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Load identification, or input identification as the more general term, is a field of study that requires a wide set of disciplines, which
suffers from uncertainties caused by the challenges within each discipline. When making load identification, several different
approaches exist. For all (or at least most) methods, however, some sort of system model is required. This model may be simple or
complex, depending on the system at hand. Typically, if the identification process is vibration fed, the system model will be created
from modal parameters. These parameters, however, are often subject to uncertainty and thus may be considered as stochastic
variables. In this paper, the root causes of uncertainty for load identification are demonstrated using classical identification
techniques. From a numerical perspective, uncertainty is quantified through Monte Carlo simulations. Two results are outlined:
one where the identification process is completely blindfolded in its most naive form, and one where the spatial distribution of the
load is predefined. In general, it is found that fixing the spatial distribution of the load can compensate for truncation errors in the

modal parameters.

1. Introduction

Modal analysis is a convenient and efficient method for
retrieving the dynamic properties of a civil engineering
structure in a condensed form. Traditionally, two methods
exist for modal analysis—experimental modal analysis
(EMA) and operational modal analysis (OMA). The return
from a modal analysis consists of the following modal pa-
rameters: mode shapes, natural frequencies, and modal
damping [1]. Modal analysis is a commonly used approach,
yet the confidence in the extracted modal parameters will
depend on the quality of excitation and response mea-
surement. Although new methods are continuously sur-
facing to overcome some of the challenges, a remaining
uncertainty on the estimates persists. In the application for
civil engineering structures, another range of challenges may
arise, for instance, when the stationary assumption is vio-
lated through variations in environmental conditions such
as temperature or mass loading.

The exertion of indirect load identification may be a
successive step to the modal analysis. If the retrieved modal
parameters accurately and in whole can describe the dy-
namics of the system, they can be used in the inverse cal-
culation needed when doing indirect load measurements.
The principle is that if a dynamic model is available (from
EMA or OMA) and the response of the system is measured,
then an estimate of the load can be obtained through
deconvolution. Load identification has been in focus in the
recent decade, and many attempts have been made in order
to obtain a stable and accurate method. In recent years,
identification techniques in real time using Kalman filters
have proven successful in certain cases [2-7]. Besides the
recursive model description, another benefit from these
methods is the capability to merge different sensor type
information. For these filters to perform well, however,
several noise models must be determined, which may be
difficult. Aucejo et al. [8] thoroughly examined how the
different fitting parameters may influence the performance
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of identification though they omitted model errors from
their analysis. Using identification techniques in the time
domain, Wang et al. [9-11] studied the interval envelope on
the load estimation given uncertainty in the response
measurements and integration errors.

Another approach is to deconvolute the response in the
frequency domain [12-15]. This was the main approach
from the early days in the automotive and aviation industry
[16, 17]. The method is based on establishing the relation
between the system response and force at different fre-
quencies. The technique requires a recording time, which is
why the method does not perform well in real-time appli-
cations. Comparative studies between the two approaches
are also seen in [18]. The response measurements are often
recorded in terms of displacements, velocities, accelerations,
or strains. These can be obtained through attached sensors
(invasive) or from noninvasive techniques such as lasers,
digital image correlation, or even by acoustics [19, 20].

For every method referred to above, a system model is
needed. This model may be derived from a finite element
(FE) model or from modal parameters directly obtained
from the EMA or OMA. Now, an obvious question arises:
how accurate must the modal parameters be in order for the
load identification to be satisfying? Although some authors
already have addressed some of these questions [21-24], this
paper will revisit some of the fundamental challenges from a
visual point of view. By studying a practical example, the
sensitivity of estimation errors will be demonstrated through
a Monte Carlo simulation. In order not to disappoint the
reader, we note that this paper deals merely with the con-
sequence and not mitigation of the estimation errors in
modal parameters.

2. Simulation Setup

A plane cantilever beam will host the basis for this study. The
beam is made from Euler-Bernoulli beam elements with two
degrees of freedom (DOFs) at each node—a translational
and a rotational as indicated in Figure 1. We assume that the
beam is proportionally damped through the Rayleigh co-
efficients & and f. The mass is assumed to be distributed
along the elements. The beam is discretized by three ele-
ments and fixed at the bottom node which yields, in total, six
free DOFs and hence six modes of vibration. We note that
the FE model has not yet fully converged for all modes at this
nodal resolution; however, this is not of importance for the
given study.

The beam model is then subjected to a loading history
from which the dynamic response is simulated at a sampling
frequency of 1kHz. The loading time history is selected so
that both dynamic response and quasistatic response will be
visible within the output. The load is composed of a square
impulse followed by a low-frequency wave, again followed
by a superimposed high-frequency wave train (15Hz).
Figure 1 shows the system in focus for this current study. The
four-noded cantilever beam constitutes the system model.
The loading history (input) is shown in the left-hand side of
the figure. Each line corresponds to a load time series for the
corresponding node, i.e., a flat line resembles zero loading.
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The solid lines are the horizontal force, whereas the dashed
lines are the moment. The loading is set to act at one node
only—the second node from the top. The right-hand side
shows the corresponding response (output) for each node.
Solid lines are the horizontal displacements, and the dashed
lines show the rotation of the nodes. Amplitude scaling is
irrelevant as the system is linear.

The process of load identification will hence be the re-
verse order of the process shown in Figure 1. First, the
response of the structure is measured. Then, if the dynamic
properties of the system are known, we can make an inverse
calculation and thus estimate the load causing the measured
response. Before proceeding to the load identification, a
small amount of noise is added to the system response and
hereafter considered as the measured signal (100dB
Gaussian white noise is added).

3. Load Identification Process

In order to assess the sensitivity of the load estimate given
the variations in the estimated modal parameters, a method
must be chosen. For this paper, two methods will be out-
lined—Dboth operating in the frequency domain. We have
selected two methods that easily can be applied using the
results from an EMA or OMA (Typically, if modal pa-
rameters are obtained from an OMA, problems persist as the
modal mass and hence the mode shapescaling is unknown.
For now, we will ignore this challenge and assume that the
mode shapes obtained are correctly scaled). The methods
originate from the automotive and aviator industry [22, 23]
and are often referred to as the “transfer path analysis matrix
inversion” or just “pseudoinverse technique.”

3.1. Method 1. 'The first method, referred to as Method 1, is
the most simple and straight forward. This method might be
a tempting first approach, but it shall be demonstrated later
on why it could lead to unfortunate results. Consider the
response of a linear, time-invariant system which, in the
frequency domain, is given as follows:

Y (w) = H(w) F(w), (1)

where Y (w) is the system response, H (w) is the frequency
response function (FRF), and F () is the load, all given at
the discrete frequency w. This process resembles very well
what has been illustrated in Figure 1. The FRF matrix can
be computed as a sum of N modal contributions as

follows:
al Qr r rT Q: : rH
(w>=Z< L M S ) (2)

s

“\ iw-A, iw—A;
where ¢, is the mode shape vector, Q, is the mode scaling
function, and A, is the complex pole, all for mode r. T is the
transpose, * is the complex conjugate, and 7 is the Hermitian
transpose. See [25] for the derivation of this formula.
Now, we presume that the output Y (w) is available
through measurements—both the translation and the ro-
tation of all DOFs. All that is left to do is to calculate the
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FiGure 1: Simulated system. Left shows the input: 10 s load history applied at each node. Right shows the corresponding response. Dashed
lines are the moment and corresponding nodal rotation. Solid lines are the force and the corresponding nodal displacement.

inverse of the FRF and premultiply on both sides in order to
obtain an estimate on load F (w).

F(w) = H (@)Y (w). (3)

Since errors or modal truncation can cause the inversion
of the FRF to become singular, the inversion is performed
using the Moore-Penrose pseudoinverse [26]. Method 1 has
been used in [15, 27, 28] with the minor change that the
inversion of the FRF matrix is performed through a singular
value decomposition technique. Regularization techniques
have also shown to reduce the sensitivity in the matrix
inversion [29].

3.2. Method 2. Another method, Method 2, will be added for
comparison. This method resembles Method 1 to a high
degree with only one minor, yet important, difference. In
Method 1, there were no restrictions to the solution, and the
load estimate F (w) could be distributed to any DOF in the
system. If the spatial distribution of the load is known (and
unchanging), this can be incorporated into the identification
process through a separation of variables as follows:

E(0) = fy g(), (@)

where f, constitutes the spatial distribution of the load and
g(w) is its scaling function. If the given loading scenario
allows this separation and if f,, is known, equation (1) and
(3) can be rewritten as T

Y (w) = H(w) F(w),
=H(w) f, g9(w),
=c(w)g(w),

(5)

which then can be solved for the scaling constant g (w):
§(w) = (@)Y (), (6)

and the final load estimate then reads

F(w)=3) f - 7)
Methods to derive the distribution f, in a similar system
have been shown in [13, 30-32], but for this study let us
assume that the distribution is a known quantity; hence,
fo=[001000]"
"~ The equations, (1)-(7), describing Method 1 and Method
2 directly yield a frequency domain estimate of the load. All
the following figures in this paper will show the load estimate
as a time history in line with the input (left-hand side) in
Figure 1. The equivalent time-domain representation is
obtained by means of the inverse Fourier transformation.

3.3. Condition of the Frequency Response Function. The
condition number may be a measure of how sensitive the
matrix is to inversion, where a large condition number
indicates an ill-conditioned matrix and vice versa [33].
Singular value decomposition may separate the FRF matrix
into singular vectors and singular values. Letting the
condition number be defined as the ratio between the
largest and smallest singular value, we thus obtain a
quantitative measure on the sensitivity. Since the FRF
matrix, H (w) is defined for a range of frequencies, each
frequency will be inherent to a condition number. The
condition number(s) for the full rank FRF matrix is shown
in Figure 2 as a function of frequency. Here, it is seen how
the condition number increases at the resonance
frequencies.

There is no sharp limit to assess whether a condition
number will yield a stable inversion, but a condition number
larger than 100 should call for immediate concern which is
the case for most frequencies in our case [33]. Since the FRF
matrix is constructed from a set of modal contributions, the
rank of the FRF matrix will depend on the number of in-
dependent modes. If modal truncation is present, this causes
the FRF matrix to be rank deficient, which means that the
smallest singular value becomes close to zero and conse-
quently yields a condition number going to infinity.
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FIGURE 2: Condition number for the full rank frequency response function at different frequencies.

cond(g(w)) — 0 ' rk(g(w)) < min (m, n), (8)

where m and n are the number of rows and columns in H (w)
while cond (-) and rk (-) indicates the condition number and
rank, respectively.

If the FRF matrix is constrained by a spatial distribution
vector f, asitis done in Method 2, the product reduces to
the vector ¢ (w). Singular values of an m x 1 nonnull vector is
a single nonzero element arranged in an m x 1 vector [34].
This consequently provides a condition number of unity,
which means that the “inversion” will be stable for all
frequencies.

cond(H (w) f ) = 1. (9)

4. Modal Truncation

The number of DOFs in a real structure will, of course, be
approaching infinity, but the modes which can be identified
are depending on the sensor distribution and capability.
Consequently, truncation of the modal space will always be
present in real-life situations, which is why this section is
included [35, 36].

From equation (2), it is seen that the response of a system
is a linear contribution from all modes in the system. If
modes are omitted from this sum, this will truncate the
response function. Figures 3 and 4 show how this modal
truncation affects the estimate on the load estimate from the
inverse calculations. One additional mode is removed for
every case. All modal parameters are treated as deterministic
and at their true values, i.e., the only error in the FRF is the
higher modes being omitted.

As seen in Figure 3, the load estimate is acceptable when
all six modes are used despite the small content of noise on
the response measurements. However, when omitting
modes from the FRF matrix, the load estimate from Method
1 quickly becomes erroneous, both in terms of distribution
and magnitude. Even though the resonance frequency of the
modes omitted may be far from the frequency of the load,
this truncation still makes a great impact. Meanwhile, in
Figure 4, it is seen that Method 2 retrieves more consistent
estimates on the load. Any DOF, besides DOF 3, obtains a
zero-load estimate following the definition of the spatial
distribution given in equation (7). For both methods, it is
seen that the estimate for the square impulse overshoots at

the discontinuities caused by the Gibbs phenomena for the
truncated modal space [37].

If we consider the resynthesized response Y (w) from the
load estimates F (w) from either Method 1 or Method 2 and
the truncated response function i (w), we observe

Y (@) = H (0 F (),

- - (10)
(Y (0.7, (@) <e(Y (). Y, ().

Here, € is an arbitrary error function between the
measured response Y (w) and the resynthesized response
Y (w). The solution from Method 1 will yield a better
response approximation than Method 2. This means that
Method 1 is a more mathematically accurate solution. Yet,
when comparing Figures 3 and 4, it is clear that in a
physical sense Method 2 is more consistent. This is one of
the major challenges when making load identification
solely based on the response using a least-square ap-
proach. Consequently, the load estimate may return as an
equivalent loading rather than the actual, as seen in
Figure 3.

For the given simulation, the load is conveniently acting
at a point where the response is being “measured.” In other
cases one might not be this lucky and expansion is needed in
order to estimate the response at locations that were not
recorded originally. Several expansion techniques (/virtual
sensing techniques) exist for this [38, 39], but effectively,
similar truncation errors will be introduced as no new modes
are added during the expansion.

5. Stochastic Modelling

The modal parameters needed to establish the response
function may be obtained through an experimental iden-
tification process—either EMA or OMA. The parameters
obtained in this process will always be subject to variations.
The variations can originate from physical causes such as
influence from temperature, operational mass loading, or
other nonanticipated nonlinearities violated by the model
description. Also, nonphysical uncertainties related to data
postprocessing and pole extraction are known to exist
[40-43]. These magnify if the excitation of the structure is
unfortunate or if the sensor resolution and location is poorly
chosen. Noise and other limitations on the sensor may also
be a cause of uncertainty.
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FIGURE 3: Load estimate using Method 1. The figure shows the time-domain load estimate based on the number of modes included in the
FRF matrix. Each time series shown has a 10 sec duration. Solid lines show the force (N), and the dashed lines show the moment (Nm).
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FIGURE 4: Load estimate using Method 2. The figure shows the time-domain load estimate based on the number of modes included in the
FRF matrix. Each time series shown has a 10 sec duration. Solid lines show the force (N), and the dashed lines show the moment (Nm).

The variations in the modal parameters can be imple-
mented from many different uncertainty models. The most
common is probabilistic, where a probability density
function is used to describe the statistical variations. Other
formulations such as the fuzzy-set model or a non-
probabilistic interval method could also have been utilized.
For this study, however, we will rely on the probabilistic
approach and assume that all these aforementioned causes of
uncertainty effectively can be modelled as an uncorrelated
stochastic variation in each of the estimated modal pa-
rameters. The uncertainty in natural frequencies is assumed
to follow a normal distribution given a coefficient of vari-
ation; hence, estimates for the lower frequencies are the most
certain. The coefficient of variance is chosen as cv = 2% for
all frequency estimates. The stochastic model for the natural
frequency of mode r hence reads

Q, ~ N (u,0), (11)
where the expectation g is assumed to be in line with the true
natural frequency for mode 7, ie, y = w,. The standard de-
viation is derived from the coefficient of variation as o = cvw,.

Damping estimates are known to be the most uncertain
parameters to quantify. Since the damping typically involves

fairly low values—say a few percents—and the estimates are
subjected to a vast amount of uncertainty, it must have some
skewness in order to avoid negative estimates. The study [44]
also noted a positive skewness in damping estimates, yet the
distribution fit was not studied. For this simulation, we
assume that the distribution can be modelled as a standard
gamma distribution with shape parameter a. The stochastic
damping parameter model for mode r hence reads

Z, ~T(a), (12)

where the shape parameter is assumed to be equal to the true
damping ratio for mode r (in percent). That is, a = {, which
yields a mean E[Z,] = (,.

We assume that mode shapes always will be real fol-
lowing the proportionally damped system. The variations in
mode shapes are implemented as a stochastic process de-
scribed by a spatially uncorrelated variation in individual
DOFs and a variation in scaling of the mode shape. For mode
r, this means

D, =3¢, & (13)

where ¢, is the true mode shape for mode 7, X is a diagonal
matrix whose entries contain the uncorrelated noise on
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FIGURE 5: Realization of the different modal parameters from 100 000 Monte Carlo simulations. The mode shape uncertainty band is shown

for the 98% quantile using cubic interpolation.

individual DOFs, and « is the scaling of the mode shape.
Both noise models are assumed to be normally distributed
with a mean y and standard deviation ¢ as

s, ~A(1L,5%107),

=

(14)
K~ H(1,1x 10’2).

The mode shapes are assumed to be mass normalized.
Thus, the alteration in mode shapes will affect the modal
mass as well. The spatially uncorrelated alterations may
violate the mode shape orthogonality, but only to a small
degree as the error standard deviation for the mode shapes’
DOFs is set at 0.5%. The consequences of omitting modes
have already been shown; hence, only small variations are
now included.

Using the principles of Monte Carlo simulation, a re-
alization of the stochastic modelling is shown in Figure 5 for
the first three and the last modes. The uncertainty band for
the mode shapes is shown using cubic interpolation in order

to show the rotational DOFs. The modal assurance criterion
(MAC) [45] between the true mode shape and the sto-
chastically altered is shown for each mode. We note that the
variations in MAC values are small compared to what may
be experienced from experimental work.

6. Results

Before turning to the identification process, let us have a
look at the FRF matrix. The stochastic variables shown in
Figure 5 are fed into equation (2) through a Monte Carlo
simulation, and a sample of the FRF matrix is shown in
Figure 6. For the 100 000 Monte Carlo simulations, the
upper and lower 98% quantiles are indicated in the figure as
the hatched green area. The black solid line is the mean
value. The consequences of missing modes in the FRF
matrix were studied by Maes et al. [46] and shall not be
repeated here.

In order to evaluate the sensitivity in load estimates, the
frequency response function is now considered as a
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stochastic process given the natural variation in modal
parameters. Keep in mind that the “measured” system re-
sponse is kept the same for all simulations and at its true
value with a minimum of noise added. In the following three
sections, the parameter variations are introduced a little at a
time so that it will be more clear what happens to the es-
timates. Since the mean value of the modal parameters is in
line with the true values, the averaged value of the estimates
converges towards the true value as well. All six modes will
be used in the making of the FRF matrix.

6.1. Natural Frequencies. First, only the natural frequencies
are treated as stochastic variables, and the remaining modal
parameters are kept as deterministic and exact. For the 100
000 Monte Carlo simulations, the FRF is synthesized, and a
load estimate for each simulation is obtained through both
methods. Figure 7 shows the upper and lower 98% quantiles
for the time-domain load estimates. It is seen that both
methods yield a reasonably stable result despite variation in
natural frequencies. Three points in time (a, b, and c¢) are
extracted to highlight the error distribution on the estimate.
The relative error for the two methods is given by the error
standard deviation and summarized in Table 1.

6.2. Natural Frequencies and Damping Ratios. Next, in ad-
dition to variations in natural frequency, the damping ratios
are also treated as stochastic variables. That means only the
mode shapes are left deterministic. The variation in the
estimated load is shown for the two methods in Figure 8. As
expected, the uncertainty bound for the estimates increases
as the damping ratios are also treated as stochastic pa-
rameters. Method 1 seems to outperform Method 2, given
this level of uncertainty in the modal parameters and noise
in the output signal. A ringing effect in the estimate is
observed at the discontinuities near the square impulse. In
Method 1, however, it is seen how the load estimates are
spreading to different nodes to compensate for the errors in
the FRF matrix.

6.3. Natural Frequencies, Damping Ratios, and Mode Shapes.
Finally, all modal parameters are now considered as sto-
chastic processes, and the consequent result for the esti-
mated load is given in Figure 9. Although the mode shapes
are altered by values down to one or two percent for each
node, the uncertainty in the load estimates for Method 1
shows an exponential growth. When mode shape errors
occur, Method 1 fails to predict the load distribution and
consequently the scaling of the load. For reference, the
sample FRF shown in Figure 6 hosts the basis for the load
estimate given in Figure 9. Note that in Figure 9, the error
probability density is unequally scaled for Method 1 and
Method 2.

Each of the load estimates shown by Figures 7 to 9 has
three highlighted points in time, where an error probability
density is shown. The corresponding standard deviation
(std) is given in Table 1. We note that Method 1 seems to
perform better than Method 2 as long as the mode shapes
are intact. However, when introducing minor changes to
the mode shapes, Method 1 cannot fully predict to which
node the load is applied, which results in a poor estimate on
DOF 3.

7. Discussion

We have studied the performance of the two methods given
the natural variation in the modal parameters used for the
model description. The load estimates when using Method 1,
shown in Figures 3 and 9, are not as diverse as they might
appear at first glance. If the resulting force is considered
instead of every single entry in the estimated load vector, this
leads to a more appealing result. First, reexamining the
estimates shown in Figure 9 and by summarizing the
contributions from each DOF, an equivalent baseline load is
obtained. This resulting load estimate is compared with the
true baseline load and shown in Figure 10. Now, it is seen
how the uncertainty band is narrowed down. For this static
system, an equivalent global loading can be estimated using
Method 1 despite the stochastic variations in modal pa-
rameters as long as all modes are represented.
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FIGURE 7: Natural frequencies are introduced as stochastic variables. The figure consequently shows the time history of the identified load
using Method 1 and Method 2. Each time series shown has a 10 sec duration. The solid lines are the mean values of the estimated force (N),
and the dashed line is the mean value of the estimated moment (Nm). The hatched green area indicates uncertainty on the force, while the
hatched orange area is the uncertainty of the moment. Both are shown using the upper and lower 98% quantiles. Three selected points in
time show the error probability density (in percent) for the estimated load in DOF 3.

TaBLE 1: Error standard deviation for different levels of uncertainty and for three selected points in time. All are based on the force estimate
in DOF 3.

Method 1 Method 2
Uncertainties introduced Error std (%) Error std (%)
a b c a b c
Natural frequencies 2.73 2.29 213 6.08 4.39 3.64
Natural frequencies and damping ratios 3.28 2.31 2.12 7.67 4.45 3.64
Natural frequencies, damping ratios, and mode 531 463 36.9 796 4.94 410
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o
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FiGure 8: Natural frequencies and damping ratios are introduced as stochastic variables. The figure consequently shows the time history of
the identified load using Method 1 and Method 2. Each time series shown has a 10 sec duration. The solid lines are the mean value of the
estimated force (N), and the dashed line is the mean value of the estimated moment (Nm). The hatched green area indicates uncertainty on
the force, while the hatched orange area is the uncertainty of the moment. Both are shown using the upper and lower 98% quantiles. Three
selected points in time show the error probability density (in percent) for the estimated load in DOF 3.
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value of the estimated force (N), and the dashed line is the mean value of the estimated moment (Nm). The hatched green area indicates
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Returning to the modal truncation example in Section 4,
we once again compute the resulting load estimate from
Method 1 as previously shown in Figure 3. Using the same
analogy as explained above, a resulting baseline load is es-
timated for different number of modes included in the FRF.
As the estimates from the truncation study are deterministic,
we choose to plot each result on top of each other in Fig-
ure 11 together with the true baseline load. We see that the
overturning moment is fairly accurate regardless of the
number of modes included, while the shear force is drifting
when modes are being omitted. When modes are omitted,
Method 1 fails to estimate the point of attack and thus the

scaling of the load, as it is seen in Figure 11. It should be
noted that the degree of overshooting at the impulse is
increased as modes are being omitted. Whether the resulting
moment estimate remains stable is likely dependent on the
static system.

There are some items which have not been covered by
this study and which should be mentioned as they limit the
conclusions.

(i) We have chosen a simple static system with plane
deformation. The system is blessed by not having any
closely spaced modes and is behaving perfectly linear.
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F1GURE 11: Resulting baseline forces given the different levels of modal truncation for Method 1. Every coloured line corresponds to an
estimate given a number of modes, while the black lines are the true input.
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FIGURE 12: The loading is applied at DOF 5. Natural frequencies, damping ratios, and mode shapes are introduced as stochastic variables.
The figure consequently shows the time history of the identified load using Method 1 and Method 2. Each time series shown has a 10 sec
duration. The solid lines are the mean values of the estimated force (N), and the dashed line is the mean value of the estimated moment
(Nm). The hatched green area indicates uncertainty on the force, while the hatched orange area is the uncertainty of the moment. Both are
shown using the upper and lower 98% quantiles. Three selected points in time show the error probability density (in percent) for the
estimated load in DOF 5. Note that the probability density is scaled differently between Method 1 and Method 2.

TaBLE 2: Error standard deviation for different levels of uncertainty and for three selected points in time. All are based on the force estimate
in DOF 5.

Method 1 Method 2
Uncertainties introduced Error std (%) Error std (%)
a b c a b c
Natural frequencies 3.19 2.99 2.80 5.79 4.16 3.74
Natural frequencies and damping ratios 4.08 3.01 2.79 7.44 4.22 3.74
Natural frequencies, damping ratios, and mode 757 66.2 52.8 771 470 413

shapes
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FiGure 13: The loading is applied at DOF 4. Natural frequencies, damping ratios, and mode shapes are introduced as stochastic variables.
The figure consequently shows the time history of the identified load using Method 1 and Method 2. Each time series shown has a 10 sec
duration. The solid lines are the mean value of the estimated force (N), and the dashed line is the mean value of the estimated moment (Nm).
The hatched green area indicates uncertainty on the force, while the hatched orange area is the uncertainty of the moment. Both are shown
using the upper and lower 98% quantiles. Three selected points in time show the error probability density (in percent) for the estimated load
in DOF 4. Note that the probability density is scaled differently between Method 1 and Method 2.

TaBLE 3: Error standard deviation for different levels of uncertainty and for three selected points in time. All are based on the estimated
moment in DOF 4.

Method 1 Method 2
Uncertainties introduced Error std (%) Error std (%)
a b c a b c
Natural frequencies 1.89 2.15 2.17 5.57 4.05 3.76
Natural frequencies and damping ratios 1.90 2.16 217 7.37 4.11 3.77
Natural frequencies, damping ratios, and mode 166 147 11.8 762 457 413
shapes
Full rank, 6 modes 5 modes 4 modes
—

—0
P

FIGURE 14: Load estimate using Method 2 with displacement sensors at DOF 1 and DOF 5. The figure shows the time-domain load estimate

based on the number of modes included in the FRF matrix. Each time series shown has a 10 sec duration. Solid lines show the force (N), and
the dashed lines show the moment (Nm).
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FIGURE 15: Load estimate using Method 2 with a displacement sensor only at DOF 1. The figure shows the time-domain load estimate based
on the number of modes included in the FRF matrix. Each time series shown has a 10 sec duration. Solid lines show the force (N), and the

dashed lines show the moment (Nm).

Now, if the system is more complex, which may be
the case for most civil engineering structures, the
generalization of the number of modes needed and
the precision on the modal parameters may differ.

(ii) We have not touched upon multiple load sources or
a moving load.

(iii) For this paper, the response function is driven by
displacement measurements. It has not been
assessed whether acceleration or strain measure-
ments would have yielded different results.

(iv) Only one noise level on the output signal has been
studied.

(v) From Figure 8, it may seem like the variation in
damping ratios and frequency yields nearly no effect
on the load estimate. If the system is subjected to a
harmonic load at a frequency near a natural fre-
quency, these modal values may be vital for the load
estimate.

8. Conclusion

The sensitivity in load identification following the un-
certainty in modal parameters has been studied for two
different methods. The uncertainties have been introduced
stepwise into the system to demonstrate the influence of
different parameters. It was found that fixing the spatial
distribution of the load can compensate for the modal
truncation in the response function. If one mode is domi-
nating in the response, parameter estimation following this
mode is crucial for the following load identification.
However, modes with a resonant frequency above the fre-
quency of the load still contribute to the quasistatic response,
and omitting these modes will cause an error. A possible idea
is to compensate through static deflection shapes/Ritz vector
in the FRF matrix, but this has not been included. The spatial
distribution of the load was fixed in Method 2 through the
distribution vector f . If the assumption regarding the load
distribution f, is not correct, this will introduce some
systematic errors in the load estimate. Demonstrating this
has been omitted from this paper.

Whether or not the stochastic modelling outlined in
Section 5 is appropriate for a real-life structure will be left for

the reader to decide. However, it has been demonstrated
how variations in these parameters may alter the estimates
on the loading, and shown how a sensitivity analysis may
reveal flaws in the algorithm.

As a general observation, when doing vibration-based
load identification, the algorithm for estimating the input
must be supported by additional information besides the
system response. This additional information may be in
terms of the spatial distribution of the load—which was
shown with Method 2—or it may be other load models
which are driven by wind speed measurements, wave gauge
readings, local pressure measurements, or possibly in-
formation about the frequency content of the loading.
Without aiding the inverse calculations with one of these,
the uncertainty of the estimate will exceed what is accept-
able. For most of the successful methods available in the
literature, the spatial distribution of the load is also defined

as a fixed measure, which leaves room for further research in
this field.

Appendix

A. Examining Different Loading Positions

In order to demonstrate that the sensitivity is not uniquely
related to the position of the load, a few additional cases are
included in this appendix.

A.l. Case I. For the first case, the load is moved to the top
node at DOF 5 (see Figure 1). Any other settings are the same
as described previously. We jump to the result, where all
modal parameters are treated as stochastic variables. The
results are shown in Figure 12, and again three selected
points in time are highlighted. The error standard deviations
are given in Table 2. Note that for Method 2, we once again
assume that the distribution is correctly foreseen i.e.,
fo=[000010]".

A.2. Case II. Next, we examine the consequences, if the
loading is applied as a moment instead. Here, the moment is
applied in DOF 4, i.e., at the same node as the base case
shown in Figure 1. Again, we jump to the stage where all



Shock and Vibration

modal parameters are treated as stochastic parameters. The
results are shown in Figure 13, and the error standard de-
viation for points a, b, and c is given in Table 3. For Method
2, again we assume that the distribution is correctly foreseen,
ie, fop=[000100]".

B. Evaluating the Number of Sensors

The final case is dedicated to the study of how many sensors
are required for a successful estimate. It has already been
shown that for the truncated modal space, Method 1 does
not yield any meaningful result despite having the full-field
response measurements. This case study will hence be
limited to Method 2 only. Since only a single load source is
present, in theory, a single sensor should be sufficient of
estimating the load. However, it is needless to say that the
number of sensors needed depends on the position of the
sensors. If a sensor is positioned at a nodal point for a
mode, the corresponding modal load will be poorly
estimated.

Reduction in sensor information can be done through
the selection matrix S; as follows:

Vi (0) =8 Y(w), (B.1)

where Y., 4 (w) will be the reduced measurement signal. The
load scaling constant will consequently be

!
90 =S H(@) fo) Y (@)

(B.2)

For example, if only the response is measured in DOF 1
and 5, the selection matrix becomes

[100000]

W

(B.3)

— 000010

This rewriting means that we can still identify loads in
any of the six DOFs, although we only measure the response
in a few selected DOFs. Figure 14 shows the estimated loads
using only two sensors located in DOF 1 and DOF 5.

Figure 15 shows similar load estimate, but here, the
response is measured at only the bottom node, in DOF 1. We
see that even with one sensor, a reasonable estimate is
obtained. Only the discontinuity at the impulse is off. Note
that neither of the sensors in Figures 14 and 15 is located at a
mode nodal point.

The precision of the load estimate is evaluated from
different numbers of modes in the FRF matrix. The load is
consequently estimated at a location where the response is
not measured. This corresponds to a flawless modal ex-
pansion process [38, 39] or system identification from a set
of roving sensors. In general, one may argue that having
more modes in the FRF than sensors pose a challenge from a
system identification point of view. However, we will not
justify this here.

Data Availability

The data used in this study are generated from a simulated
case study and can be made available upon request.
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