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Shear failure is a common mode for bridge column collapse during a vehicle-column collision. In current design codes, an
equivalent static load value is usually employed to specify the shear capacity of bridge columns subject to vehicle collisions. But
how to consider the dynamic effect on bridge columns induced by impact load needs further research. The dynamic amplification
factor (DAF) is generally used in the analysis and design to include the dynamic effect, which is usually determined using the
equivalent single degree of freedom (SDOF) method. However, SDOF method neglects the effect of the higher-order modes,
leading to big difference between the calculated results and the real induced forces. Therefore, a novel method to obtain dynamic
response under concentrated impact load including the effect of higher-order modes is proposed in the paper, which is based on
the modified Timoshenko beam theory (MTB) and the classical Timoshenko beam theory (CTB). Finite element models are
conducted to validate the proposed method. The result comparisons show that the results from the proposed method have more
accuracy compared with the results from the CTB theory. Additionally, the proposed method is employed to calculate the
maximum DAF of shear forces for bridge columns under impact load. Parametric studies are conducted to investigate the effect on
the DAF of shear forces including slenderness ratio, boundary condition, and shape and position of impact load. Finally, a

simplified formula for calculating the maximum DAF of shear force is proposed for bridge column design.

1. Introduction

Vehicle-column collisions occurred occasionally for bridge
columns in recent years. Among them, bridge columns often
collapsed with shear failure. For example, on April 17, 2009,
a cement tanker truck crashed into two columns of an
overpass at Jingzhu Expressway in Chenzhou, Hunan
Province, China, and the accident led to shear failure at the
top and bottom of the columns [1]. On September 8, 2006, a
tractor-trailer hit the bridge column crossing IH-45 in
Corsicana, Texas, United States, and it resulted in the failure
of the column with two shear failure planes [2].

In structure design, shear failure should be avoided since it
is a brittle failure and reduces the structural capacity to absorb
energy [3]. The failure modes of reinforced concrete structures
under impact loads are quite different from those under static

loads. In a drop-weight test, for the reinforced concrete beams
conducted by Saatci and Vecchio [4], the specimen subjected
to shear failure under impact load even it was flexure-critical
under static load. This is because the impact load excites high-
order vibration modes resulting in internal force distribution
different from the one under static load, which is the dynamic
effect induced by the impact load [5].

The current specifications consider the impact load
caused by vehicle collision to bridge columns, but there are
still some deficiencies in the consideration of dynamic ef-
fects. The provisions in AASHTO-LRFD [6] specify that
bridge columns shall be designed for an equivalent static
force of 2670 kN (600 kips) with a distance of 1.50 m (5.0 ft)
above ground, which is based on the research by Buth et al.
[7]. In the full-scale test of vehicle collision of a bridge
column conducted by Buth et al. [7], the column was
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represented as a rigid cylinder resting upon a plate, the
column was permitted to slide without friction, and the
support system was simplified to two linear springs;
therefore, the dynamic response within the column is not
considered in AASHTO-LRFD.

In Annex C of Eurocode 1: Part 1-7, it is recommended
that for hard impact from road traffic, actions due to impact
should be determined by a dynamic analysis or represented by
an equivalent static force [8]. When dynamic analysis is
adopted, the force due to impact can be considered as a
rectangular pulse, and the dynamic effect needs to be con-
sidered by dynamic amplification factor (DAF), where DAF
means the ratio between dynamic and static response. The
recommended values of DAF given in the Eurocode 1 are
determined by Biggs research using single degree of freedom
system (SDOF) [9]. The research by Biggs and Testa [9]
obtained the DAFs of displacement of single degree of
freedom system under different shape of loads, and it is as-
sumed that the DAF of shear force is equal to the DAF of
displacement when determining the dynamic shear force
response using SDOF method. The effect of high-order modes
on shear force is much bigger than that on displacement and
bending moment. The accuracy of bending moment calcu-
lated by the SDOF method can meet the engineering re-
quirement, but the error is large when calculating dynamic
shear force [10]. Therefore, the DAF calculation in Eurocode 1
does not include the different dynamic effect to displacement,
bending moment, and shear force.

Experimental study, finite element models, and analytic
method can be used to obtain the dynamic response under
impact load. The experiment is expensive, and the mea-
surement accuracy is difficult to guarantee. The time-history
of impact load was analyzed by Buth et al. [7], but the dynamic
response of the structure was not obtained in the research. The
drop-weight test was conducted by Saatci and Vecchio [4] to
obtain the distribution of shear force and bending moment
with measured acceleration distribution, but the accuracy was
not high. Numerical method can obtain more accurate results,
but it takes much more time for models and analysis process.
The numerical simulation was conducted by El-Tawil et al.
[11] to investigate the behavior of two bridge columns under
vehicle collision, and the simulation only included the col-
lision process of two types of vehicles.

Analytic method has higher computation efficiency
among the above methods. The dynamic response of a
simply supported beam at the early stage under blast load
was studied by Magnusson et al. [12] using Bernoulli-Euler
beam theory. The DAF of shear of a simply supported beam
under impulsive load due to conventional weapon explosion
was studied by Fang et al. [13] using Bernoulli-Euler beam
theory and the CTB theory.

The research by Jones [14] showed that only the bending
and transverse inertia were included in Bernoulli-Euler
beam theory, and it overestimated the natural vibration
frequency, which caused big error for dynamic shear force
response. The CTB theory involves the shear deformation
and rotational inertia caused by the bending deformation.
When the CTB theory is used to solve the natural frequencies
and modes, it is necessary to first determine a critical
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frequency independent on the beam length [15], and the
obtained natural frequencies and modes may have errors [16].
The modified Timoshenko beam (MTB) motion equations
including the rotational inertia caused by the shear de-
formation were proposed by Wan [16]. The higher-order
natural frequencies obtained from the MTB theory are
more practical than the CTB theory. However, the pre-
requisite for orthogonality is that the boundary conditions
and loads are symmetric. For an impact load applied to bridge
columns, it can be treated as concentrated load, which easily
causes higher mode vibration compared with distributed
impact load. The load position has a big effect on the response
as well. Therefore, the analyses including unsymmetrical
boundary condition and concentrated impact load are re-
quired for bridge column dynamic response analyses.

To accurately obtain the dynamic response of bridge
columns under impact load, a novel method is proposed
based on both the CTB and MTB theories in the paper. The
proposed method is validated with finite element model
analyses and compared with the results using the CTB
theory. The maximum DAF of shear force under different
conditions are obtained; parametric study is developed in-
cluding slenderness ratio, boundary condition, character-
istics, and position of impact load. Load characteristics
include the load shape and growth time, and different load
characteristics cause different dynamic response of bridge
columns, which can affect the failure modes. Finally, three
simplified formulas for calculating DAF of dynamic shear
force are proposed to simplify the calculation including the
dynamic effect for bridge columns under impact load.

2. Improved Calculation Method of Bridge
Column Dynamic Response under
Impact Load

2.1. Column Model. The research by Williamson [3] showed
that the boundary conditions of bridge columns could be
treated as fixed at the bottom (e.g., one end) and fixed or
hinged at the top (e.g., the other end) based on the investi-
gation of design and construction requirements of DOTs in
the different states in the United States. In this paper, two
boundary conditions including fixed both at bottom and at
the top (i.e., F-F) and fixed at bottom and hinged at the top
(i.e, F-H) are considered as shown in Figure 1. The height of
the column is denoted by L. The coordinate system is built
taking the fixed end as the origin. y-Axis is the lateral dis-
placement direction of the bridge column, and x-axis is the
direction along the column height. The impact force, P, is
horizontally loaded on the column with a distance of L from
the column end. In the figure, & is the cross section depth of
the column; A is the cross section area of the column; I is the
moment of inertia of the column cross section about the
neutral axis; p is the density of the material; E is the elastic
modulus; and G is the shear modulus.

r, is the radius of rotation of the column cross section,
which is equal to / (I/A). The slenderness ratio is denoted as
s, which is equal to UiLsr, where u; is the coefficient of the
column length, taken as 0.5 and 0.7 for F-F and F-H
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FiGure 1: Different boundary conditions for the bridge columns.
(a) F-F. (b) F-H.

boundary conditions, respectively. Obviously, the slender-
ness ratio for F-H condition is 1.4 times larger than that for
F-F condition for the same column. Note that the slen-
derness ratios considered in the paper refers to that along the
direction of the impact load.

2.2. Shape of Impact Load. The equation of impact load is
formulated as

P=Py- f(1), (1)

where P, is the peak value of impact load and f (t) is a function
that represents the changing regulation of impact load along
with time of ¢. The duration of impact load is denoted as . For
vehicle impact, the load characteristics change along with
vehicle mass and impact velocity [17]. According to the shape
of f(t), a pulse load has different shapes, and the corre-
sponding structural responses are different.

The right triangular load pulse without growth time is
used to represent an impact load induced by rigid body.
When the rigid part of vehicle (e.g., engine) impacts bridge
columns, the load can be treated as a right triangle shape
without growth time. When other parts of a vehicle impact
bridge columns, the load usually grows for a period of time
due to the plastic deformation of the vehicle parts. However,
the growth time is depended on the stiffness of vehicle [17].
Therefore, various shapes of triangular load with different
growth time should be considered. Here, { is used to rep-
resent the ratio of load growth time to load duration time.
When ( is equal to 0.5, an isosceles triangle load shape is

used, which is regarded to be a load shape of vehicle impact
in some studies [18-21]. In Eurocode 1, it recommends that
the shape of vehicle impact force is rectangular.

In summary, right triangle shape without time growth,
triangle shape with time growth, and rectangle shape are
the three types of loads used in the analysis of vehicle impact,
as shown in Figure 2. In the paper, the effect of load shapes
on the DAF of shear force is investigated in the following
sections.

2.3. Improved Method for Structural Responses Calculation.
The equation of motion based on the MTB theory proposed
by Wan [16] is as follows:
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where ¢ is the cross section rotation caused by the bending
deformation and y is the shearing-shape coeflicient of the
cross section, which is used to modified the assumption
that shear stress and shear strain are evenly distributed
along the cross section, and the calculation methods can be
referred to Hutchinson [22]. The term of pI (3°y/0xdt?) in
equation (2) corresponds to the term of pI (az<p/at2) in the
equation of motion of the CTB theory, which shows the
difference between the CTB theory that only the rotational
inertia caused by the bending deformation is considered
and the MTB theory that rotational inertia caused by the
shear deformation and the bending deformation are both
considered.

To determine dynamic response using the mode su-
perposition method of distributed mass systems, the first
step is to calculate mode function X,, (x), which is composed
of transverse displacement function, Y, (x), and the angle of
rotation of the cross section due to the bending moment,
v, (x), of nth mode. In the second step, the generalized
single degree of freedom equation is obtained based on
mode orthogonality, and the modal amplitude, T, (¢), is
calculated by Duhamel integral. The corresponding response
is calculated as follows:

r(xt) =) X, ()T, (3)
n=1

where 7 (x, t) is the response referring to the internal force or
deformation, which includes the first several modes con-
tributing mostly to the responses.

During the process of the calculation of mode function
based on the CTB theory, a critical frequency of w_ (which is
equal to 1/ (AGu/pI)) exists since the rotational inertia caused
by the shear deformation is ignored [15]. The solved natural
frequency and modal functions have big errors compared to
the actual value for w larger than w_ [16]. However, for the
MTB theory, there is no cutoft frequency, and the mode
function and natural frequency are more accurate [23]; the
orthogonal conditions of the MTB theory are only applied for
the symmetric boundary and symmetric loads. Therefore, to
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FiGure 2: Different shapes of vehicle impact load. (a) Right triangle. (b) Triangle with time growth. (c) Rectangle.

accurately achieve the dynamic responses of bridge columns
under impact load, an improved method is proposed
(IMCTB) based on the MTB and CTB theories, and the
calculation process is as follows.

2.3.1. Mode and Frequency Solution. For the nth mode, the
displacement function, Y,, (x), and bending angle function,
v, (x), are assumed as follows:

Y, (x) = ¢, cosh g, x + ¢, sinh g, x + c; cos g, x
+¢4 sin g, x,

v, (x) = ¢,g;3 sinh g, x + ¢, g5 cosh g, x —c;3g, sin g, x
+C444 COS g, X,

(4)

where ¢, ¢,, ¢5, and ¢, are the normalized coeflicients; g,, g,,
gs> and g, are the function of natural frequency of w, which
are calculated using following equation:

’ibzwz + Vbiw?t + 4a20?

912 = \J 2a2 ’
. 1+pb2w2 L EL s
93 =91 Gu AG‘ugl’
. 1+pb2w2 L EL
1 94= 92 Gu AGygz’ (5)
[E1
a= A

b= L 1+ £ .
A Gu
Based on the boundary condition listed in Table 1, the
natural frequency of nth mode can be deduced combining

TaBLE 1: Boundary conditions of bridge columns.

Boundary condition

. Mathematical expressions
of bridge columns P

F-F Y (0) =Y (L) =0;y(0) = y(L)

=0
F-H Y(0) =Y (L) =0;y(0) =0;yr(L) =

0

with equation (2). Then, with natural frequency w, and
normalized coefficients ¢, through ¢,, Y, (x), a, and y,, (x)
are obtained.

2.3.2. Amplitude Function Solution. The calculation of the
amplitude function is based on the solution of natural
frequency of w and corresponding Y, (x) and v, (x).

It is assumed that the displacement and bending rotation
of the column in y direction conform the following
relationship:

y(x6t) =Y Y, (x)T, (1),

i (6)
9t =Y v, ()T, (),

n=1

where T, (¢) is the amplitude function of nth mode which
shows the contribution to the response.
The orthogonal condition of the CTB theory is

1
j (PAY,Y,, + pIy,y,,) dx = 0, (7)
0

Combining equations (6) and (7) and the motion
equation of the CTB theory, the generalized differential
equation for single degree of freedom is

0T, (OM, +T,(t)Y,, = P, (1), (8)

where M, and P, are generalized mass and generalized load,
which are given by
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I
M, = j (pAY? + pIy?) dx. )
0
For uniform distributed load,
I
p,= J qY, dx. (10)
0

Employing Dirac integral to equation (10), the gener-
alized load under concentrated impact load is

P, =P)Y, (EDf (). (11)

With the solved mode functions of Y,, (x) and y,, (x), M,,
and P, are calculated, and the amplitude function of T, (¢) is
obtained with Duhamel integral employing to equation (8).

2.3.3. Internal Force Response. With the calculated mode
functions of Y, (x), y,, (x), and amplitude function of T, (t),
the response under impact load based on the MTB is cal-
culated. The shear force, Q, and bending moment, M, are as
follows:

Q=) AGu(Y,—y,)T, (1),
n:lOO (12)
M ==Y EIy,T,(t).
n=1

3. Method Verification Using FEM

The time-history of shear force is calculated and analyzed
based on the proposed method (IMCTB) and compared with
the results from the CTB theory and FE analyses (using
software ABAQUS) to validate the accuracy of IMCTB
method. The information of the bridge columns with dif-
ferent slenderness ratios is shown in Table 2. The boundary
condition of F-F is applied. The material density of p is
2500 kg/m?, and modulus of elasticity of E is 30 GPa. The
shape of impact load is right triangle without time growth,
and the loading position is at midspan of the bridge column.
The duration times are 0.015 s and 0.007 s to make the value
of t4/ Ty approximately equal to 1. The FE model adopts solid
element of C3D8R with a mesh size of 0.02 m.

Firstly, the time-history curves of the shear force at the
end section (SE), and the section that is about half cross
section depth away from midspan (HD) of columns C06 and
H14 are calculated as shown in Figure 1. Secondly, the peak
value of the impact force (which is denoted as Py) is applied
as a static load at midspan and the static shear forces is
obtained for each section. The time-history of dynamic
amplification factor (DAF of shear force) is calculated as the
ratio of the dynamic shear force to static shear force for the
end section. The time-history within the fundamental period
is analyzed.

Figure 3 shows the time-history curves of the DAF of
shear force for columns C06 and H14. The results from the
CTB theory, IMCTB method, and FE are presented and
compared, where the first 100th order modes are taken
using the CTB theory and IMCTB method. For C06, from

Figures 3(a) and 3(b), the time-history curves of the DAF of
shear force from the IMCTB method and the CTB theory are
in good agreement with the ones from FE. At SE, the DAF of
shear force reaches the maximum value of 2.64 at 0.0065s.
At HD, the shear transfer time was much shorter since it is
close to the load position, and the shear forces increases
initially. The DAF of shear force reaches the maximum value
of 1.43 at 0.005s.

For Column H14 as shown in Figures 3(c) and 3(d), the
results show good agreements with those from FE, but the
results using the CTB theory show large differences. As
shown in Figure 3(c), at 0.0038s, the maximum DAF of
shear force using the CTB theory reaches 3.58, which is
larger than that from FE (2.75), and the maximum DAF of
shear force from the IMCTB method is 2.77, which is close to
FE. Moreover, as shown in Figure 3(d), the maximum DAF
of shear force using the CTB theory is 2.70 at 2.8 ms, which is
significantly larger than the results from FE analysis (1.65)
and the IMCTB method (1.67).

The critical frequency in the CTB theory for columns
C06 and H14 occurs at 12th and 4th modes, respectively. The
dynamic internal force response is mainly influenced by the
first several modes, which means the CTB theory can
produce large errors especially when the slenderness ratio is
smaller. However, it indicates that the DAF of shear force
calculation using the IMCTB method shows good agree-
ments with FE analysis results, especially for the columns
with small slenderness ratios.

4. Characteristics of DAF of Shear Forces under
Impact Load

More accurate solution of elastic internal forces of bridge
columns at any section at any time can be obtained using the
proposed method (IMCTB) in this paper. The ratio between
the dynamic internal force at a certain moment and the static
internal force at SE is the distribution of DAF along the
column height. Figures 4(a) and 4(b) gives the DAF distri-
butions of shear force and bending moment in C10 at 0.5 ms
and 5ms for a load shape of right triangle with t4/T; of 1.

At 0.5 ms, the shear force and bending moment mostly
distribute within a range from 1 m to 4m away from the
column end, which indicates that the bridge column effective
length is shorter than the actual length and the shear failure
easily occurs under this circumstance due to the effect of
inertia force. Therefore, the failure mode of column may
transform from bending failure under static load to shear
failure under impact load.

If the column does not fail at the initial stage (0.5 ms), the
DAF distributions of the elastic internal forces at 5ms are
presented in Figure 4(b). Figure 4(b) shows the values of
DAF are larger than those at 1 ms. The DAFs of shear force
and bending moment at midspan of the column are around
0.5 and 1.0, respectively. The DAF of shear force is greater
than 1.5 within the range from O m to 1.5m away from SE
section and approaches 2.0 at SE, while the DAF of the
bending moment is around 1.5 at SE section. Therefore, if
the strength of column can withstand the internal force
generated by the early-stage dynamic response, then at this
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TaBLE 2: Parameters of bridge columns.

No. Length (m) Height/diameter (m) Width (m) Slenderness ratio Fundamental period T; (s) Duration time, t4 (s) t4o/T}

Co06 5 0.6 — 16.7 0.0146 0.015 1.03

H14 5 14 0.5 6.19 0.0072 0.007 0.97

C10 5 1.0 — 10 0.0096 0.010 1.04
3 1.6

—_

-2
Time (s)
—— FE
rrrrrr CTB
--- IMCTB
(a)
4
3
24
14
a3
8
0
-1 4
2
-3
Time (s)
—— FE
rrrrrr CTB
--- IMCTB

(c)

DAF

0 0.002 0.004 0.006 0.008 0.01
Time (s)
— FE
rrrrrr CTB
--- IMCTB
(b)
3

Time (s)

CTB
--- IMCTB

(d)

FIGURE 3: The time-history curves of DAF of shear forces for columns under impact load. (a) Shear force time-history of C06 at SE. (b) Shear
force time-history of C06 at HD. (c) Shear force time-history of H14 at SE. (d) Shear force time-history of H14 at HD.

moment, flexural shear failure or shear failure may occur at
the end of column due to insufficient strength.

Figure 4(c) presents the DAF distributions of the internal
forces in C10 at 20 ms for a load shape of right triangle with 4/
T, of 4. The results show that the distributions of the internal
forces are the same as those under static load. Therefore, for
the impact load with long growth time and large t4/T;, the
dynamic response within the bridge column can be ignored
and the impact load can be treated as a static load.

In summary, the calculated shear forces of bridge col-
umns under impact load using IMCTB is more practical and
accurate than the ones using the CTB theory, especially for

the columns with small slenderness ratio. In addition, the
calculated distribution of elastic internal forces of bridge
columns at various times can be utilized to analyze the
causes of different failure modes. As shown in Figures 3 and
4, the maximum DAF of shear force occurs at the end
section, which can be used as the DAF of shear forces for
bridge columns under impact load.

5. Parametric Studies on DAF of Shear Force

As the analyses above, the dynamic effect of bridge columns
under impact load is related to many factors such as load
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FIGURE 4: Distribution of DAF of internal forces of bridge columns at different timestamps under impact load. (a) Right triangle of £4/T; =1,
0.5ms. (b) Right triangle of t4/T, =1, 5ms. (c) Isosceles triangle of t4/T; =4, 20 ms.

characteristics, boundary condition, slenderness ratio, and
load position, which are investigated in this section. As
described in Section 3, the maximum DAF of shear force at
section SE is larger than that at section HD; as described in
Section 4, the maximum shear force at section SE is larger
than that at the other section. Therefore, the maximum DAF
of shear force (DAF (max)) at section SE is used to represent
the dynamic effect of bridge column. Four factors are in-
cluded in this paper.

In a curve plot of DAF (max), x-axis is the ratio of load
duration (t) to natural period (1;), and y-axis is the DAF (max).

(1) Load characteristics, including load shape and du-
ration time. Since there is no generally accepted
shape for vehicle impact force, three shapes of impact

load in Section 2.3 are investigated. For the shape of
triangular load pulse with growth time,  with a value
of smaller or equal to 0.5 is taken.

(2) Boundary conditions. Two boundary conditions of
F-F and F-H shown in Section 2.2 are analyzed
[24].

(3) Slenderness ratio. The values of 6 to 20 and 8 to 28
are used for F-F and F-H conditions, respectively,
based on the research and accidents statistics
[2, 25-27].

(4) Load position. In this paper, a distance from the
column end is used in the paper.  is used to denote
the ratio of this distance to the column height
varying between 0.1 and 0.5.



5.1. Load Shape of Right Triangle

5.1.1. Slenderness Ratio. Figure 5 gives the maximum DAF
(DAF (max)) of shear force of bridge columns under impact
load with a shape of right triangle without growth time for
F-F and F-H boundary conditions. It is found the DAF
(max) of shear force increases with t4/T; increase. The DAF
(max) increases rapidly when t4/T; smaller than 5 but
gradually approaches an asymptotic value after, while the
DAF (max) of shear force does not show a monotonic trend
with the increase of slenderness ratio. With the comparison
of the DAF (max) for F-F and F-H boundary conditions, it is
found that the slenderness ratio has more significant effect
on F-F column than F-H column. The DAF (max) for F-H
column is smaller than that for F-F column. For instance, the
DAF (max) for F-F column with slenderness ratio of 8.3 and
F-H column with slenderness ratio of 11.6 (same cross
section) are 4.2 and 2.79, respectively, when t4/T; is equal to
10. The results of the DAF (max) are significantly larger than
the upper bound of 2.0 for the DAF (max) derived using the
SDOF method.

5.1.2. Load Position. Figure 6 gives the maximum DAF of
shear for bridge columns under right triangle impact load
applied on different positions. It shows that the closer the
load position is to the end, the smaller the DAF (max) of
shear force is, which indicates the dynamic effect is lower
when the load position is near to the end of the columns. For
example, when & equals to 0.1, the DAF (max) of FF column
approaches 2 with the increase of #4/T; when & equals to 0.3,
the DAF (max) of FF column approaches 2.58 with the
increase of t4/Ty; and when & equals to 0.5, the DAF (max) of
FF column approaches 4.24 with the increase of t4/T;. The
maximum dynamic response occurs when the load acts on
the midspan position.

5.2. Load Shape of Triangle with Time Growth

5.2.1. Slope of Load Growth. Figure 7 presents the DAF
(max) curves of shear force for bridge columns when
subjected to impact load at midspan with different slopes of
load growth, where F-F column and F-H column with
slenderness ratios of 10 and 14, respectively, are investigated.
It shows the DAF (max) of shear force increases gradually
with t4/T, increase when { equal to 0.01, and gradually
approaches to a certain value, which is similar to the results
of the column under impact load of right triangle in Section
5.1. When ( is larger than 0.01, the DAF (max) of shear force
increases gradually to the maximum with #4/T; increase, and
then decreases. For larger value of {, the decrease occurs
earlier; When ( is larger than 0.1 and t4/T; is larger than 4,
the DAF (max) of shear force is close to 1, which can be
treated as quasi-static loading; the DAF (max) of shear force
can be reduced with the increase of { when t4/T; stays the
same.

It is an isosceles triangle load when & equals to 0.5, and it
is regarded as the shape of vehicle impact load by Thila-
karathna et al. [18-21]. As shown in Figure 7, it is found that
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when the column is subjected to impact load at midspan, the
DAF (max) of shear force increases firstly with #4/T increase
and approaches the maximum when t4/T is around 1.0, and
then decreases. The DAF (max) of shear force of F-F column
is approximately 1.9, which is increased about 27% com-
pared with the results of 1.5 from the SDOF method. Ad-
ditionally, the isosceles triangle load can be treated as a
quasi-static load when #4/T; larger than 4, and the value of
DAF (max) can be taken as 1.0.

5.2.2. Slenderness Ratio. Figure 8 shows the DAF (max)
curves of shear forces for bridge columns with different
slenderness ratios subjected to triangle impact load with
different growth time. The results show the curves of DAF
(max) with different slenderness ratios are very close when (
equals to 0.05; when { equals to 0.5, the curves of DAF (max)
have been overlapped, which indicates the slenderness ratio
has little effect. Thus, for { equal to or larger than 0.05, the
effect of slenderness ratio can be ignored.

5.2.3. Load Position. Figure 9 gives the maximum DAF of
shear force under impact load with isosceles triangle shape at
different load positions. The results show that DAF (max)
decreases when the load position gets closer to the end; when
& equals to 0.1, the curve of DAF (max) approaches a
horizontal line approximately with a constant value of 1.1.
Thus, the DAF (max) of shear force is generated when the
load position is at midspan of the column.

5.3. Load Shape of Rectangle

5.3.1. Slenderness Ratio. Figure 10 shows the maximum
DAF of shear forces for F-F and F-H columns under
rectangle impact load at midspan with different slenderness
ratios. When #4/T is larger than 0.5, the DAF (max) of shear
force becomes stable with a constant value. It is found the
DAF (max) of F-F column is significantly influenced by
slenderness ratio, but it does not change monotonously with
slenderness ratio increase. However, the DAF (max) of F-H
column is less influenced by slenderness ratio, and the values
are stable with a value between 2.7 and 3.0 when t4/T; is
larger than 0.5. All the results are significantly higher than
the value of 2.0 calculated from the SDOF method.

5.3.2. Load Position. Figure 11 gives the maximum DAF of
shear force under rectangle impact load at different positions
for F-F column with slenderness ratio of 10, and F-H column
with slenderness ratio of 14. Similarly, the DAF (max) de-
creases when the load position is closer to the end, which
highlights the maximum DAF of shear force occurs when the
load position is at midspan of columns.

6. Simplified Formula of DAF of Shear Force

6.1. Simplified Formula. With the parametric studies in
Section 5, it shows that different factors can have different
effects on the DAF (max) of shear force, and it is difficult
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FIGURE 5: DAF (max) of shear force of bridge columns under impact load with right triangle shape for different boundary conditions.
(a) F-F. (b) F-H.

0.0 T T 0~0 T T T

0.1 1 10 100 0.1 1 10 100
- £=05 - £=02 —— £=05 - £=02

= &=04 - &=0.1 8- =04 - &=0.1

A &=03 A ¢=03
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FIGURE 6: DAF (max) of shear force of bridge columns under impact load applied to different positions with right triangle shape. (a) F-F. (b)
F-H.

to determine DAF (max) for various conditions with  growth model is used to regress and fit, and the formula
consideration of all the factors. In this section, the data of ~ for the maximum DAF of shear force is proposed as
DAF (max) of shear force based on the parametric studies follows:

are regressed to form approximate formula. As analyzed

in Section 4, the results of DAF (max) curves under DAF (max) = B, i (13)
various load shapes vary significantly; therefore, different 1+ [(/32 —ﬁo)/ﬁo]eﬁltdm

formula should be applied. Moreover, it is found the
results of DAF (max) of shear force for F-H column is
slightly lower than that for F-F column; therefore, only the
DAF (max) of shear force for F-F column is considered
conservatively. By =—1.844,

= 2.962 — 0.1295 — 3.144£ + 0.004s> + 7.824> + 0.132s¢,
2

6.1.1. Load Shape of Right Triangle without Time Growth. (14)
It is shown in Figure 5 that the DAF (max) curves
are consistent with the shape of growth model, thus  where s is the slenderness ratio of a bridge column.

where f3, 8, 3, are calculated as follows:

=1.635-0.097s - 3. +0. s“+7. +0.073s¢,
o = 1.635-0.09 3.936¢ 0.004s2 08652 0.073s¢
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DAF (max)
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(b)

FiGure 7: DAF (max) curves of shear force of bridge columns under impact load at midspan with different slopes of load growth. (a) F-F.

(b) F-H.
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FIGURE 8: Maximum DAF of shear forces of bridge columns with different slenderness ratios under impact load with triangle shape and

growth time. (a) F-F. (b) F-H.

6.1.2. Load Shape of Triangle with Time Growth. Load shape
of isosceles triangle is widely used as the form of vehicle
impact load; therefore, only { equal to 0.5 is considered. The
slenderness ratio has little effect on the maximum DAF of
shear force (Section 5) and is ignored here. The regressed
formulation is

DAF (max) = 1.022 + 0.12¢, — 0.22¢; + 0.048¢t
+0.4148 - 58 +12.1438 + 1.776&t,  (15)
~2.198%, - 0.22&t2,
where t, equals to t4/T, with a value of smaller than 4, and

the impact load can be regarded as a static load when ¢4/T,
larger than 4.

6.1.3. Load Shape of Rectangle. Generally, the duration time
of impact load is 0.5 times greater than that of the first-order
natural vibration period of bridge columns. Therefore, the
conditions of #4/T larger than 0.5 is only considered for
rectangle load shape, and the regressed formulation is

DAF (max) = 7.73 + 0.146s* — 1.963s"* + 7.63s'* — 10.557s’,
(16)

where s’ is equal to s/10 within a value ranging from 0.6 to 2.

6.2. Case Study. A concrete bridge column with diameter of
1 m and height of 5 m is used as the studied case. The column
is fixed at both ends with a slenderness ratio of 10. The
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FIGURE 9: Maximum DAF of shear force of bridge columns under impact load with isosceles triangle shape at different positions. (a) F-F.

(b) F-H.

5.0
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()
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F1Gure 10: Maximum DAF of shear force of bridge columns with different slenderness ratios subjected to rectangle load pulse. (a) F-F. (b) F-H.

density and elastic modulus of the concrete are 2500 kg/m’
and 30 GPa, respectively. The first-order natural vibration
period of T; is 9.6 ms.

Firstly, the proposed simplified formula is verified using
FE analysis. It was estimated that the impact force of a 30t
vehicle collision at 64 km/h can be divided into two parts: (a)
a short-time load with a peak value of 7500 kN and duration
time of 10 ms when the engine or gearbox hits the column
and (b) a long-time load with a peak value of 5800 kN and
duration time of 90 ms when rear part of the vehicle hits the
column [28]. Therefore, the loading duration of 10 ms and
90 ms are both studied. The t4/T; for short-time and long-

time loads are 1 and 10, respectively. Moreover, the load
shapes of right triangle, isosceles triangle, and rectangle are
considered, and the load position is at a distance of 1.5m
away from the column end. Table 3 gives the calculated
maximum DAF of shear force at the column end based on
the proposed simplified formula and FE analysis, and the
results show that the proposed simplified formulas have high
accuracy.

In Annex C of Eurocode 1: Part 1-7, the impact force of
a vehicle with a mass of 30t and a speed of 90km/h is
2400 kN, and the specification gives a DAF (max) of 1.4. The
load duration of 10 ms and 90 ms, and the load shape of right
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FIGURE 11: Maximum DAF of shear force of bridge columns under rectangle impact load at different positions. (a) F-F. (b) F-H.

TaBLE 3: The calculated DAFs of shear force based on proposed practical formula.

Right triangle Isosceles triangle Rectangle
Method
td/lel td/lelo td/lel td/TIZIO td/lel td/lelo
IMCTB 1.69 2.23 1.26 1.0 2.25 2.25
FE 1.69 217 1.27 1.0 2.22 2.15

triangle, isosceles triangle, and rectangular were considered.
The static force of 2400 kN is applied at the height of 1.5m
from the bottom of the column to obtain the shear force at the
section of the column end. Then, the shear force is multiplied
by the DAF (max) to obtain the shear demand. The maximum
shear forces of column end calculated from the proposed
simplified formulas and the current design codes are given in
Table 4. The shear demand obtained from AASHTO-LRFD
(2012) is also shown in the table. The maximum dynamic
shear forces from the proposed method are larger than that
from the current design codes, and the forces are depended on
the load shape and duration time of the impact load.
Therefore, the current design codes may be insufficient to
estimate the shear demands of bridge columns under impact
load. Except the DAF (max) of shear force, future study needs
for the load shape, peak value, and duration of impact load
that often occurs for bridge columns.

7. Conclusions

This paper proposes a novel method (IMCTB) to determine
the dynamic load effects of bridge columns under different
boundary conditions and different load positions subject to
concentrated impact load, and parametric studies on the
DAF of shear force are conducted. Additionally, the sim-
plified formula are regressed and verified with a case study.
Major findings are summarized as follows:

(1) For bridge columns with small slenderness ratios, the
dynamic responses calculated using IMCTB under

TaBLE 4: Shear demands of bridge columns under impact load
based on different calculation methods.

. . . Shear
Calculation method Calculation condition demand (kN)
Specifications AASHTO-LRFD 2093

P EN 1991-1-7 Table C.2 2633

Right triangle, t4/T) =1 3180

Right triangle, t4/T; =10 4195

oot bossles vl L1270
> tally =

method (IMCTB) Rectangle, t4/T; =1 4237

Rectangle, t4/T; =10 4237

Rectangle, t4/T) =32.3 4237

impact load are more practical and accurate than that
using the CTB theory under concentrated impact
load.

(2) The characteristics of impact load can cause different
dynamic response of bridge columns, which can
affect the failure modes. For the impact load with
long growth time and large t4/T;, the dynamic re-
sponse can be ignored, and the impact load can be
treated as a static load applied to the bridge columns.

(3) The maximum DAF of shear force of bridge columns
under load shape of right triangle without time
growth and load shape of rectangle is relevant to
slenderness ratio. For a column with a certain
slenderness ratio subjected to right triangle impact
load, the maximum DAF of shear force increases
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with the ratio of load duration time to first-order
natural vibration period, t4/T',, and then approaches
an asymptotic value.

(4) For load shape of triangle with time growth, the
larger the ratio of load growth time to load duration
time is, the smaller of the maximum DAF of shear
force is obtained. For load shape of isosceles triangle,
the maximum DAF of shear force approaches the
maximum when t4/T', is about 1.0. For load shape of
rectangle, the maximum DAF of shear force is a
constant when t4/T' is larger than 5.0.

(5) The closer the load position is to the end, the smaller
the maximum DAF of shear force is, indicating that
the maximum DAF of shear force occurs when the
load position is at midspan of bridge columns.
Moreover, the maximum DAF of shear force for
bridge columns with both ends fixed is larger than
that with bottom fixed and top hinged. Therefore, the
boundary condition with both ends fixed can be
conservatively considered.

(6) The proposed regressed formula in this paper is
simple and precise to calculate the maximum DAF of
shear force under different conditions with different
parameters. The case study shows that the current
design codes underestimate the shear demand of
bridge columns under impact load; a further study
on vehicle impact for bridge columns is necessary.
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