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Bladed disks of engine rotors usually operate at harsh conditions of high rotating speeds, which may lead to nonnegligible
rotordynamic effects, including Coriolis force, spin softening, and stress stiffening effects. *ese effects on the vibration of
mistuned bladed disks are seldom discussed in available investigations. In this paper, the vibration characteristics of rotating
mistuned bladed disks are addressed by considering these rotordynamic effects. First, finite element (FE) models of bladed disks
are used to obtain the governing equations of motion, and an efficient method for getting the stress stiffening matrix of sector
model is developed.*en, the effective component-mode mistuning method (CMM) is employed to create compact, yet accurate,
reduced-order models (ROMs). Finally, the models are validated and used to study the influences of Coriolis force, spin softening,
and stress stiffening effects on the vibration of bladed disks with frequency mistuning factors. Numerical results show that these
rotordynamic effects could significantly affect the vibrations of mistuning bladed disks, especially in the ranges of high speed, and
should be carefully considered during analysis.

1. Introduction

*e vibration and high-cycle fatigue issues of bladed disks have
always been the focuses of researchers and engineers in the past
few decades. Mistuning is widely deemed as the main cause for
high-cycle fatigue in bladed disks, whereas it is unavoidable in
practical applications due to the inevitable manufacturing
tolerance and in-service wear and tear. As a consequence, the
adverse effects of mistuning on the vibration of bladed disks
and effective methods for relieving these effects have attracted
enormous attentions in the past decades, which have been
comprehensively reviewed in [1–3]. Although abundant
achievements have been gained, mistuning is still an un-
resolved problem for turbomachinery designers, as was stated
by Ewins and Chan [4]. Nevertheless, it is believable that ac-
curately obtaining the vibration characteristics of mistuned
bladed disks with more properly considering their operating
conditions could be an important basis for settling this issue.

*e realistic operating conditions of bladed disks may
contain complex coupling between structure, flow field, and
rotordynamic effects. In the early stage of studies, most
investigations focused either on the structural vibrations of
mistuned bladed disks [5–9] or on the beneficial effects of
mistuning to flutter [10–13]. In recent years, a number of
investigations have been published to address the effects of
aerodynamic damping [14–19] and to develop effective re-
duced-order models for quantitative vibration analysis. In
obtaining reduced-order models of mistuned bladed disks,
the substructure techniques and component-mode synthesis
methods [20–22] are commonly employed in the early stage.
In contrast, Yang and Griffin [23] presented a novel way of
including mistuning parameter in reduced-order models by
representing the modes of the mistuned system in terms of a
subset of nominal system modes. On this basis, Feiner and
Griffin [24] developed a more effective reduced-order model
of mistuned bladed disks by employing only a single family
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of modes. Lim et al. [25] presented a novel component-based
modelling framework by partitioning mistuned bladed disk
into a tuned bladed disk component and virtual blade
mistuning components. Sternchüss [26] introduced a model
order reduction technique which can handle parametric
models depending on rotation speed. Beck et al. [27] de-
veloped two new geometric mistuning reduced-order
models synthesized from an IBR composed of a tuned disk
and geometrically perturbed airfoil by using geometrically
mistuned airfoil modes in the component-mode framework.
Vargiu et al. [28] extended the Component-ModeMistuning
technique to allow for the introduction of a sector frequency
mistuning pattern. D’Souza et al. [29] developed compact
ROMs for mistuned multistage bladed disk systems with
aerodynamic effects included.

Compared with the large number of investigations on
the vibration of mistuned bladed disks, relatively few papers
were published to address the influences of the rotordy-
namic effects. Actually, bladed disks of engine rotors tend to
operate at rotating conditions with high speeds, which may
lead to significant rotordynamic effects, including Coriolis
force, spin softening, and stress stiffening effects. Among the
small number of investigations, only the Coriolis forces were
taken into consideration. Huang and Kuang [30] in-
vestigated the effects of Coriolis forces on the mode local-
ization of a weakly coupled mistuned shrouded bladed disk
and concluded that the Coriolis force may enhance the
localization phenomenon. Nikolic et al. [31] addressed the
mutual interaction of Coriolis forces and mistuning on the
vibration characteristics of bladed disks and found that the
Coriolis force may affect the vibrations of bladed disks at
some designs. Kan et al. [32] studied the effect of Coriolis
force on forced response of intentionally mistuned bladed
disk. Although the effects of Coriolis force have been dis-
cussed, the influences of the spin softening and stress
stiffening effects on the vibration of mistuned bladed disks
are not clear. How these effects affect the system’s forced
response and the statistical characteristics of response and to
what extent remain to be investigated.

In this paper, the vibration characteristics of rotating
mistuned bladed disks are addressed by taking a full con-
sideration of the Coriolis force, spin softening, and stress
stiffening effects. Although both the aerodynamic and
rotordynamic effects should be taken into account in order
to accurately reflect the vibrations of rotating bladed disks,
this paper concentrates particularly on the influences of the
rotordynamic effects. For the sake of quantitative modelling
and analysis, finite element models of bladed disks are
employed for obtaining the governing equations of motion.
In order to remarkably reduce the computational re-
quirement during analysis, the effective CMM method is
employed to create compact and accurate ROMs. On this
basis, the reduced-order models are validated and then used
to investigate the influences of the rotordynamic effects on
the vibration characteristics of bladed disks with frequency
mistuning factors.*is paper is organized as follows. Section
2 contains the mathematical formulations for dynamic
modelling and model order reduction. In Section 3, vali-
dation of the obtained reduced-order model is presented.

Section 4 contains the numerical results. Conclusions are
given in Section 5.

2. Mathematical Formulation

2.1. Governing Equations of Motion. According to the
rotordynamic analysis method [33], the governing equations
of motion of a mistuned bladed disk rotating at a constant
angular velocity Ω can be expressed as

M€u(t) + Cd +ΩCcor  _u(t) + Ke − Ω2Kp + Ks(Ω) + Kδ u(t) � f(t),

(1)

where M, Cd, and Ke denote the mass, damping, and elastic
stiffness matrices of the system; u(t) is the vector of re-
sponse; ΩCcor is a skew-symmetric speed-dependent matrix
due to Coriolis forces;Ω2Kp denotes a speed-dependent spin
softening matrix due to the rotation of structure; Ks(Ω) is a
speed-dependent stress stiffening matrix due to centrifugal
forces; Kδ represents the stiffness matrices due to mistuning;
and f(t) denotes the vector of applied external force.

For bladed disks, the external force derives from the
aerodynamic pressures acted on the blades, which is often
assumed to be a traveling wave excitation. *e excitations
can be classified as backward and forward ones according to
their traveling directions [16, 31]. Backward traveling wave
excitation travels opposite to the rotation direction and
commonly exists in practical applications. Forward traveling
wave excitation has identical traveling direction as the ro-
tation direction and may exist at some circumstances. In this
paper, the external force is assumed to be a traveling
wave excitation, where the force on the nth blade has the
form as

fn(t) � f0cos C Ωt ± φn(  , n � 1, 2, . . . , N, (2)

where f0 is the amplitude vector of external force; C denotes
the engine order (EO) of excitation; and φn denotes the
phase angle and is defined as φn � (n − 1)2π/N, where N is
the number of sectors. For a backward traveling wave ex-
citation, the sign before φn in equation (2) takes a minus
sign, and vice versa.

Compared with the Coriolis matrix ΩCcor and the spin
softening matrix Ω2Kp in equation (1), which are explicitly
dependent on the rotation speed, the stress stiffening matrix
Ks(Ω) is an implicitly dependent matrix regarding Ω.
Namely, the Ks(Ω) matrices at two different speeds are not
directly and explicitly related. It is difficult to deal with such
matrix during analysis, as a list of Ks(Ω) at different speeds
should be obtained beforehand when the forced response
within a certain range of speed is of interest. With respect to
this issue, the parametrization method developed by
Sternchüss [26] is employed herein. According to the
Sternchüss’s method, the overall stiffness matrix K(Ω) �

[Ke − Ω2Kp + Ks(Ω)] can be approximately parametrized
regarding rotating speed Ω as

K(Ω) � KΩ,0 +Ω2KΩ,1 +Ω4KΩ,2, (3)

where KΩ,0, KΩ,1, and KΩ,2 are the coefficient matrices
represented by the stiffness matrices at three different
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rotating speeds Ω0, Ω1, and Ω2. For a particular case with
Ω0 � 0, Ω1 � Ωmax/2, and Ω2 � Ωmax, where Ωmax denotes
the maximum speed of interest, the coefficient matrices in
equation (3) can be simplified as

KΩ,0 � K(0),

KΩ,1 �
1

3Ω2max
16K
Ωmax

2
  − K Ωmax(  − 15K(0) ,

KΩ,2 �
4

3Ω4max
K Ωmax(  − 4K

Ωmax

2
  + 3K(0) .

(4)

Such parametrization brings great convenience for
analysis, by which only three cases of stiffness matrices are
needed to explicitly obtain the stiffness matrix at any ro-
tating speed.

In order to illustrate the different influences of Coriolis
force, spin softening, and stress stiffening effects on the
vibration of mistuned bladed disks, these three effects are
considered in sequence in subsequent analysis. Actually,
these three effects exist simultaneously in rotating structures
and should all be taken into account to obtain accurate
vibration characteristics. Herein, these effects are considered
in turn to effectively reveal their diverse influences on the
vibration of mistuned bladed disks. As a consequence, there
are four different cases of analysis, which are cases without
any rotordynamic effects, considering the Coriolis force,
considering the Coriolis forces and spin softening effect, and
considering all rotordynamic effects, respectively. By
denoting the overall damping matrix as C(Ω), the overall
damping and stiffness matrices of the four cases can be
expressed as

C(Ω) � Cd,

K(Ω) � Ke + Kδ,
case : STA,

⎧⎨

⎩

C(Ω) � Cd +ΩCcor,

K(Ω) � Ke + Kδ,
case : COR,

⎧⎨

⎩

C(Ω) � Cd +ΩCcor,

K(Ω) � Ke − Ω2Kp + Kδ,
case : SOF,

⎧⎪⎨

⎪⎩

C(Ω) � Cd +ΩCcor,

K(Ω) � Ke − Ω2Kp + Ks(Ω) + Kδ,
case : STF.

⎧⎪⎨

⎪⎩

(5)

*e abbreviations “STA,” “COR,” “SOF,” and “STF” in
equation (5) are employed herein for simplifying the de-
scription in subsequent analysis. *e STA case is the most
common circumstances in available investigations. *e
COR, SOF, and STF cases denote those with successive
additions of Coriolis force, spin softening, and stress stiff-
ening effects. As the analyses in this paper are all conducted
in steady conditions without considering of acceleration, the
mass matrices of the four cases are all the same.

Generally, the sizes of the full-order matrices in equation
(1) are too large to deal with during analysis. Cyclic-symmetric

analysis is often applied by employing much smaller matrices
of a single sector model. *e matrices regarding mass,
damping, elastic stiffness, Coriolis force, and spin softening
effect can be easily obtained by the finite element model of a
single sector. Nevertheless, the stress stiffness matrix can
hardly be acquired by such approach, as it depends on the
stresses of the structures during statics analysis under the
action of centrifugal forces. During statics analysis, cyclic-
symmetric boundary conditions should be applied to accu-
rately reflect the realistic displacements of a bladed disk. Such
processing will result in the combination of the stiffness co-
efficients with respect to the nodes on the boundaries. Re-
garding this issue, an efficient method using a three-sector
model for computing the stress stiffening matrix is developed
in this paper and presented, for simplicity, in Appendix.

2.2. Reduced-Order Modelling. FE models of bladed disks
tend to possess huge sizes, which greatly affect the com-
putational efficiency, especially for statistical analysis. *us,
a number of model order reduction techniques have been
developed in recent years to deal with this issue. In this
paper, the effective CMM method proposed by Lim at al.
[25] is employed to create compact and accurate reduced-
order models for mistuned bladed disks. *e core idea of the
CMM method contains two aspects, which are representing
the mistuned normal modes by tuned normal modes and
projecting the stiffness mistuning matrices to the normal
modes of tuned blade cantilevered at its root. In [25], the real
form cyclic analysis is employed. Regarding the cases
considering the rotordynamic effects in this paper, which
contain complex damping matrices, the complex form cyclic
analysis is employed instead to simplify the deduction. *e
procedures of the CMM method are briefly reviewed in this
section.

First, the response u(t) of the mistuned system is rep-
resented by the superposition of the modes of the corre-
sponding tuned counterpart as

u(t) � Φη(t), (6)

where η(t) denotes themodal coordinates andΦ is themode
matrices of tuned bladed disk and

Φ � E⊗ Is(  Bdiag
n�1,2,···,N

Φs

n , (7)

where E is the complex Fourier matrix of dimension N with
the coefficient euv � ejα(u− 1)(v− 1)/

��
N

√
for u, v � 1, 2, . . . , N,

where j �
���
− 1

√
and α � 2π/N; ⊗ denotes the Kronecker

product; Is is an identity matrix of dimention Ns, where Ns

denotes the number of degrees of freedom of the sector
model; and Bdiag

n�1,2,···,N

( Φs

n) denotes a pseudo-block diagonal

matrix with Φs

n for n � 1, 2, . . . , N along its diagonal blocks,
where Φs

n is the mode matrix of tuned sector model obtained
by the following eigen equation:

Ks

e,n − λ2 Ms

n  Φs

n � 0, n � 1, 2, . . . , N, (8)

where λ denotes the eigenvalue and
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Ms

n � Ms
0 + Ms

1e
j(n− 1)θ

+ Ms
1( 

T
e

− j(n− 1)θ
,

Ks

e,n � Ks
e,0 + Ks

e,1e
j(n− 1)θ

+ Ks
e,1 

T
e

− j(n− 1)θ
,

(9)

where

Ms
0 �

Ms
aa + Ms

bb Ms
ai

Ms
ia Ms

ii

⎡⎢⎣ ⎤⎥⎦,

Ms
1 �

Ms
ab 0

Ms
ib 0

⎡⎢⎣ ⎤⎥⎦,

Ks
0 �

Ks
aa + Ks

bb Ks
ai

Ks
ia Ks

ii

⎡⎢⎣ ⎤⎥⎦,

Ks
1 �

Ks
ab 0

Ks
ib 0

⎡⎢⎣ ⎤⎥⎦,

(10)

where the subscript symbols “a,” “i,” and “b” represent the
upper boundary, interior part, and lower boundary of a
sector model, respectively.

*en, in order to include the mistuning factors, the
stiffness mistuning matrix Kδ is projected to the normal
modes of a tuned blade cantilevered at its root. It is realized
by projecting the blade parts of Φ to the normal modes and
constraint modes of cantilevered blade as

ΦB � IN ⊗UCB( qB, (11)

where ΦB denotes the blade parts of Φ; IN is an identity
matrix of dimension N; qB is the participation factor vector
of the normal modes and constraint modes; and UCB is the
transformation matrix of the well-known Craig–Bampton
fixed-interface component-mode synthesis method and

UCB �
ΦB

o ΨB
o

0 IB
b

⎡⎢⎢⎣ ⎤⎥⎥⎦, (12)

where ΦB
o and ΨB

o denote the normal mode and constraint
mode matrices of the cantilevered blade, respectively, and IB

b

is an identity matrix of dimension NB
b , where NB

b is
the number of degrees of freedom of the fixed-interface
nodes.

By substituting equation (6) into equation (1), the
governing equations of the reduced-order model can be
obtained as

M€η(t) + Cd +ΩCcor  _η(t) + Ke − Ω2 Kp + Ks(Ω) + Kδ η(t) � f(t),

(13)

where

M � ΦTMΦ � Bdiag
n�1,2,...,N

Φs

n 
T Ms

n
Φs

n ,

Cd � ΦTCdΦ � Bdiag
n�1,2,...,N

Φs

n 
T Cs

n
Φs

n ,

Ccor � ΦTCcorΦ � Bdiag
n�1,2,...,N

Φs

n 
T Cs

cor
Φs

n ,

Ke � ΦTKeΦ � Bdiag
n�1,2,...,N

Φs

n 
T Ks

e,n
Φs

n ,

Kp � ΦTKpΦ � Bdiag
n�1,2,...,N

Φs

n 
T Ks

p,n
Φs

n ,

Ks(Ω) � ΦTKs(Ω)Φ � Bdiag
n�1,2,...,N

Φs

n 
T Ks

s,n
Φs

n ,

f(t) � ΦTf(t) � Bdiag
n�1,2,...,N

Φs

n 
T

  E∗ ⊗ Is( f(t),

(14)

where Cs

n, Cs

cor, Ks

p,n, and Ks

s,n are the matrices obtained by
the cyclic sector model and have similar forms as Ms

n and
Ks

e,n in equation (9) and E∗ denotes the conjugate transpose
of E. If mistuning is assumed to exist only in the blade, Kδ �

ΦTKδΦ can be expressed as

Kδ � ΦB( 
TKB,δΦB � 

N

n�1
qB,n 

T
UCB( 

TKB,δ,nUCBqB,n ,

(15)

where qB,n and KB,δ,n denote the components of qB and KB,δ
corresponding to the nth blade.

Furthermore, if proportional mistuning is assumed,
namely, by introducing small random variation in the
Young’s modulus of each blade

En � 1 + δn( E0, (16)

where En is Young’s modulus of the nth mistuned blade; E0
is the nominal Young’s modulus; δn is a random variable;
and (UCB)TKB,δ,nUCB can be expressed as δn(UCB)TKB

oUCB,
where KB

o denotes the stiffness matrix of tuned cantilevered
blade. *en, Kδ can be simply expressed as

Kδ � δ qB( 
T IN ⊗ KB

o qB, (17)

where δ � δ1 δ2 · · · δN  and KB

o � (UCB)TKB
oUCB. As

(qB)T(IN ⊗ KB

o )qB is not dependent on the applied mis-
tuning patterns, the mistuning matrix Kδ can be efficiently
obtained, which can bring convenience for forced response
analysis, especially for statistical analysis.

Regarding the external force f(t) in equation (13), it can
also be expanded and simplified. By transferring the force
fn(t) in equation (2) into exponential form as
fn(t) � f0ejC(Ωt±φn), n � 1, 2, . . . , N, the overall external
force f(t) can be expressed as f(t) � ejCΩt fT0 e±jCφ1

fT0 e±jCφ2· · ·fT0 e±jCφN]T and
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f(t) �

��
N

√
ejCΩt eC+1 ⊗ f0( ,

��
N

√
ejCΩt eN− C+1 ⊗ f0( ,

⎧⎨

⎩

for forward travellingwave excitation,

for backward travellingwave excitation,
(18)

where eC+1 and eN− C+1 denote the (C + 1)th and (N − C +

1)th columns of matrix E. By substituting f(t) in equation
(18) into equation (14) and utilizing the orthogonality of
each column of E, f(t) can be further expressed as

f(t) �

��
N

√
ejCΩt 0 · · · 0 fT0 Φs

C+1 0 · · · 0 
T
,

��
N

√
ejCΩt 0 · · · 0 fT0 Φs

N− C+1 0 · · · 0 
T
,

⎧⎪⎨

⎪⎩

for forward travellingwave excitation,

for backward travellingwave excitation.
(19)

Finally, the modal coordinates η(t) can be obtained by
equation (13), and the forced response of the mistuned
system u(t) can be calculated via equation (6). Of course, the
retained terms in equation (13) are determined according to
the case of interest and should be consistent with those in
equation (5).

3. Model Validation

In this section, the developed method is validated by
comparing the results obtained by ROM with those by the
full-order FE model. Figure 1 shows the FE model of a
bladed disk, which consists of 17 blades. Quadratic tetra-
hedron elements are employed to discretize the structure
and the resulting total number of DOFs is 304,266, where its
sector model possesses 19,116 DOFs. *e ROM has 170
DOFs with 10 modes retained per ND. *e number of se-
lected modes of cantilevered blade in mistuning projection
equals 30. Such reduced-order model is employed in this and
following sections for numerical simulation. *e material of
the structure is an alloy steel with Young’s modulus
E � 214.6GPa, Poisson’s ratio ] � 0.3006, and density
ρ � 7850 kg/m3. *e Rayleigh damping model is used in this
paper and Cd � βKe, where β denotes the damping co-
efficient and β � 1 × 10− 6 s.

Figure 2 shows the evolutions of natural frequencies of
the tuned bladed disk versus the number of nodal di-
ameter at the rotating speeds of 1000 rad/s and 2000 rad/s,
where the STA, SOF, and STF cases are included. As the
Coriolis matrix lies in the damping term and is hardly
contained in cyclic-symmetric analysis, the COR case is
not considered. Although the last two cases are named as
SOF and STF, the Coriolis matrix is not included during
the analysis. *e eigenvalues of the STA case are in-
dependent on rotating speed and are commonly used in
the dynamic analysis of bladed disks to explore the sen-
sitive frequency ranges of excitations. In contrast, the
eigenvalues of the SOF and STF cases differ between
different rotating speeds, as the spin softening and stress
stiffening matrices are all speed-dependent. It can be seen
in the figures that the spin softening and stress stiffening
effects may lead to obvious influences in the eigenvalues,

especially for high rotating speed. *ese results could
reflect, in some extent, the influences of rotordynamic
effects on the vibration of bladed disks.

Figure 3 displays the comparison of the evolution of
natural frequencies versus rotating speed between the
full-order model and ROM of the tuned bladed disk,
where the Coriolis forces, spin softening, and stress
stiffening effects are all taken into account. *e stress
stiffening matrix of the full-order model is obtained via
statics analysis at different rotating speeds, and that of the
ROM is acquired by the developed method shown in
Appendix. It can be seen that the natural frequencies
predicted by the ROM agree well with those by the full-
order model with the maximum relative error being less
than 0.2%. As can be seen in the figure, the natural
frequencies at high rotating speed differ obviously from
those at static condition. Almost all of the natural fre-
quencies increase with the rotating speed, and some of the
natural frequencies tend to split under the influence of
the rotordynamic effects.

In order to validate the accuracy of the ROM in forced
response analysis, comparison on the response of mistuned
bladed disk is conducted. As the full-order model with
quadratic elements is too large to analyse, its counterpart
with linear tetrahedron elements, which has 49,266 DOFs,
is employed. Correspondingly, the ROM is obtained by the
sector model with linear elements of 3,273 DOFs. *e
variations in models exist only in the element type. *e
overall number of elements is not changed. Despite the
different models employed in analysis, the comparison of
the response can illustrate the effectiveness of the de-
veloped method. *e proportional mistuning pattern of
blade used during the analysis is listed in Table 1. *e
excitation is applied at the tip of each blade with the
amplitude of 1 N.

Figure 4 shows the comparison on the forced responses
between the full-order model and ROM excited by a 4EO
backward traveling wave excitation, where the four cases in
equation (5) are all included. *e speed ranges near the
resonant peaks are of interest and depicted in figures. As
the maximum response may exist in different blades for
different rotating speeds, the envelope curves of the
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responses of all blades are used in this and following figures
to more comprehensively present the vibration charac-
teristics of mistuned bladed disks. It can be seen that the
ROM gives very accurate responses in all four cases
compared with the full-order model, where the maximum
relative error in amplitudes is less than 0.5%. Besides, the
rotordynamic effects, especially the spin softening and
stress stiffening effects, affect the forced response obviously
in both the frequencies and the maximum amplitudes of
resonant peaks. *ese effects will be discussed and
explained detailedly in following sections. By the results
shown in this section, the effectiveness of the developed
method can be verified, which will be used to create ROM
for the vibration analysis in following sections.

4. Numerical Results

4.1. Influences of Coriolis Forces, Spin Softening, and Stress
StiffeningEffects on theVibrationofRotatingMistunedBladed
Disks. In this section, the individual influences of Coriolis
forces, spin softening, and stress stiffening effects on the
forced responses of tuned and mistuned bladed disk are
presented by considering these factors in sequence. First, the
forced response of tuned and mistuned bladed disk versus
rotating speed is depicted in Figures 5 and 6, where the STF
case is included and the excitations are backward types.

As can be seen in Figures 5 and 6, the resonant peaks
shift towards lower rotating speed as EO increases. *is is
easy to understand that the frequency of external force, as

(a) (b)

Figure 1: Finite element model of a bladed disk and its sector model.
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Figure 2: Natural frequencies versus the number of nodal diameters of the STA, SOF, and STF cases: (a)Ω � 1000 rad/s. (b)Ω � 2000 rad/s.
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shown in equation (2), depends on the EO of excitation, so
the excitation of higher EO has larger frequency. Besides, the
excited modes in these speed ranges are mainly those of the
first order of each ND, which have similar values of natural
frequencies. As the Coriolis force, spin softening, and stress
stiffening effects are all strongly dependent on the rotating
speed, their effects tend to be more significant in the range of
high speed, namely, for the cases with smaller EOs.*ese are
also of interest in this paper.

*en, the effects of Coriolis force on the forced response
of bladed disk are discussed. Figure 7 presents the forced

response of tuned bladed disk with and without considering
the Coriolis force, where both backward and forward ex-
citations, which are represented by abbreviations of “BW”
and “FW,” have also been taken into account. It can be seen
in Figure 7(a) that the response of STA cases with BW and
FW excitations is perfectly coincided. As shown in the other
three figures, Coriolis force leads to the shift of resonant
frequencies, although the extent is relatively weak and
different for different EOs of excitation. *e response curves
and the corresponding resonant frequencies of BW and FW
excitations are no longer identical. Such phenomenon has
also been found by Nikolic in [31].*is is easy to understand
by referring to the knowledge in the field of rotordynamics
that the Coriolis force tends to split the natural frequency
pairs of identical values into backward ones and forward
ones.

Figure 8 illustrates the comparison on the forced re-
sponse of mistuned bladed disk with and without consid-
ering the Coriolis force, where the mistuning parameter is
listed in Table 1. As can be seen in Figure 8, the consideration
of Coriolis force leads to slight variation in the forced re-
sponse. Figure 9 depicts the forced response of mistuned
bladed disk excited by backward and forward traveling wave
excitations. It can be seen that the direction of traveling wave
has also visible influences on the forced responses of mis-
tuned bladed disk, especially in the maximum amplitudes.

Regarding the influences of the spin softening and stress
stiffening effects, Figure 10 shows the forced responses of the
STA and SOF cases excited by backward traveling wave
excitation of 2EO, and Figure 11 depicts those of the STA,
SOF, and STF cases of 3EO excitation. Because the 2EO
resonant frequencies of STF case are much larger than the
STA and SOF cases, as is shown in Figures 5(a) and 6(a), its
response is not included in Figure 10 for the case of clarity. It
can be seen in the figures that the spin softening and stress
stiffening effects, compared with the Coriolis force, have
much more significant effects on the forced response of
tuned and mistuned bladed disk, where the most obvious
phenomenon is the shifts of the resonant peaks. *e spin
softening effect tends to decrease the resonant frequencies,
whereas the stress stiffening effect plays the role of increasing
the resonant frequencies. Besides, the degree of variation due
to the latter one is much larger than that due to the former
one. Moreover, the maximum response amplitude is also
affected by these two effects. Just as the appellations of these
two effects mean, the spin softening effect results in the
reduction in the overall stiffness and decreases the resonant
frequencies, whereas the stress stiffening effect contributes to
the increase of stiffness.

*e vibration localization phenomenon is another im-
portant issue in dynamic analysis of mistuned bladed disk.
Figures 12 and 13 show the response amplitudes of blade tips
of mistuned bladed disk excited by 3EO backward and
forward traveling wave excitations, where the four cases are
included. *e exciting frequencies of each case are selected
by picking the second resonant peak of the response curves
of mistuned case. As depicted in the figures, the rotordy-
namic effects could affect the amplitude distribution of
blades, where the effects of the stress stiffening effect are the
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Figure 3: Evolution of first eight natural frequencies versus ro-
tating speed of the full-order model and reduced-order model
considering the Coriolis forces, spin softening, and stress stiffening
effects.

Table 1: Mistuning parameters of bladed disk.

Blade δn (%)

1 0.00
2 3.33
3 0.47
4 − 0.48
5 1.90
6 0.95
7 − 2.86
8 − 1.43
9 3.33
10 2.85
11 1.42
12 − 0.96
13 − 3.80
14 3.81
15 − 3.34
16 − 1.91
17 2.38
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most significant. *e direction of traveling wave excitations
also affects the amplitude distribution between blades, as
well as the maximum amplitude. For this particular occa-
sion, the stress stiffening effect seems to obviously reduce the

maximum response amplitudes, which may be due to the
increase in overall stiffness.

Although a particular mistuning parameter is used in this
section, it can be concluded by the results that the Coriolis force,
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Figure 4: Comparison on the forced response versus rotating speed between the full-order model and ROM excited by a 4EO backward
traveling wave excitation: (a) case STA, (b) case COR, (c) case SOF, and (d) case STF.
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spin softening, and stress stiffening effects can significantly affect
the forced responses of mistuned bladed disks, especially in the
shifts of resonant peaks.*e response amplitudes also change to
some extent due to these rotordynamic effects.

4.2. Statistical Vibration Characteristics of RotatingMistuned
BladedDisks. In this section, the influences of Coriolis force,
spin softening, and stress stiffening effects on the statistical
characteristics of forced response of tuned and mistuned
bladed disk are discussed. For the study on mistuning issue,
employing only some particular mistuning cases is not
enough to comprehensively reflect the vibration charac-
teristics. Statistical analysis, by contrast, is a more suitable
way for illustrating such issue. In this section, Monte Carlo
simulation is employed to study the statistical characteristics
of vibration of mistuned bladed disk considering the
rotordynamic effects. Typically, amplitude magnification
factor (AMF), which denotes the ratio of the largest response
of blade in mistuned bladed disk to that in the tuned system,
is used to quantitatively represent the response level of blade.
Regarding the four cases discussed in this paper, eight
quantitative AMFs are defined as

AMFSTAABS �
uSTA
mist

uSTA
tune

,

AMFSTAREL � AMFSTAABS ,

AMFCORABS �
uCOR
mist

uCOR
tune

,

AMFCORREL �
uCOR
mist

uSTA
tune

,

AMFSOFABS �
uSOF
mist

uSOF
tune

,

AMFSOFREL �
uSOF
mist

uSTA
tune

,

AMFSTFABS �
uSTF
mist

uSTF
tune

,

AMFSTFREL �
uSTF
mist

uSTA
tune

,

(20)
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Figure 5: Forced response of STF case of tuned bladed disk versus rotating speed excited by backward traveling wave excitations of (a) 2EO,
(b) 3EO, and (c) 4EO.
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Figure 6: Forced response of case STF of mistuned bladed disk versus rotating speed excited by backward traveling wave excitations of (a)
2EO, (b) 3EO, and (c) 4EO.
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Figure 7: Continued.
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where the subscript “ABS” and “REL” denote the absolute
and relative AMFs, respectively. *e variables in the de-
nominators and numerators denote the maximum response
amplitudes in the rotating speed range of interest. AMFSTAREL is
included in equation (20) for ease of description in following
parts.

In this paper, the absolute and relative AMFs are defined
because there are two reference values of the tuned system
for the COR, SOF, and STF cases, such as uSTA

tune and uCOR
tune for

case COR. Generally, these two reference values are not
identical due to the influences of the rotordynamic effects, as
are shown in Section 4.1. According to the definitions of

these two kinds of factors, the relative ones could reflect the
influences of rotordynamic effects on the statistical char-
acteristics of forced response, by comparing with those of
STA case. *e absolute ones may give information about the
realistic amplitude magnification caused by mistuning in
operating conditions. *us, these two kinds of AMFs could
provide insights into mistuning via two different
perspectives.

As stated in several investigations [20, 22, 34], the
probability distributions of response amplitude of static
mistuned bladed disks, namely, the STA case, conform to
Weibull distribution. With such statistical model, the Monte
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Figure 7: Forced response of tuned bladed disk with and without considering the Coriolis forces excited by backward and forward traveling
wave excitations of (a) 2EO, (b) 2EO, (c) 3EO, and (d) 4EO.
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Figure 8: Forced response of mistuned bladed disk with and without considering the Coriolis forces excited by backward traveling wave
excitations of (a) 3EO and (b) 4EO.
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Carlo simulation can be greatly accelerated, as relatively few
mistuning patterns are needed to get the distribution pa-
rameters. Figure 14 shows the probability densities obtained
by Monte Carlo simulation of 10000 mistuning patterns and
by Weibull distribution via least square fitting. During the
analysis, the mistuning parameter is generated by uniform
distribution of mean zero and standard deviation 2.0%. It
can be seen in the figures that the probability densities versus
absolute AMFs of COR, SOF, and STF cases are also con-
forming to Weibull distribution. *en, it can also be con-
cluded that the probability densities of relative AMFs
conform to Weibull distribution either, as uSTA

tune, uCOR
tune , uSOF

tune,
and uSTF

tune are all scalar and independent on the mistuning
patterns. In following parts, the results of Weibull distri-
bution fitted by 2000 random mistuning patterns are
employed.

Figure 15 depicts the comparison on the probability
density curves versus relative AMF under the action of
backward traveling wave excitations of six different EOs. As
the 2EO resonant frequency of STF case is much larger than
those of the other three cases and is beyond the speed range
of interest, its probability density curve is not included in
Figure 15(a). According to definitions in equation (20), the
relative AMF could reflect the variation in forced response
of mistuned bladed disk with and without considering the
rotordynamic effects. It can be seen in Figure 15 that the
rotordynamic effects lead to obviously changes in the
probability distributions of AMF, especially the stress
stiffening effect. Moreover, their influences present dif-
ferent characteristics for different EOs. Detailedly, the
influences of Coriolis forces are relatively weak for most
cases except 3EO, and those of spin softening effect are
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Figure 9: Forced response of mistuned bladed disk excited by backward and forward traveling wave excitations of (a) 2EO and (b) 3EO.
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Figure 10: Forced response of tuned andmistuned bladed disk excited by backward traveling wave excitations of 2EO: (a) tuned case and (b)
mistuned case.
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Figure 12: Response amplitudes of blade tips of mistuned bladed disk excited by a 3EO backward traveling wave excitation: (a) case COR,
(b) case SOF, and (c) case STF.
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Figure 11: Forced response of tuned andmistuned bladed disk excited by backward traveling wave excitations of 3EO: (a) tuned case and (b)
mistuned case.
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Figure 13: Response amplitudes of blade tips of mistuned bladed disk excited by a 3EO forward traveling wave excitation: (a) case COR, (b)
case SOF, and (c) case STF.
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Figure 14: Continued.
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Figure 14: Probability densities versus absolute AMF obtained by Monte Carlo simulation of 10000 mistuning patterns generated by
uniform distribution of mean 0 and standard deviation 2.0%: (a) case STA, (b) case COR, (c) case SOF, and (d) case STF.
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Figure 15: Continued.
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quite significant for 2EO and 3EO. *e stress stiffening
effect plays an obvious role in all of the cases. Nevertheless,
the extent of variation in probability distribution gradually
decreases as EO increases.

Besides, compared with the probability density curves
of STA case, the spin softening effect tends to shift the
curves towards higher values of AMF, whereas the stress
stiffening effect makes the AMF distribute within the range
of smaller values. *is phenomenon is consistent with the
results shown in Section 4.1, which are all due to that the
spin softening effect decreases the overall stiffness and the
stress stiffening effect enhances the stiffness of the system.
By the results shown in Figure 15, a common phenomenon
can be seen that the influences of the rotordynamic effects
are much more remarkable for the cases with lower EO,
such as those shown in Figures 15(a) and 15(b). *is can be
interpreted by the fact that the resonant peaks of lower EO
cases tend to possess higher rotating speeds, and thus, the
rotordynamic effects are much more significant within
these speed ranges.

For comparison, Figure 16 depicts the probability
density curves versus absolute AMF. According to defi-
nitions in equation (20), the absolute AMF could reflect the
realistic amplitude magnification due to mistuning in ro-
tating conditions, as it is calculated by the ratio of maxi-
mum response amplitude of a certain mistuned case to that
of the corresponding tuned case, where both cases consider
the rotordynamic effects. As shown in Figure 16, the
rotordynamic effects cause obvious changes in the prob-
ability distribution of absolute AMF for the cases of 2EO
and 3EO, whereas their influences on the 4EO and 5EO
cases are negligible. Besides, Figures 16(a) and 16(b) also
illustrate that the rotordynamic effects make the probability
distribution shift towards higher values, where the stress
stiffening effect plays the most significant role. *is phe-
nomenon indicates that the largest AMF of mistuned

bladed disks that might encounter in rotating conditions
may be much larger than that predicted by the models in
static states.

Figures 15 and 16 depict only the results with respect to
a particular standard deviation 2% of mistuning. In order
to gain more comprehensive insights into the character-
istics of AMF at different mistuning levels, Figure 17
shows the variation of 95th percentile of relative AMF
versus standard deviation of mistuning parameter. As can
be seen in s, the variation curves all present the tendency of
increasing first and then decreasing, where the maximum
values exist at certain points with smaller standard de-
viation. *is phenomenon has been found in previous
investigations [18, 20, 22]. With respect to the specific
influences of rotordynamic effects, the influences of
rotordynamic effects on relative AMF are consistent with
those shown in Figure 15. *e Coriolis force and spin
softening effect lead to slight changes in the curves, and the
differences are negligible for small deviation cases. By
contrast, the stress stiffening effect results in remarkable
influences on the 95th percentile of relative AMF over the
entire range of standard deviation. With the conclusions
drawn by Figure 15, such phenomenon is easy to un-
derstand and can be accounted for by the explanations in
previous parts.

Figure 18 depicts the variation of 95th percentile of
absolute AMF versus standard deviation of mistuning pa-
rameter. It can be seen in Figure 18 that the influences of
Coriolis force and spin softening effect are still relative weak
and are negligible for some cases. *e stress stiffening effect
leads to obvious variation in the curves, especially for the
3EO case. *e most significant changes are the increase of
AMF in the range of (2%, 6%) and the shift of the point with
maximum value towards higher value. Nevertheless, for the
cases with relatively small mistuning, the absolute AMF
exists to be smaller than that at static state.
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Figure 15: Probability densities versus relative AMF obtained by Monte Carlo simulation of 2000 mistuning patterns generated by uniform
distribution of mean 0 and standard deviation 2.0% under the action of (a) 2EO, (b) 3EO, (c) 4EO, (d) 5EO, (e) 6EO, and (f) 7EO backward
traveling wave excitations.
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Figure 16: Probability densities versus absolute AMF obtained by Monte Carlo simulation of 2000 mistuning patterns generated by uniform
distribution ofmean 0 and standard deviation 2.0% under the action of (a) 2EO, (b) 3EO, (c) 4EO, and (d) 5EO backward traveling wave excitations.
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Figure 17: 95th percentile of relative AMF versus standard deviation of mistuning parameter under the action of (a) 3EO and (b) 4EO
backward traveling wave excitations. Monte Carlo simulation of 2000 mistuning patterns generated by uniform distribution of mean 0 is
conducted for each point.
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Figure 18: 95th percentile of absolute AMF versus standard deviation of mistuning parameter under the action of (a) 3EO and (b) 4EO
backward traveling wave excitations. Monte Carlo simulation of 2000 mistuning patterns generated by uniform distribution of mean 0 is
conducted for each point.
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Figure 19: Comparison on the probability densities versus absolute AMF under the action of backward and forward traveling wave
excitations of 3EO: (a) case STA, (b) case COR, (c) case SOF, and (d) case STF. 2000mistuning patterns generated by uniform distribution of
mean 0 and standard deviation 2.0% are used in Monte Carlo simulation.
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Finally, the effects of the direction of traveling wave
excitation on the probability distribution of mistuned
bladed disk are discussed. Figure 19 shows the com-
parison on the probability densities under the action of
backward and forward traveling wave excitations of 3EO,
where 2000 mistuning patterns generated by uniform
distribution of mean 0 and standard deviation 2.0% are
used. For the STA case, although the results in Figure 9(a)
illustrate that the direction of traveling wave excitation
may affect the forced response of mistuned bladed disk,
its effect on the probability distribution of the absolute
AMF is negligible, as shown in Figure 19(a). Nevertheless,
the differences between the forward and backward ones
are quite obvious for the COR, SOF and STF cases. It can
be seen in Figures 19(b)–19(d) that the AMFs of back-
ward ones tend to distribute over the ranges with larger
values. *us, for rotating bladed disk subjected to
backward traveling wave excitations, which are the
common cases in practical applications, the maximum
cyclic stress that might encounter would be larger than
subjecting to forward ones. *e results shown in this
section illustrate also, from a more comprehensive per-
spective, the remarkable influences of Coriolis forces,
spin softening, and stress stiffening effects on the vi-
bration of rotating bladed disks.

5. Conclusions

In this paper, the vibration characteristics of rotating
mistuned bladed disks considering Coriolis forces, spin
softening, and stress stiffening effects are addressed. Finite
element models of bladed disks, combined with the ef-
fective component-mode mistuning method, are employed
to generate compact and accurate reduced-order models.
An efficient method for obtaining the stress stiffening
matrix of the sector model is developed. On this basis, the
models are used to study the influences of rotordynamic
effects on the vibration of rotating bladed disk, with par-
ticular interest in their effects on the forced response and
the statistical characteristics of responses. According to the
results in this paper, some main conclusions are summa-
rized as follows:

(1) *e Coriolis force, spin softening, and stress
stiffening effects have nonnegligible influences on
the forced response of tuned and mistuned bladed
disks, and the influences tend to be much more
significant at the ranges of high rotating speed. All
these three factors could lead to the shift of res-
onant frequency, where the influences caused by
Coriolis force is relatively slight and those due to
the spin softening and stress stiffening effects are
more significant. *e amplitudes of forced re-
sponse, as well as the amplitude distributions
between blades, can also be affected by the
rotordynamic effects.

(2) *e Coriolis force, spin softening, and stress stiff-
ening effects have remarkable influences on the
statistical characteristics of forced response of ran-
domly mistuned bladed disk, where the probability
distributions of the maximum response amplitude
are obviously changed. Compared with the results of
the case without considering rotordynamic effects,
the spin softening effect tends to shift the probability
distribution of maximum response amplitude to-
wards higher values, whereas the stress stiffening
effect plays a different role and decreases the values
that the maximum amplitude distributes. Besides,
the largest AMF of mistuned bladed disks in rotating
conditions may be much larger than that predicted
by the models without considering rotordynamic
effects at some operating conditions.

(3) *e extent of influence due to rotordynamic effects
differs between different EOs of excitation due to
their distinctions in rotating speed and the system’s
sensitiveness to the excitations. *e direction of
traveling wave excitation has also obvious effects on
the forced response, the amplitude distribution be-
tween blades, and the statistical characteristics of
responses.

*e influences of Coriolis force, spin softening, and
stress stiffening effects on the vibration of rotor systems
have been widely appreciated in the field of rotordynamics.
Nevertheless, their influences on the vibration of bladed
disks are seldom reported in available investigations. In
available studies, the rotordynamic effects tend to be as-
sumed to be negligible during analysis. By the results
shown in this paper, however, it can be seen that the
rotordynamic effects could significantly affect the vibration
of mistuning bladed disks, especially when the disks
operate at high rotating speed. *us, these rotordynamic
effects should be well taken into account in the design of
bladed disks.

Appendix

Obtaining the Stress StiffeningMatrix Based on
the Three-Sector Model

In order to obtain the stress stiffening matrix of a cyclic
sector model, an efficient method is developed using a three-
sector model of the bladed disk. Herein, a model with sectors
s − 1, s, and s + 1 is employed for illustration. First, the
degrees of freedom of each sector are divided into three parts
regarding the upper boundary, interior part, and lower
boundary, which are represented by symbols “a,” “i,” and
“b”, respectively. As common boundaries exist in the three-
sector model, the vector of response and the corresponding
elastic stiffness matrix in the global Cartesian coordinate
system can be expressed as
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(A.1)

*e centrifugal forces acted on each sector are identical
in their local cylindrical coordinate systems, where only the
responses of 0EO types can be excited for a tuned bladed
disk. During the analysis on a single cyclic sector, the 0EO
type of cyclic-symmetric boundary conditions is applied by
setting the responses on the upper and lower boundaries to
be identical in cylindrical coordinate system. For the three-
sector model, the boundary conditions can be applied by
constraining the response of the upper boundary of sector
s − 1 and that of the lower boundary of sector s + 1 to be
identical in the global cylindrical coordinate system. Such
constraints are equivalent to the following coordinate
transformation in global Cartesian coordinate system:
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where Ia and Ii are the identity matrices and Rt is the ro-
tation transformation matrix between u(s+1)

b and u(s− 1)
a and

can be calculated by

Rt � It ⊗Re, (A.3)

where It is an identity matrix of dimension Nt, where Nt

denotes the number of degrees of nodes on the upper cyclic
boundary, and Re denotes an elementary rotation trans-
formation matrix and

Re �

cos θe sin θe 0

− sin θe cos θe 0

0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (A.4)

where θe denotes the relative angle between the upper
boundary of sector s − 1 and the lower boundary of sector
s + 1.

By applying the coordinate transformation in equation
(A.2) and conducting static analysis under the action of
centrifugal forces, the obtained stiffness matrix considering
the stress stiffening effect can be expressed as
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As can be seen in the matrix, the block matrices in the
third and fourth rows are not affected by the coordinate
transformation. As the above analysis is conducted in the
global Cartesian coordinate system, some further disposals
are needed to obtain the acquired matrices of a sector model
as shown in equation (10). Finally, the acquired stiffness
matrices considering the stress stiffening effects can be
obtained by the block matrices of KTS as

Ks
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K(s− 1)

bb + K(s)

aa
K(s)

ai

K(s)

ia
K(s)

ii

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦,
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ab Rs 0

K(s)

ib Rs 0
⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦,

(A.6)

where Rs denotes a rotation transformation matrix and
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Rs � It ⊗Rc,

Rc �

cos θc sin θc 0

− sin θc cos θc 0

0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,
(A.7)

where θc denotes the relative angle between the upper and
lower boundaries of sector s.

*e rotation transformation matrix Rs is included in
equation (A.6) because the cyclic boundary conditions are
defined with respect to the coordinates in the cylindrical
coordinate system, whereas the matrices are obtained in a
Cartesian one. *us, appropriate coordinate transformation
is needed. As statics analysis is conducted, the resulting
stiffness matrices contain simultaneously the contributions
of elastic stiffness and stress stiffening effects. *en, the spin
softening matrix, which can be directly obtained by the
sector model, should be added to acquire the overall stiffness
matrix of a rotating bladed disk.
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