new method consists of three
steps: selection of starting points, superimposition of in-
terception signal, and separation of fault components.

3.1. Selection of the Starting Points of Dislocation Super-
imposed Interception Signal. Ideal starting points represent
the first point of each fault component. However, the po-
sition of fault components is difficult to determine due to the
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nonstationary feature of abnormal sound signals. �us, a
suitable point in the vicinity of the position where the fault
component exists must be selected as the starting point.

Assume that the engine produces an impulsive fault
every q revolutions of the crankshaft. �e angle of q revo-
lutions is divided into H parts. �en, an area of length w (W
area) is intercepted at any phase, where w represents the
length of the initial area containing the main energy of the
fault component. Waveforms of the W area in abnormal
sound at di�erent times are similar. �erefore, W1 and W2
are intercepted at the same phase of two consecutive q
revolutions for correlation analysis. ρ(W1, W2) and M1
(which is a threshold for preliminarily judging whether the
phase position can be used as the starting point) are com-
pared. If the W1 and W2 areas include the main energy area
of two fault components, as shown in Figure 3(a), where
ρ(W1, W2) is greater than M1, then the starting point is
preliminarily selected at the phase. If the W1 and W2 areas
contain background noise or few fault components, as
shown in Figure 3(b), where ρ(W1,W2) is less thanM1, then
the starting point should be reveri­ed at the next phase.

A positional deviation may exist between the fault
components intercepted at the same phase of di�erent
revolutions due to slight changes in the engine speed during
operation. Figure 4 shows that ρ(W1, W2) calculated at θi is
greater than M1; however, a large positional deviation is
observed between the fault components. �e fault compo-
nent will be destroyed in the superimposition process.
�erefore, the starting point could not be selected at phase θi
and must be reveri­ed at θi+1. When the phase is constantly
approaching the position where the fault component exists,
the positional deviation between the fault components is

gradually reduced. If the deviation can be regarded as a
natural error, then the starting point can be determined at
the phase.

To determine whether the positional deviation between
the fault features is negligible, some W areas are super-
imposed, and the correlation coe�cient between the
superimposedW areas is calculated under the same number
of superposition times. If the correlation increases with the
number of superpositions, then the positional deviation can
be ignored.�e steps of the judgment method are as follows:

Step 1. Divide consecutive 2mW areas at the same phase of
di�erent revolutions into two groups in accordance with the
parity of serial numbers and guarantee that samples 2m are
enough. Superimpose W areas in each group by using the
following equation:

DWuk �
1

k + 1
∑
k+1

j�1
W2j+u−2, (3)

where DWuk is the superimposed W areas; u denotes the
group number, u� 1, 2; and k indicates the number of
superpositions, k� 1, 2, 3, . . ., m− 1.

Step 2. Calculate the correlation coe�cient ρ(DW1k, DW2k)
between superimposed signals DW1k and DW2k under the
same number of superpositions, as shown in Figure 5. If
ρ(DW1k, DW2k) increases with the number of superpositions
until it is greater than threshold M2 (M2 is for assessing
whether the positional deviation is negligible), then the
positional deviation can be ignored, and the selected starting
point is valid. Otherwise, the starting point is preliminarily
assessed again at the next phase.

ρ(DW1k, DW2k) is not strictly monotonous with the
number of superpositions due to the in�uence of back-
ground noise. Hence, ρ(DW1k, DW2k) is indirectly compared
under the number of superpositions by using the following
equation:

ρ DW1(k+2), DW2(k+2)( )> ρ DW1k, DW2k( ). (4)

A phenomenon that the fault component is destroyed
when ρ(W1, W2) is greater than M1 also exists, as shown in
Figure 6. To solve this problem, H parts of the angle of q
revolutions must be su�cient to satisfy di<w/2, where di is
the length of the abnormal signal between phases θi and θi+1.
�e reason is that ρ(W1, W2) must be recalculated at phase
θi+1 and compared withM1 when ρ(W1,W2) at phase θi is less
than M1. If di≥w, then the main energy area of the fault
components will be destroyed or skipped, as shown in
Figures 7(a) and 7(b). If w/2≤ di<w, then the main energy
area is destroyed, as shown in Figure 7(c). If di<w/2, then the
main energy area is hardly destroyed. In this study, di<w/5.

In addition, if the ­rst ρ(W1, W2) is greater than M1, then
the result is discarded and ρ(W1,W2) is recalculated at the next
phase until it is less than M1 and then greater than M1 again.

Considering the di�erent lengths of the main energy
areas of di�erent fault characteristics, w should be set to a
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Figure 2: Quasi-periodic signal. t is the average period and ti, tj,
and tk denote the periodic deviations.
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Figure 1: Graphical representation of DSM. A1 indicates the target
signal, A2 is an interference signal, A3 represents a mixed signal of
A1 and A2, A4 refers to a superimposed signal after A3 and A3
moved to the right for T, and A5 denotes a separated target signal.
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­xed value to select the valid starting point when di�erent
types of faults occur. �is study obtains the value of w using
equation (5) by studying numerous impulsive signals and
referring to the length of the main energy area of fault signals
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Figure 4: Relationship between fault features acquired at di�erent phases. (a) Intercepting abnormal signals at di�erent phases. (b)
Intercepted results at θi and θi+1, where f(n) is the abnormal sound signal generated during engine operation, di denotes the length of the
abnormal signal between phases θi and θi+1, B1 represents the fault component intercepted at θi, B2 refers to the fault component intercepted
at the next θi, B3 indicates the fault component intercepted at θi+1, and B4 signi­es the fault component intercepted at the next θi+1. In
comparison with θi+1, θi is far from the position where the fault component exists, and a large positional deviationmay occur between B1 and
B2 acquired at θi in di�erent q revolutions due to slight changes in the engine speed. θi+1 is close to the position where the fault component
exists. If the deviation between B3 and B4 is small enough and can be regarded as a natural error, then the starting point can be selected at the
position of θi+1.
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Figure 5: Relationship between fault features at di�erent phases. If
ρ(DW1k,DW2k) increases with the number of superpositions until it is
greater than threshold M2, then the positional deviation can be
ignored. ρ(DW1k, DW2k) is not strictly monotonous with the number
of superpositions due to the in�uence of background noise, such as
ρ(DW13, DW23) is less than ρ(DW12, DW22) and ρ(DW16, DW26) is less
than ρ(DW15, DW25). Hence, ρ(DW1k, DW2k) is indirectly compared
under the number of superpositions by using equation (4).
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Figure 3: Principle of the preliminary selection of the starting point. (a)W areas include the main energy area of two fault components. (b)
W areas do not contain the main energy area of two fault components. Correlation analysis for W1 and W2 areas intercepted at the same
phase of two consecutive q revolutions. If theW1 andW2 areas include the main energy area of two fault components, where ρ(W1,W2) is
greater than thresholdM1, then the starting point is preliminarily selected at the phase position. If theW1 andW2 areas contain background
noise or few fault features, where ρ(W1, W2) is less than M1, then the starting point should be reveri­ed at the next phase.

W

Sampling points

A
m

pl
itu

de

θi

Figure 6: Situation where the fault component is destroyed.
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in other studies, as shown in Table 1. (e length of the main
energy area is determined through experience:

w �
h

44100
× 300. (5)

Equation (5) is an empirical formula, which can effec-
tively separate impulsive fault components, including cyl-
inder knocking and connecting rod bearing knocking;
however, its versatility needs further verification.

When slight changes in engine speed are not considered,
di is calculated using the following equation:

di �
60qh

ωH
, (6)

where di is the length of the abnormal signal between phases
θi and θi+1, q denotes the number of revolutions of the
crankshaft, h represents the sampling frequency, ω indicates
the engine rotating speed, and H refers to the number of
parts into which the angle of q revolutions is divided.

(erefore, H should satisfy the following equation:

H≥
300qh

wω
. (7)

(e encoder can generate a certain number of pulse
signals, and the angle between any adjacent pulse signals is
equal. (e encoder is used to divide the angle in the ex-
periment. Figure 8 and equation (8) show that M3 is a
threshold for assessing the rising edge of the pulse signal.
Two consecutive discrete points g(n) and g(n + 1) of the
pulse signal are compared with thresholdM3. When g(n) is
smaller and g(n + 1) is larger than M3, a rising edge is
considered to exist between points:

g(n)<M3 <g(n + 1). (8)

(e W areas are obtained as follows: simultaneous data
acquisition of the abnormal sound signal f(n) and pulse
signal g(n) is conducted under the same sampling frequency
and one-to-one correspondence between signal data points.
In Figure 9 and equation (9), f(nr + 1) corresponding to
g(nr + 1) is selected as the starting point, and w points are
intercepted backward as W areas:

Wj � f􏼒n(j−1)qN+r + 1, n(j−1)qN+r + 2, n(j−1)qN+r

+ 3, . . . , n(j−1)qN+r + w􏼓,

(9)

where j is the serial number of the W areas, j� 1, 2, 3, . . .; r
denotes the serial number of the rising edge, r� 1, 2, 3, . . .; q
represents the number of revolutions of the crankshaft; and
N indicates the number of pulses triggered by the encoder at
one revolution.

3.2. Superposition of Abnormal Sound Signals. (e abnormal
sound signal is divided into different segments Ij at valid
phases. Different sections Ij are superimposed to improve the
signal-to-noise ratio.

Ij is obtained as follows: in Figure 10 and equation (10),
f(n(j−1)qN+r+ 1) corresponding to g(n(j−1)qN+r+ 1), which is
used to assess the ((j− 1)qN+ r)th rising edge, is selected as
the first point of Ij, and f(njqN+r) corresponding to g(njqN+r),
which is used to judge the (jqN+ r)th rising edge, is set as the
last point of Ij:
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Figure 7: Influence of the relationship between w and di on fault components. (a) di>w. (b) di � w. (c) w/2≤ di<w. (d) di<w/2. If di≥w,
then the main energy area of the fault components will be destroyed or skipped, as shown in Figures 7(a) and 7(b). If w/2≤ di<w, then the
main energy area is also destroyed, as shown in Figure 7(c). If di<w/2, then the main energy area is hardly destroyed.
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Ij � f(n(j−1)qN+r + 1, n(j−1)qN+r + 2, n(j−1)qN+r

+ 3, . . . , njqN+r),
(10)

where j is the serial number of the Ij areas, j� 1, 2, 3, . . .; r
denotes the serial number of the rising edge, r� 1, 2, 3, . . .; q
represents the number of revolutions of the crankshaft; and
N indicates the number of pulses triggered by using the
encoder at one revolution.

Superimposition is conducted as follows: consecutive 2m
segments Ij are divided into two groups in accordance with
the parity of serial numbers.W areas are superimposed using
equation (11) in each group. �e superimposed length is the
minimum length of 2m segments:

DIuk �
1

k + 1
∑
k+1

j�1
I2j+u−2, (11)

where DIuk is the superimposed segment signals; u indicates
the group number, u� 1, 2; and k denotes the number of
superpositions when ρ(DW1k, DW2k) is greater than M2.

3.3. Separation of Fault Components. �e superimposed
segments are composed of the noise-reduced fault com-
ponent and superimposed background noise. �e fault
component is located at the front end of the superimposed
segment signal. �erefore, the superimposed segments must
be divided to separate the fault features.

Figures 11(a) and 11(b) show the separationmethod.�e
correlation coe�cient ρ(P1k(l), P2k(l)) between the areas of
length p (P areas) of the front end of the superimposed
segmentsDIuk is calculated. ρ(P1k(l), P2k(l)) is compared with
M4 (which is the threshold for assessing fault characteris-
tics). If ρ(P1k(l), P2k(l)) is greater than thresholdM4, then the
P area can be regarded as a fault component. If ρ(P1k(l),
P2k(l)) is smaller than M4, then the length of the P area is
modi­ed to 90% of the original length and then rounded
down. ρ(P1k(l), P2k(l)) is recalculated and compared withM4.
�e selection of starting point is a process of ­xed length
analysis that fails to determine the amount of fault com-
ponents in the W area. �e fault component can be qual-
itatively separated by comparing ρ(P1k(l), P2k(l)) with M4.
M4 should be smaller than ρ(DW1k, DW2k) to ensure that the
length of the separated fault component is greater than w. In
this study, M4 is set to ρ(DW1k, DW2k)−0.05, and the initial
value of p is set to 0.9× L, where L is the length of the
superimposed segments. �e P area is calculated using the
following equations:

Puk(l) � DIuk × R2(n), (12)

R2(n) � 1, 0≤ n≤ º0.9l × L�, (13)

where Puk(l) is the area of length p of the front end of the
superimposed segments DIuk; R2(n) represents a rectangular
window function with a length of 0.9l× L; l denotes the
number of times that the length of the P area changes, l� 1, 2,
3, . . .; u indicates the group number, u� 1, 2; k is the number

Table 1: Length of the main energy areas of engine fault components and mechanical faults found in other studies.

Serial number Failure type Sampling rate Main peak area length
1 Fuel injection advance angle fault [6] 48 kHz Approximately 180

2 Enlarged clearance case for cylinder intake valve and
exhaust valve [12] 25.6 kHz Approximately 45

3 Cylinder mis­re fault [25] 44.1 kHz Approximately 150
4 Abraded connecting rod bearing shell faults [25] 44.1 kHz Approximately 150
5 Bolt loosening faults [25] 44.1 kHz Approximately 100
6 Roller bearing with outer race fault [26] 12 kHz Approximately 40
7 Bearing with inner race defect [27] 12 kHz Approximately 40
8 Piston slap noise [28] 25.6 kHz Approximately 120
9 Combustion chamber knock [29] 100 kHz Approximately 200
10 Wear of crankshaft bearing [30] 12.8 kHz Approximately 70

M3

g (n)

Rising edge

g (n + 1)

Figure 8: Judgment method of the rising edge. When g(n) is
smaller and g(n + 1) is larger thanM3, a rising edge is considered to
exist between points.
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Figure 9: Acquisition principle of W areas. f(nr + 1) corre-
sponding to g(nr + 1) is selected as the starting point, andw points
are intercepted backward as W areas.
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of superpositions when ρ(DW1k, DW2k) is greater than M2;
and L refers to the length of the superimposed segments. ⌊.⌋
is a round-down function.

�e developed DSM encompasses all of the above steps,
and the �ow chart of Figure 12 is drawn for a better un-
derstanding of the method.

4. Experiment Condition

Figure 13 shows the physical diagrams of the experimental
bench. �e data acquisition system consists of acoustic
sensors, encoders, data acquisition cards, and computers.
�e acoustic sensor with a frequency ranging from 20Hz
to 20 kHz is placed above the cylinder to receive the
abnormal sound signals generated by the engine. �e
encoder model is ZSP3806GC, which triggers 100 elec-
trical pulses per revolution. �e encoder can synchro-
nously revolve with the crankshaft by ­xing it on the front
end of the crankshaft through a coupling. �e data ac-
quisition card model is USB-6341 produced by the Na-
tional Instruments Company. �e sampling frequency is
44100 Hz. Data acquisition and processing are conducted

using MATLAB software. �e engine of the experimental
stand was disassembled from a car, whose parameters are
shown in Table 2.

5. Experimental Data Processing

Figure 14 presents the abnormal signal caused by the fault of
cylinder knocking and pulse signal triggered by the encoder
under high speed (1800 r/min). We can observe the con-
siderable di�erence from the normal and faulty acoustic
signals.

�e improved DSM is used to process the abnormal
sound signal. Firstly, the angle of the two revolutions of the
crankshaft is divided into 100 parts, that is, dividing 200
rising edges into 100 parts, which satis­es the requirements
of equation (7) (H should be greater than 49), to ensure that
each intercepted segment contains a fault component.
�resholdM1 is set to 0.3. Secondly, ρ(W1,W2) is calculated
at di�erent rising edges. Table 3 shows the ρ(W1,W2) values
calculated from the ­rst to the ninth rising edges. ρ(W1,W2)
calculated at the ninth rising edge is 0.5012, which is greater
than M1. �erefore, the starting point is preliminarily
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Figure 10: Acquisition principle of Ij. f(n(j−1)qN+r+ 1) corresponding to g(n(j−1)qN+r+ 1), which is used to assess the ((j− 1)qN+ r)th rising
edge, is selected as the ­rst point of Ij, and f(njqN+r) corresponding to g(njqN+r), which is used to judge the (jqN+ r)th rising edge, is set as the
last point of Ij.
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Figure 11: Method for separating fault components. (a)�e principle of fault component separation. (b)�e �ow chart for fault component
separation. p is decreased to improve the correlation between P areas. When ρ(P1k(l), P1k(l)) is greater than thresholdM4, the P areas can be
regarded as fault components.
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selected at the position of the rising edge. �irdly, the 22W
areas acquired at the ninth rising edge are divided into two
groups. �e odd- and even-numbered W areas are the ­rst
and second groups, respectively. �reshold M2 is set to 0.8.
Figure 15 shows ρ(DW1k, DW2k) under di�erent superposi-
tion numbers (ρ(DW10, DW20) represents ρ(W1, W2)).
ρ(DW14, DW24) is greater than M2, and ρ(DW1k, DW2k) in-
creases with the number of superpositions under the
superimposing condition of 1–4 times. Hence, the starting
point selected at the ninth rising edge is valid.

Equation (10) is used to intercept the abnormal signal
per two revolutions of the crankshaft at the ninth rising edge.
Ten intercepted sections are divided into two groups on the
basis of the parity of serial numbers, and Figures 16(a) and
16(b) show the sections. �en, the intercepted sections are
superimposed four times in each group; the superimposed
length is 2739. Figure 17 presents the result.

Finally, in order to separate fault components, the initial
value of p is set to ⌊0.9× 2739⌋� 2465 and thresholdM4 is set
to ρ(DW14, DW24)− 0.05� 0.7833. �e correlation coe�cient

Engine

Set the threshold M1 and calculate ρ(W1, W2) at the rising edge of the first part

Y

Y

Y

Y

N

N

N

N

Acoustic sensor

Data acquisition card

Encoder

Recalculate ρ(W1, W2) at the next part

Recalculate ρ(P1k(l), P2k(l)) after the length of the P area modified to
90% of the original length and then round down

P1k(l) and P2k(l) can be considered as fault
components

Set the threshold M2, and calculate ρ(DW1k,DW2k)

Set the threshold M4, and calculate ρ(P1k(l), P2k(l))

q revolutions are divided into H parts

H ≥ 44100q/n

ρ(W1, W2) > M1

ρ(DW1k,DW2k) monotonically
increasing and can exceed M2

 ρ(P1k(l), P2k(l)) > M4

Figure 12: �e �ow chart of the developed DSM.

8 Shock and Vibration



between the P areas of two superimposed signals is calcu-
lated. ρ(P14(15), P24(15)) is 0.7860 after p changed 15 times,
which is greater than M4. �us, Pu4(15) can be regarded as
fault components, as shown in Figure 18. Although the front
end of the isolated faulty component contains a minimal
background noise, most of the noise has been removed.

�e result proves that the developed DSM can auto-
matically extract the fault features from the abnormal sound.
If traditional DSM is used in this chapter, we need to slowly
select the appropriate starting point, which greatly reduces
the computational e�ciency.

6. Other Applications of the Developed Method

To verify the applicability of the developed method, the
abnormal noise signal of the connecting rod bearing
knocking is collected under a speed of 1100 r/min, as shown
in Figure 19. Data acquisition and processing methods are
the same as before, and the sampling rate is 44100Hz.

�e angle of one revolution of the crankshaft is divided
into 100 parts, which satis­es the requirements of equation
(7) (H should be greater than 45). �resholdM1 is set to 0.3.
Table 4 shows ρ(W1,W2) calculated from the ­rst to the 23rd
rising edges, and ρ(W1, W2) calculated at the 23rd rising
edge is greater than M1. Hence, the starting point is pre-
liminarily selected at the position of the 23rd rising edge.

Figure 20 shows ρ(DW1k, DW2k) under 1–10 numbers of
superposition. �resholdM2 is set to 0.8. ρ(DW110, DW210) is
0.8016, which is greater than M2, and ρ(DW1k, DW2k)

increases with the number of superpositions under the
superimposing condition of 1–10 times. �us, the starting
point selected at the 23rd rising edge is valid.

�e abnormal signal per revolution of the crankshaft is
intercepted at the 23rd rising edge. �e 22 intercepted
sections are divided into two groups and superimposed.
Figure 21 shows the result. �e initial value of p is
⌊0.9× 2522⌋� 2269, and threshold M4 is ρ(DW14,
DW24)− 0.05� 0.7516. ρ(P110(14), P210(14)) is greater than
M4 after changing 14 times. �us, Pu10(14) can be regarded
as fault components, as shown in Figure 22.

From the above two examples, we ­nd that the improved
method can automatically extract the component of im-
pulsive signal from the abnormal noise signal of an engine.
However, the new method is currently only e�ective at a
single speed range and cannot process signals at di�erent
speed range. �e reason is that the same sampling rate and
varying speed result in a large di�erence in length between
di�erent fault features in W regions so that the correct
starting point cannot be selected.

7. Precision Analysis

Damaged parts are arti­cially used to create a fault com-
ponent, which is regarded as an actual fault component,
with high signal-to-noise ratio in a quiet environment. �e
separated fault component is compared with the actual
fault component for accuracy analysis. Figure 23 shows the
areas of remarkable characteristics with a length of 300 of
the actual and separated fault components of cylinder
knocking. �is area is used for analysis to avoid in-
terference from background noise at the rear end of the
arti­cially manufactured fault component. Separated fault
components 1 and 2 are the segments of P14(15) and
P24(15), respectively. �e correlation coe�cient between
separated fault components 1 and 2 and the actual fault
component are 0.7346 and 0.6655, respectively. Figure 24
presents the actual and separated fault components of
connecting rod bearing knocking after normalization. �e
correlation coe�cient between separated fault components
1 and 2 and the actual fault component are 0.8452 and
0.8685, respectively.

On the basis of the analysis result, the developed method
can e�ectively extract fault characteristics from an abnormal
sound signal, and we can change the value ofM2 to increase
the number of superimpositions for improving the accuracy
of separated fault components.

To classify the damage, a database contained di�erent
fault characteristics should be built. �e fault waveform is
separated from complex noise by the developed DSM
when engine fails. Next, the fault types can be determined
by comparing the separated fault features with those in
the database or classi­cation methods such as neural
networks.

8. Conclusion

In this study, a developed DSM is used to extract the
characteristics of cylinder knocking and connecting rod

(8)

(7)

(6)

(5)

(4)

(3)

(2)

(1)

(9)

Figure 13: Experimental stand of the engine. (1) Sensor power
supply; (2) data acquisition card; (3) computer; (4) acoustic sensor;
(5) encoder ­xing device; (6) encoder; (7) coupling; (8) connecting
device; (9) engine.

Table 2: Gasoline engine parameters.

Engine type EA211
Cylinder 4 cylinders in-line
Maximum power 66 kW
Maximum power revolution 5500 rpm
Maximum torque 132Nm
Displacement 1.4 l
Fuel type Gasoline
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Figure 14: Abnormal noise signal of cylinder knocking and pulse signal under 1800 r/min speed.

Table 3: ρ(W1, W2) calculated from the ­rst to the ninth rising edges.

Rising edges 1st 3rd 5th 7th 9th
ρ(W1, W2) 0.1304 0.1015 0.0123 0.2226 0.5012
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Figure 15: ρ(DW1k, DW2k) under di�erent superposition numbers. ρ(DW10, DW20) represents ρ(W1, W2).
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Figure 16: Continued.
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Figure 16: Intercepted sections divided into two groups. (a)�e ­rst group includes I1, I3, I5, I7, and I9. (b)�e second group includes I2, I4,
I6, I8, and I10.
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Figure 18: Separated fault components of cylinder knocking.
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Figure 19: Abnormal noise signal of connecting rod bearing knocking and pulse signal under 1100 r/min speed.

Table 4: ρ(W1, W2) calculated from the ­rst to the ninth rising edges.

Rising edges 1st 3rd 5th 7th 9th 11th 13th 15th 17th 19th 21st 23rd
ρ(W1, W2) 0.0471 0.1001 0.0265 0.0766 0.1012 0.0464 0.0182 0.0377 0.1681 0.2140 0.2672 0.3473
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Figure 20: ρ(DW1k, DW2k) under 1–10 numbers of superposition. ρ(DW10, DW20) represents ρ(W1, W2).
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bearing knocking automatically from the abnormal
sound signal of the engine. �e main conclusions are as
follows.

�e traditional DSM is a theoretical algorithm for ideal
uniform velocity conditions, and it cannot analyse actual
abnormal noise signals independently. �e developed
method can automatically select appropriate starting points
to superimpose the abnormal sound signals and ­nally
separate the fault characteristics. Although the front end of
the separated fault component contains minimal noise, most
of the noise has been removed. Generally, the new method
greatly improves the practicability, has a good application

prospect, and supplements the methods of extracting fault
features in the time domain.

Data Availability

�e data used to support the ­ndings of this study are
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Figure 22: Separated fault components of the connecting rod bearing knocking.

0 50 100 150 200 250 300
–1.5

–1
–0.5

0
0.5

1
1.5

Superposition times

A
m

pl
itu

de
 (V

)

Separated fault component 1
Separated fault component 2
Actual fault component

Figure 23: Separated and actual fault components of cylinder
knocking.
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