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Optical measurement can substantially reduce the required amount of labor and simplify the measurement process. Furthermore,
the optical measurement method can provide full-field measurement results of the target object without affecting the physical
properties of the measurement target, such as stiffness, mass, or damping. +e advent of consumer grade depth cameras, such as
the Microsoft Kinect, Intel RealSence, and ASUS Xtion, has attracted significant research attention owing to their availability and
robustness in sampling depth information. +is paper presents an effective method employing the Kinect sensor V2 and an
artificial neural network for vibration frequency measurement. Experiments were conducted to verify the performance of the
proposed method. +e proposed method can provide good frequency prediction within acceptable accuracy compared to an
industrial vibrometer, with the advantages of contactless process and easy pipeline implementation.

1. Introduction

Vibration measurement and analysis are important tools for
monitoring and characterizing the physical property and fault
diagnosis of structures and machinery. Measurement and
analysis results, such as vibration frequency, are important for
the predictive maintenance of civil or mechanical structures.

Traditional sensors such as accelerometers, gyroscopes,
strain gauges, inclinometers, and global positioning systems
(GPS) have been widely used in vibration measurement.
However, many conventional vibration measurement
methods are both labor intensive and expensive owing to
complex wiring for power supply and signal transmission, as
well as installation and deployment of sensors. In addition,
since these types of sensors are physically attached to the
target object, the physical properties of the object, such as
stiffness, mass, or damping, may be altered, especially when
the target object is relatively small compared to the sensor.
Alternative noncontact measurement techniques, such as
laser Doppler vibrometer (LDV) [1–4], and optical methods
including optical flow [5, 6], marker tracking [7–10], digital
image correlation (DIC) [11–13], and stereovision [11] are
also used in practice. High cost of equipment and high

requirement of the target surface limit the use of LDV. On
the contrary, the use of optical methods in vibration fre-
quency measurement has yielded promising results in lab-
oratory and field experiments, providing data in temporal
and spatial domains. However, optical methods require the
use of a complicated image and signal analysis algorithm
[14, 15] to obtain the vibration frequency, and lighting
conditions are also critical in the measurement [8, 16].

+e development of the depth sensor has unlocked new
opportunities for researchers to utilize depth information to
provide a device the capability to observe and detect real-
world targets beyond human recognition; for instance, high-
accuracy object recognition and tracking [17], SLAM ap-
plication [18–20], high security level face recognition
[21, 22], augmented reality [23], human postural recogni-
tion, and distant medic [24–26]. In recent years, the use of
low-cost consumer level depth sensing input devices such as
Intel RealSense and Microsoft Kinect have received signif-
icant research attention thereby extending the range of
application of depth sensors. Vibration measurement is one
of such applications [27, 28], and depth sensors are destined
to play increasing important roles in the future kinematic
measurement system.
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In this work, we proposed a method that utilizes depth
information acquired from Microsoft Kinect v2 combined
with an arti�cial neural network which is a further devel-
opment of the method [29] to predict the vibration frequency
of the target. �is approach has the following advantages: (a)
contactless and markerless; (b) the use of preprocessing such
as denoising or other signal enhancement methods are not
required; (c) it does not require performing extraction �rst for
vibration signals, that is, it predicts vibration frequency di-
rectly, thereby ensuring simple pipeline and easy deployment
in real application; and (d) models are trained using pure
arti�cial data, making this method scalable. Experiments were
conducted to evaluate the validity and accuracy of the pro-
posed method. �e results obtained from the proposed
method were compared with those from a conventional
contact-type industrial vibrometer.

2. Materials and Methods

�is section describes the pipeline implementation of the
proposed method. �e neural network devised for vibration
frequency prediction using depth information acquired from

Kinect V2, as well as its corresponding training procedure and
preparation of dataset for the network, is introduced. �e
experimental method is presented at the end of the section.

2.1. Pipeline. First, we read out the metadata recorded by
using Kinect v2 and decoded the data as depth information.
�e ROI for the measurement was selected from the �rst
frame of the reconstructed depth image, as shown in
Figure 1(a). Next, we read in the depth image sequence from
every frame within the ROI (Figure 1(b)) and extracted the
depth value of every pixel within the ROI separately along
the time dimension to obtain the W×H numbers of depth
information instances as shown in Figure 1(c), whereW and
H are the width and height of the ROI (in pixels), re-
spectively. �en, depth information of every pixel was di-
rectly fed into the trained network to determine the
predicted vibration frequency of each pixel, as shown in
Figure 1(d). A histogram of the predicted frequency dis-
tribution is plotted in Figure 1(e) to quantitatively evaluate
the predicted vibration frequency result, which we can be
employed to obtain the overall prediction of the vibration
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Figure 1: Pipeline illustration of proposedmethod. (a) Select ROI from the �rst frame of depth image. (b) Read in the depth image sequence
from every frame. (c) Read out every spatial position depth value along time dimension separately. (d) Feed in proposed neural network and
obtain predicted frequencies. (e) Interpret results as the statistical histogram of the predicted frequency distribution. (f ) Predicted frequency
reconstructed to its original spatial position for a better visualization result.
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frequency for the target ROI. In addition, we reconstructed
the prediction result of each pixel to its original spatial
location corresponding to the ROI as shown in Figure 1(f)
for better visualization result and veri�cation.

2.2. Network Architecture. In this work, we proposed an
arti�cial neural network designed for vibration frequency
prediction utilizing depth information. �e input of the
proposed network was a 1-dimensional vector with a length of
300, which is the product of the sampling rate of the Kinect
depth sensor (30 Hz) and input data duration (10 s). �e
network was constructed using eight 1-dimensional
convolution layers, and every convolution layer was fol-
lowed by a batch-normalization (BN) [30] layer and
recti�ed linear unit (ReLU) [31]. We mapped features to
higher dimension as encoding and compressed them back
to their original dimension as decoding. As shown in
Figure 2, the number of �lters in each convolution layer
increased from 2 to 16 and decreased from 16 to 2 with a
step of 2 such that the number of features was kept
symmetrical for all convolution layers. �e kernel size was
11 for all convolutional layers, and we zero-padded both
sizes of the input by 5 points before every convolution
layer so that the length was kept as 300. Fully connected
layers were employed to capture activations from di�erent
parts of the input to 150 outputs, which is the number of
possible frequency classes. �e dropout [32] layer was
followed by the �rst fully connected layer to prevent
over�tting, and ReLU was also used as the activation
function in all fully connected layers. �e output of the
fully connected layers was passed through the softmax
layer, yielding probabilities associated with each possible
frequency class. Skip connections [33, 34] were used in the
proposed network architecture to speed up the optimi-
zation in the training stage and improve network
performance.

2.3. Dataset. �e proposed network was trained using a
large amount of simulation depth signals to imitate real-

world depth variation signals under a speci�c vibration
frequency. An algorithm was used as the simulation signal
generator, and the generator consists of two parts as
shown in Figure 3: (1) generating standard sinewave with
a speci�c frequency and (2) adding Gaussian distributed
noise with varying standard deviation. �e frequency of
the simulation signals was in the range of 0–15Hz with a
step of 0.1, while the standard deviation of added noise
was randomly selected in the range of 0.5–2.2. For each
frequency step, we generated 12,000 simulation signals
with a length of 10 s at a sampling rate of 30 Hz; randomly
selected examples of generated simulation signals with
frequencies of 3.6 Hz, 6.6 Hz, 9.6 Hz, and 13.6 Hz are
plotted in Figure 4. We generated a dataset with a total of
1,800,000 instances, which was used for the training.

2.4. Training. We trained the network from scratch using
the negative log likelihood loss and Adam optimizer [35],
where the parameters β1 and β2 were set to 0.9 and 0.999,
respectively. �e input of the network was the generated
simulation signals, while the ground truth was the corre-
sponding vibration frequencies. �e order of the generated
simulation signals was shu�ed before feeding into the
network. �e learning rate was set to a �xed value 1 × 10−5.
�e training was implemented on a laptop with Nvidia
GTX 1060 GPU with deep learning framework PyTorch
[36], which usually yields a good model within 24 h.

2.5. Experimental Method. Experiments were conducted to
evaluate the performance of the proposed method, namely,
veri�cation test, steel cantilever beam measurement, and
simply supported carbon plate measurement. �ese three
experiments were conducted under a controlled laboratory
condition. �e measurement targets were recorded using
Kinect v2. In all experiments except the veri�cation test, an
industrial vibrometer DongHua DH5906 was used as ref-
erence for comparison. �e sampling rate of the depth
sensor was �xed at 30Hz, and 10 s of metadata were
recorded in each experiment. �e distance between
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Figure 2: Proposed arti�cial neural network architecture.
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measurement target and Kinect v2 in all experiments is
about 50 cm. In addition, the proposed method results will
be compared with FFT peak picking results from raw depth
information of Kinect v2 in Section 3.4.

2.5.1. Veri�cation Test. To verify the performance of the
proposed method, a veri�cation test was conducted using
controlled excitation in a vibration test system compris-
ing an exciter (MB Dynamics MODAL 50), an arbitrary
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Figure 4: Examples of simulation signals with di�erent vibration frequencies: (a) 3.6Hz; (b) 6.6Hz; (c) 9.6Hz; (d) 12.6Hz.
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Figure 5: Veri�cation test experimental setup. (a) Modular steel structure, Dynamics MODAL 50 exciter. (b) Field of view (FOV) of Kinect
in the RGB image. (c) ROI raw depth information visualization.
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Figure 3: Simulation signals generator con�guration.

4 Shock and Vibration



waveform generator (RIGOL DG1022), and an amplifier
(MB Dynamics SL500VCF). A modular steel structure was
used as the measurement target, which was excited using
precisely controlled vibration signals at different frequen-
cies. +e experimental setup is shown in Figure 5(a), and the

Kinect field of view (FOV) of the RGB sensor and ROI raw
depth information visualization are shown in Figures 5(b)
and 5(c), respectively. Sine signals were generated every
2.5Hz between 0 and 15 and passed through the amplifier to
the exciter with minimum gain to excite the modular steel
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Figure 8: Cantilever steel beam experimental setup for case 2. (a) Vibrometer attached at the end of the cantilever steel beam, Kinect
pointing in a direction perpendicular to the direction of vibration. (b) Field of view (FOV) of Kinect in the RGB image. (c) ROI raw depth
information visualization.
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Figure 6: ROI for vibration measurement in the verification test, highlighted in red. 3D point cloud: (a) front view, (b) left view, and (c) top
view.
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Figure 7: Cantilever steel beam experimental setup for case 1. (a) Vibrometer attached at the end of the cantilever steel beam, Kinect
pointing in a direction parallel to the direction of vibration. (b) Field of view (FOV) of Kinect in the RGB image. (c) ROI raw depth
information visualization.
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structure, and data were simultaneously recorded using
Kinect. A part of the left column of the steel structure was
selected as the ROI; for better illustration, three views of the
ROI are shown in Figure 6. �en, the proposed method was
applied to the Kinect recorded data and compared with
result obtained with controlled excitation frequency.

2.5.2. Cantilever Steel Beam. A cantilever steel beam ex-
periment was conducted to investigate the performance of
the proposed method employed in vibration excited using
real excitation. A steel beam was �xed at one end, while a
vibrometer was attached at the free end as shown in
Figures 7(a) and 8(a), which was struck at the free end

using an impact hammer. �e resultant vibration of the
steel beam was recorded using the vibrometer and Kinect
simultaneously. �e sampling rate of the vibrometer was
set to 30Hz, which is consistent with the Kinect depth
sensor. Two experimental cases were designed for the
cantilever steel beam experiment to examine possibility of
utilizing distance variation information between the depth
sensor and test object and depth variation signal at the
edge of test object. In case 1, the Kinect sensor was pointed
in a direction parallel to the direction of vibration, while in
case 2, the Kinect sensor was pointed in a direction per-
pendicular to the direction of vibration. In both experi-
mental cases, the proposed method was applied to the data
recorded by the Kinect, and the acceleration signals from

(a) (b) (c)

Figure 9: ROI (highlighted in red) for vibration measurement in the cantilever steel beam experimental case 1. 3D point cloud: (a) front
view, (b) left view, and (c) top view.
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Figure 10: ROI (highlighted in red) for vibration measurement in the cantilever steel beam experimental case 2. 3D point cloud: (a) front
view, (b) left view, and (c) top view.
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Figure 11: Simply supported carbon plate experimental setup for case 1. (a) Vibrometer placed at the midpoint of the carbon plate, Kinect
pointing in a direction parallel to the direction of vibration. (b) Field of view (FOV) of Kinect in the RGB image. (c) ROI raw depth
information visualization.
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the vibrometer were transformed to the frequency domain
via fast Fourier transformation (FFT). �e vibration fre-
quency components were examined in the frequency
domain and then compared with the result from the
proposed method.

Experimental Case 1. �e experimental setup for case 1 is
shown in Figure 7(a). �e FOVs of the RGB sensor and ROI
raw depth information visualization are shown in
Figures 7(b) and 7(c), respectively. �ree views of the ROI in
this experimental case are shown in Figure 9.

Experimental Case 2. �e experimental setup for case 2 is
shown in Figure 8(a). �e FOV of the RGB sensor and ROI
raw depth information visualization are shown in
Figures 8(b) and 8(c), respectively. �ree views of the ROI
for measurement in this experimental case are shown in
Figure 10.

2.5.3. Simply Supported Carbon Plate. A simply supported
carbon plate experiment was also conducted for the real
excitation scenario. �e carbon plate was supported at both
ends, while the vibrometer was placed at the midpoint of the
plate, as shown in Figures 11(a) and 12(a). We struck at the
left support point using an impact hammer as excitation.�e
resulting vibrations were recorded using the vibrometer and
Kinect simultaneously. �e sampling rate of the vibrometer
was set to 30Hz. Two experimental cases were also designed
for the simply supported carbon plate experiment to ex-
amine possibility of utilizing distance variation information
between the depth sensor and test object and depth variation
signals at the edge of test object. In case 1, the Kinect sensor
was pointed in a direction parallel to the direction of vi-
bration, while in case 2, the Kinect sensor was pointed in a

direction perpendicular to the direction of vibration. �e
acceleration signals from the vibrometer were transformed
to the frequency domain using FFTand were compared with
the results from the proposed method.

Experimental Case 1. �e experimental setup for case 1 is
shown in Figure 11(a). �e FOV of the RGB sensor and ROI
raw depth information visualization are shown in
Figures 11(b) and 11(c), respectively. �ree views of the ROI
for measurement in this experimental case are shown in
Figure 13.

Experimental Case 2. �e experimental setup for case 2 is
shown in Figure 12(a). �e FOV of the RGB sensor and ROI
raw depth information visualization are shown in
Figures 12(b) and 12(c), respectively. �ree views of the ROI
for measurement in this experimental case are shown in
Figure 14.

3. Results

3.1. Veri�cation Test. We selected an excitation frequency of
5Hz as an example; the histogram of predicted frequency
distribution is plotted in Figure 15(a), the visualized pre-
dicted frequency distribution over the spatial dimension is
shown in Figure 15(b), and the result with a value of 5Hz is
highlighted in Figure 15(c). �e predicted frequency dis-
tribution histogram of the remaining four excitation fre-
quencies of 2.5Hz, 7.5Hz, 10.0Hz, and 12.5Hz are plotted
in Figure 16. �e results of all the excitation frequencies are
summarized in Table 1.

�e results of the veri�cation test indicate that the
proposed method can accurately predict the vibration fre-
quency using the Kinect depth data.

(a) (b)
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(c)

Figure 12: Simply supported carbon plate experimental setup for case 2. (a) Vibrometer placed at the midpoint of the carbon plate, Kinect
pointing in a direction perpendicular to the direction of vibration. (b) Field of view (FOV) of Kinect in the RGB image. (c) ROI raw depth
information visualization.
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3.2. Cantilever Steel Beam. Histograms of predicted fre-
quency result distributions for case 1 and case 2 are plotted
in Figures 17(a) and 18(a), respectively. �e results are
visualized in their original spatial position in the ROI as
shown in Figures 17(b) and 18(b), respectively, while the
results with the value of 9.4Hz and 9.5Hz are highlighted
and plotted in Figures 17(c) and 18(c), respectively. �e

raw vibration signals of the cantilever steel beam recorded
by using the vibrometer were �rst normalized and plotted
as time histories in Figures 19(a) and 20(a); then, the
normalized power spectral density (PSD) obtained from
FFT are plotted in Figures 19(b) and 20(b), respectively, to
compare the peak frequency components of the predicted
results.
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Figure 15: Veri�cation test results for an excitation frequency of 5Hz. (a) Histogram of predicted frequency distribution. (b) Prediction
outputs visualization in their original spatial position. (c) Highlighted pixels predicted as 5Hz for veri�cation.
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Figure 13: ROI (highlighted in red) for vibration measurement in the simply supported carbon plate experimental case 1. 3D point cloud:
(a) front view, (b) left view, and (c) top view.
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Figure 14: ROI (highlighted in red) for vibration measurement in the simply supported carbon plate experimental case 2. 3D point cloud:
(a) front view, (b) left view, and (c) top view.
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It can be observed from the results of the experimental
cases that the proposed method successfully predicted the
vibration frequency and closely matched the results from
the vibrometer, namely, 9.4 Hz and 9.5 Hz in case 1 and
9.5 Hz and 9.5 Hz in case 2. In addition, it can be observed
that, in case 1, the pixels with the correct prediction result
were from almost the entire ROI, while in case 2, the
pixels with the correct prediction results were only dis-
tributed around the edge of the vibrometer and the steel
beam.

3.2.1. Experimental Case 1. �e cantilever steel beam ex-
perimental case 1 results from the proposed method and
vibrometer are shown in Figures 17 and 18, respectively.

3.2.2. Experimental Case 2. �e cantilever steel beam ex-
perimental case 2 results from the proposed method and
vibrometer are shown in Figures 19 and 20, respectively.

3.3. Simply Supported Carbon Plate. �e prediction result
histograms of the simply supported carbon plate experi-
mental case 1 and case 2 are shown in Figures 21(a) and
22(a), respectively and the corresponding result visualiza-
tions are shown in Figures 21(b) and 22(b), respectively.
Pixels predicted as 6.8Hz are highlighted in Figures 21(c)
and 22(c), respectively, for both cases. Figures 23 and 24
show the result from the contact vibrometer; the normalized
time histories of the acceleration signal for case 1 and case 2
are plotted in Figures 23(a) and 24(a), respectively, while the

Table 1: Summary of the veri�cation test result.

Experimental
cases

Excitation frequency
(Hz)

Predicted frequency
(Hz)

1 2.5 2.5
2 5.0 5.0
3 7.5 7.5
4 10.0 10.0
5 12.5 12.4
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Figure 16: Histogram of predicted frequency distribution from the veri�cation test. Results at di�erent excitation frequencies: (a) 2.5Hz; (b)
7.5Hz; (c) 10Hz; (d) 12.5Hz.
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corresponding PSDs obtained by using FFT with peak
picking are shown in Figures 23(b) and 24(b), respectively.

�e results indicate that the proposed method can e�ec-
tively predict the vibration frequency of the target object ROI.

Furthermore, it can be observed that, in case 1, almost the entire
ROI pixels were predicted as 6.8Hz, while in case 2, only the
pixels around the test object and vibrometer edge were pre-
dicted as 6.8Hz.

3.3.1. Experimental Case 1. �e simply supported carbon
plate experimental case 1 results from the proposed method
and vibrometer are shown in Figures 21 and 22, respectively.

3.3.2. Experimental Case 2. �e simply supported carbon
plate experimental case 2 results from the proposed method
and vibrometer are shown in Figures 23 and 24, respectively.

3.4. FFT Peak Picking Comparison. To compare the result of
the proposedmethod with that of the FFTpeak pickingmethod
with raw depth information from Kinect, the peaks of the
frequency-domain results obtained via FFT of raw distance
signals in each pixel are picked as frequency prediction results
for each pixel. Histogram of the predicted frequency distri-
bution via FFT is also used to quantitatively evaluate the pre-
dicted vibration frequency result within ROI, and the highest
counted prediction result will be considered to be the overall
prediction of the vibration frequency for the target ROI.

�e summary of the result comparison of the proposed
method and FFT peak picking is shown in Table 2. For
better illustration, the simply supported carbon plate
experimental case 1 result is used as a representative
example, the time history of raw distance from Kinect
depth information of each pixel in this experiment case is
shown in Figure 25(a), and the corresponding frequency
domain result obtained by FFT is shown in Figure 25(b).
�e vibration frequency result distribution histogram is
shown in Figure 26(a), and the corresponding result vi-
sualization is shown in Figure 26(b), and the pixels
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Figure 18: Cantilever steel beam experimental case 2 result from the
proposedmethod. (a)Histogram of predicted frequency distribution.
(b) Predicted outputs visualization in their original spatial position.
(c) Highlighted pixels predicted as 9.5Hz for veri�cation.
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Figure 17: Cantilever steel beam experimental case 1 result from the proposed method. (a) Histogram of predicted frequency distribution.
(b) Predicted outputs visualization in their original spatial position. (c) Highlighted pixels predicted as 9.4Hz for veri�cation.
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predicted as 6.8 Hz via the FFT peak picking method are
highlighted in Figure 26(c).

It can be observed that the frequency-domain result
obtained by using FFT and pixel level frequency prediction
result obtained by peak picking are dominated by trivial
noisy low-frequency results, as shown Figures 25(b) and
26(a). It is also noted that there are still some pixels correctly
predicted as 6.8Hz using the FFT peak picking method as
shown in Figure 26(c), but when compared with result of the
proposed method result as shown in Figure 21(c), the
proposed method is superior to the FFT peak picking
method since almost all the pixels within ROI have correct
predication, while the FFT peak picking method only has
correct prediction of pixels on the top left area of the
ROI. +e prediction result distribution histograms of the

proposed method and FFT peak picking method can also
quantitatively confirm it, as shown in Figures 21(a) and
26(a), respectively.

4. Discussion

+e results of the experiments conducted using different
excitation sources and different test objects demonstrate
the performance of the proposed method. +e proposed
method can utilize meta depth information acquired from
Kinect V2 to predict the vibration frequency of a target ROI
with minor errors. A significant finding of this study is that
when the Kinect was pointed in a direction parallel to the
vibration direction, the depth variation signals utilized by
using the proposed method were from distance variation
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Figure 20: Cantilever steel beam experimental case 2 result from the vibrometer. (a) Normalized acceleration signal. (b) Normalized power
spectral density.
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Figure 19: Cantilever steel beam experimental case 1 result from the vibrometer. (a) Normalized acceleration signal. (b) Normalized power
spectral density.
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between the test object and depth sensor of the Kinect, as
demonstrated in the steel beam experimental case 1 and
carbon plate experimental case 1. When the Kinect was
pointed in a direction perpendicular to the vibration

direction, the proposed method can still provide useable
result; in this case, it utilized depth variation signals at the
edge of the test object rather than distance variations be-
tween the depth sensor and test object itself, as demon-
strated in the steel beam experimental case 2 and carbon
plate experimental case 2. +ese findings confirm the re-
liability and applicability of the proposed method for vi-
bration frequency measurement.

Unlike traditional optical-based noncontact vibration
measurements, we used Kinect v2 and feed-forward CNN to
conduct vibration frequency measurement directly, and the
use of additional signal processing or image processing
algorithms is not required. Furthermore, the proposed
method is fast and easy to deploy in applications as it does
not require the explicit extraction of vibration signals and
incorporation of denoise processing into the proposed ar-
tificial neural network for meta noisy depth signals. Besides,
the proposed network is trained entirely using simulation
signals, which indicates that the proposed network can be easily
scaled for a larger measurement range and higher measure-
ment precision.

+is method also has some drawbacks and limitations.
Interference from sunlight can occur as the depth sensor of
Kinect V2 is based on infrared technology. +erefore, the
proposed method is limited to indoor applications. Other
inherent drawbacks of the Kinect depth sensor are that the
measurement distance range is restricted to 0.4–4.5m, and the
frequency measurement range is limited to within 15Hz since
the sampling rate of the Kinect depth senor is fixed at 30Hz.
Furthermore, the measurement precision of the proposed
neural network is controlled by the network configuration and
the dataset it trained with, and the proposed network can only
detect the resonant or peak frequency, while other frequency
components are undetected. +e proposed method is also
vulnerable to camera shake, lighting condition vibration, and
other types of electrical or mechanical noise, just like all tra-
ditional optical-based methods.
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Figure 22: Simply supported carbon plate experimental case 2
result from the proposed method. (a) Histogram of predicted
frequency distribution. (b) Predicted outputs visualization in their
original spatial position. (c) Highlighted pixels predicted as 6.8Hz
for verification.
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Figure 21: Simply supported carbon plate experimental case 1 result from the proposed method. (a) Histogram of predicted frequency
distribution. (b) Predicted outputs visualization in their original spatial position. (c) Highlighted pixels predicted as 6.8 Hz for verification.
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+e proposed method offers a new possibility for fu-
ture research on optical-based vibration measurement.
We can further utilize the feature extraction capability of
deep neural network for optical-based vibration signal

extraction and processing. A more advanced network ar-
chitecture specifically designed for vibration measurement
could be used in future work. +e dataset of the signal
generator algorithm can also be improved and can be
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Figure 23: Simply supported carbon plate experimental case 1 result from the vibrometer. (a) Normalized acceleration signal. (b)
Normalized power spectral density
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Figure 24: Simply supported carbon plate experimental case 2 result from the vibrometer. (a) Normalized acceleration signal. (b)
Normalized power spectral density.

Table 2: Summary of result comparison.

Experimental scenario Excitation/measured frequency Proposed method (Hz) FFT peak picking (Hz)
1 2.5 2.5 0.1
2 5.0 5.0 0.1
3 7.5 7.5 0.1
4 10.0 10.0 0.1
5 12.5 12.4 0.1
6 9.5 9.4 0.1
7 9.5 9.5 0.1
8 6.8 6.8 0.09
9 6.8 6.8 0.09
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incorporated and augmented with real sampled depth
signals for better generalization.

5. Conclusions

In this paper, we proposed a method for vibration fre-
quency measurement using Kinect V2 and artificial neural
network. Experiments were conducted to evaluate the
performance of the proposedmethod, and results show that
the proposedmethod can provide good vibration frequency
measurement results compared to those from an industrial
vibrometer.

+is method is limited by the inherent drawbacks of the
Kinect depth sensor and the architecture of the proposed
network, as it cannot detect all the frequency components
of the measurement target. In the future, we will redesign
and further improve the network architecture, dataset

preparation process, and workflow of the proposed method
to address these limitations.
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