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Fault diagnosis plays a very important role in ensuring the safe and reliable operations of machines. Currently, the deep learning-
based fault diagnosis is attracting increasing attention. However, fault diagnosis under variable working conditions has been a
significant challenge due to the domain discrepancy problem. *is problem is also unavoidable in deep learning-based fault
diagnosis methods.*is paper contributes to the ongoing investigation by proposing a new approach for the fault diagnosis under
variable working conditions based on STFT and transfer deep residual network (TDRN). *e STFT was employed to convert
vibration signal to time-frequency image as the input of the TDRN. To address the domain discrepancy problem, the TDRN was
developed in this paper. Unlike traditional deep convolutional neural network (DCNN) methods, by combining with transfer
learning, the TDRN can make a bridge between two different working conditions, thereby using the knowledge learned from a
working condition to achieve a high classification accuracy in another working condition. Moreover, since the residual learning is
introducing, the TDRN can overcome the problems of training difficulty and performance degradation existing in traditional
DCNN methods, thus further improving the classification accuracy. Experiments are conducted on the popular CWRU bearing
dataset to validate the effectiveness and superiority of the proposed approach. *e results show that the developed TDRN
outperforms those methods without transfer learning and/or residual learning in terms of the accuracy and feature learning ability
for the fault diagnosis under variable working conditions.

1. Introduction

Mechanical equipment is widely used in various industrial
fields, and their reliability is directly related to the economic
benefits of enterprises and even the safety of personnel [1, 2].
Since machine fault diagnosis methods can identify the
health condition of equipment and provide a basis for
equipment maintenance, it has important practical signifi-
cance [3, 4]. Along with the modern machines becoming
increasingly complex and sophisticated, fault diagnosis plays
a more and more important role in ensuring the safe and
reliable operations of machines. And many researchers have
done a lot in this field in the decades [5–7].

Traditionally, machine fault diagnosis includes three
main steps: signal acquisition, feature extraction, and fault

pattern recognition. In the signal acquisition step, vibra-
tional signals are commonly used because they carry tre-
mendous information and can be easily measured. In the
second step, many signal-processing methods, including
time domain, frequency domain, and time-frequency do-
main methods, are employed to analyze vibrational signals
and extract fault features. Finally, machine learning models
are trained using the extracted features to conduct fault
pattern recognition, such as random forest (RF) [8], support
vector machines (SVMs) [9], artificial neural networks
(ANNs) [10, 11], fuzzy inference, and other improved
models [12, 13].

Although these traditional fault diagnosis methods have
made many achievements, some drawbacks still exist
[14–16]. First, in the feature extraction step, features are
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manually selected, which require a lot of specialist knowl-
edge and experience. Furthermore, handcrafted features are
often task-specific and may only apply to accurately make
predictions under certain circumstances. It is difficult to
design a set of features that are effective among all condi-
tions. Second, in the pattern recognition step, machine
learning models are often used as classifiers and cannot dig
out more useful information. As a result, their performances
are affected by the handcrafted features to a large extent.

Deep learning, as a relatively new and rapidly developing
machine learning methods, has the ability to overcome the
above drawback [17]. It has a powerful feature learning
ability and can automatically learn the representation fea-
tures of raw data. Since deep architectures consist of multiple
hidden layers, deep learning can learn multiscale/multilevel/
hierarchical representation directly from the input data. As a
result, more useful information can be extracted. By auto-
matically learning features from the input data, deep
learning can reduce the effects of the handcrafted features
used in traditional methods. *rough model training, deep
learning can automatically pick out more discriminative
representation features according to the training data, which
are helpful to make accurate predictions in the subsequent
pattern recognition steps. Deep learning has been paid more
attentions and been successfully applied in various areas
including natural language processing (NLP), speech rec-
ognition, computer vision, and bioinformatics [6]. Unsur-
prisingly, deep learning also has been used in the machine
fault diagnosis field widely. Various deep learning models
have been attempted by many researchers [6, 12, 18], such as
sparse autoencoder (SAE), deep belief network (DBN), deep
Boltzmann machine (DBM), and convolutional neural
network (CNN).

As one of the most popular models, CNN has been paid
more attentions, since it has some unique structures such as
local receptive field, shared weight filter, and pooled sub-
sampling. Recently, many CNN-based methods have shown
their effectiveness in machine fault diagnosis applications
[19, 20]. Sun et al. [21] proposed a convolutional discrim-
inative feature learning method, which uses convolutional
pooling architecture to extract the discriminative and in-
variant features. Experiments indicate that it is effective and
efficient for induction motor fault diagnosis. Jing et al. [22]
developed a CNN-based feature learning and fault diagnosis
method for gearboxes using frequency data of vibration
signals as the input. Experiments on two gearbox datasets
validated its effectiveness and demonstrated that feature
learning with CNN provides better results than manual
feature extraction. Min et al. [23] investigated the CNN with
multiple sensors for fault diagnosis. *e results showed the
proposed CNN-based method was more accurate and re-
liable than traditional approaches using manual feature
extraction. *ese CNN-based methods are superior to the
traditional fault diagnosis methods based on shallow ma-
chine learning.

Although CNN has achieved its great success in many
machine fault diagnosis tasks, there still exist two problems
associated with CNN, which may also exist in other deep
learning models [24]. First, it is difficult to train a deeper

CNN. *e problem of vanishing/exploding gradients may
often occur in the process of training deeper CNNs as the
layer went deeper, for the gradient is calculated by back-
propagation according to the chain rule. Second, a degra-
dation problem has been exposed when deeper CNNs are
able to start converging, which leads to a higher training
error. Both of the problems limit the further development of
CNN in the field of fault diagnosis to a large extent.

Recently, deep residual CNNs (DRNs) have emerged as a
state-of-the-art deep learning method [25]. By introducing a
residual learning structure with identity shortcuts, data
information can be allowed to propagate directly in the
whole network, and thus training parameters can be opti-
mized more easily. *erefore, it is easier to train a DRN than
a classical CNN constructed by simply stacking more layers.
Usually, the deeper the network, the better the features can
be learned. Moreover, the identity shortcut realizes identity
mapping between the input and output, which can address
the degradation problem. *erefore, DRN may have more
potential than classical CNNs for machine fault diagnosis.
Zhang et al. [26] constructed a 1D DRN for rotating ma-
chinery fault diagnosis. Zhao et al. [27] proposed a DRN
with dynamically weighted wavelet coefficients for planetary
gearbox fault diagnosis. Peng et al. [28] developed a novel
deeper 1D CNN with residual learning and used it for fault
diagnosis of wheelset bearings in high-speed trains. Ex-
periments showed that all the residual learning-based
methods mentioned above obtained better performance
than those based on classical CNNs. In this study, a DRNwas
also constructed for machine fault diagnosis.

However, there still exist several problems associated
with deep learning-based fault diagnosis methods [29–31],
which also exist in fault diagnosis methods based on the
DRN. First, these works are mainly carried out under the
assumption that training data and test data share the same
distribution. However, in the real world, the working
conditions of machines, especially bearings, are not fixed.
When the training and test data are collected from different
working conditions, their feature distributions could also be
different, which would lead to a significant decrease in the
diagnosis ability. *is is the domain discrepancy problem.
Moreover, training deep learning models usually requires a
lot of data, while the labeled fault samples are usually scarce
in actual fault diagnosis tasks. We cannot get enough
samples from each working condition for the training of
deeper models under all working conditions. And in many
working conditions, only a few samples can be collected.

Recently, aiming at solving the problem of transferring
the generalization knowledge from the related tasks to the
target tasks, transfer learning is developed [32, 33]. And
many transfer learning methods have been widely studied in
many areas, such as NLP, text classification, image classi-
fication, and biometrics [31, 34, 35]. In order to address the
problems mentioned above, transfer learning is introduced
into deep learning methods.

In this paper, by combining the DRN with transfer
learning, a novel CNN model, named as transfer DRN
(TDRN), is proposed to make full use of the knowledge in
different working conditions. First, a DRN model is trained
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from scratch by using massive data collected from a certain
working condition (source domain). *en, the structure and
the parameters are transferred to construct a TDRN model
in which the structure is altered according to a few labeled
data collected from another working condition (target do-
main). Finally, the TDRNmodel can be used to conduct fault
diagnosis in the target domain.

In addition, it should be noted that the structure of input
data also affects the final performance. In essence, TDRN is a
kind of CNNmodel, which ismore suitable for processing two-
dimensional (2D) data [36].*erefore, in this study, we convert
the one-dimensional (1D) vibration signals into 2D images,
which we call vibration images. *ere are four types of
commonly used vibration images, including 2D rearrangement
image of 1D signal [16], time-domain waveform image [37],
spectrum image [38, 39], and time-frequency image (TFI)
[14, 15, 40]. Since TFI can better uncover the dynamic
properties of nonstationary vibration signals, it is used as the
input data of the deep network models in this paper. Time-
frequency images (TFIs) can be obtained by conducting a time-
frequency analysis of vibration signals. At present, there are
many kinds of time-frequency (TFA)methods [41, 42], such as
short-time Fourier transform (STFT) [43], wavelet transform
(WT) [44], bilinear/quadratic TFA, and sparse time-frequency
analysis (STFA) [45]. To be specific, in this paper, STFT is
adopted to convert vibration signals into TFIs since STFT is a
simple and easy-to-apply TFA method.

To sum up, a new machine fault diagnosis approach
under variable working conditions is proposed based on
STFT and TDRN. *e novelty is that TDRN, which is a new
CNN model based on residual learning and transfer
learning, is developed to make full use of the knowledge of
different working conditions. By introducing the TDRN, the
proposed fault diagnosis approach can utilize data in a
working condition (source domain) to obtain better feature
learning ability and higher classification accuracy with a
small amount of labeled data in another working condition
(target domain).

*e rest of this paper is organized as follows: Section 2
presents the proposed approach, including a brief intro-
duction of the STFT and the developed TDRN. In Section 3,
data description and parameter setup are briefly introduced.
In Section 4, experiments on a bearing dataset are conducted
to validate the effectiveness and superiority of the proposed
approach. Finally, the conclusions of this investigation and
future works are presented in Section 5.

2. Proposed Approach

A new approach for machine fault diagnosis under variable
working conditions was proposed based on STFT and
TDRN. STFT was adopted to convert vibration signals into
2D TFIs. TDRN, which is a new CNN model based on
residual learning and transfer learning, was developed to
make a bridge between the source domain and target do-
main. *e framework of the proposed approach is shown in
Figure 1. It mainly comprises four major stages.*e first one
is the pretraining stage, in which a DRN model is pretrained
with a large number of source domain data from working

condition 1. *e second stage is the model transfer. In this
stage, the structure and parameters of the pretrained DRN
are transferred to construct a TDRN model. After that, the
TDRN is fine-tuned by a few target domain data from
working condition 2, which is the third stage.*e fourth and
last stage is the fault diagnosis stage. In this stage, the
classification for the test samples from working condition 2
can be achieved by the well-trained TDRN. In short, the
proposed approach can use data in a working condition
(source domain) to obtain better learning ability and higher
classification accuracy with a small amount of labeled data in
another working condition (target domain).

2.1. Short-Time Fourier Transform. *e short-time Fourier
transform is one of the most mature and widely used time-
frequency analysis methods. *e main idea of the STFT is
summarized as described below. A windowed signal can be
extracted from the desired signal by adding a short-time
window, and then the Fourier spectrum of the windowed
signal is calculated. By sliding the window along with the time
axis, the time-frequency representation of the signal can be
obtained [41, 46]. *e STFT of the continuous-time signal
x(t) can be expressed as follows:

X(t,ω) � 􏽚
+∞

−∞
x(τ)w(τ − t)exp(−jωτ)dτ, (1)

where w(t) is the sliding window function.
Correspondingly, the discrete STFT of a discrete signal

x(n) of period N, where n � 0, 1, ..., N − 1, can be defined as
follows:

X(m, l) � 􏽘
N−1

n�0
x(n)w(n − m)W

nl
N, (2)

where l � 0, 1, ..., N − 1 and WN � exp(−j2π/N).
*rough the STFT, the vibration signal can be trans-

formed from the time domain to the time-frequency do-
main, and the corresponding time-frequency representation
matrix is obtained. In order to train and test the deep
networks, the time-frequency representation matrix is
needed to be converted into an RGB image, which is a 2D
image with 3 channels.

In this paper, imagesec, getframe, and imwrite functions
inMATLAB were used to conduct this conversion. Imagesec
function was used to display a time-frequency representa-
tion matrix as an RGB image. After that, the getframe
function captured the axes or figure as a movie frame. Fi-
nally, the movie frame was saved as an RGB image by the
imwrite function.

2.2. Transfer Deep Residual Network

2.2.1. Deep Residual Network (DRN). A DRN is a type of
CNN. Different from the traditional CNN model, the DRN
has residual block structures. For deeper CNN architectures,
the parameters such as weights and biases are usually not
easy to optimize. *e residual block structure is helpful for
backpropagation of gradients, so as to update the weights
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and biases efficiently. *erefore, a DRN was constructed in
this study. Figure 2 shows the architecture of the DRN,
which uses the TFI of vibration signal as input and consists
of convolutional layers, ReLU activation functions, batch
normalizations (BNs), residual blocks, a global average
pooling layer, a fully connected output layer, and so forth. In
Figure 2, we use ‘SRB-128’ to denote a subsampling residual
block with 128 convolution kernels in each convolution layer
and ‘IRB-128’ to denote an identity residual block with 128
convolution kernels in each convolution layer. *e others
are represented in the same way. More details about the
components of the DRN are given as follows.

(1) Convolutional layer

In a convolutional layer, one or more convolution
kernels with a scale significantly smaller than the input
feature map are used to extract local features, so as to es-
tablish the sparse connectivity between two adjacent con-
volutional layers. Moreover, the weights of the convolution
kernels are shared since each kernel slides on the input
feature map. *erefore, by means of a convolution opera-
tion, the standard convolutional layer introduces the
strategies of sparse connectivity and weights sharing, which
can reduce the number of parameters and computational
complexity compared with the traditional fully connected
layer. *e convolution layer can be expressed as follows:

xl
j � 􏽘

i∈Mj

xl−1
i ∗ k

l
ij + b

l
j, (3)

where xl−1
i is the ith channel of the feature map at the l − 1 th

layer, xl
j is the j th channel of the feature map at the lth layer,

Mj is the selection of channels used for calculating the lth
output channel, kl

ij is the convolution kernel at the lth layer,
and bl

j is the bias corresponding to the jth channel of the
feature map at the lth convolution layer. At a convolution
layer, each channel of the output feature map corresponds to
a convolution kernel, and the convolution kernels corre-
sponding to different channels are different.

In this paper, convolution kernels of size 3× 3 were used,
as they have high computational efficiency, and are large
enough to detect basic local features, including local max-
ima. As shown in Figure 2, the input image is fed into a
convolution layer, which includes 64 convolution kernels of
size 3× 3 with a stride of 2.

(2) ReLU activation function

After the convolution layer, an activation function is
essential.*e rectified linear unit (ReLU) activation function
[47] is employed in this paper. It can be expressed as follows:

f(x) � max(0, x). (4)

By forcing the negative feature values to be zero, the
ReLU activation function can achieve nonlinear transfor-
mations. Compared with the classical sigmoid and tanh
activation functions, the ReLU activation function is more
effective for avoiding the problem of vanishing/exploding
gradients, which can make convergence faster, greatly
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Figure 1: Framework of the proposed approach.
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accelerate training processing, and then further improve the
performance of the network.

(3) Batch normalization

In this paper, batch normalization (BN) is used to ad-
dress the internal covariance shift problem [48]. In each
training iteration, the distribution of features learned by the
DRN from a randomly selected small batch of training
samples often continuously changes. In this case, to adapt to
the changed distributions, the weights and biases must be
continuously updated, which causes more training difficulty
of deep networks. *e BN technology forces the inputs to
have a similar distribution, which is similar to a standardized
operation. *erefore, the BN can address the internal co-
variance shift problem, so as to improve the training effi-
ciency and enhance the generalization ability of the
networks. In this study, BN is deployed before ReLU acti-
vation and after each convolutional layer.

(4) Residual blocks

Residual block is based on the idea of skipping one or
more convolutional layers by using shortcut connections,
which can make the gradients easily backpropagate through a
deep network. *erefore, by introducing residual blocks, the
weights and biases in a DRN can be updated more effectively
than those in a traditional CNN without shortcut connec-
tions, and thus, higher accuracies can be yielded by the DRN.

In this paper, two kinds of residual blocks are employed,
as shown in Figure 3. Figure 3(a) shows the architecture of
identity residual block-m (IRB-m), where m refers to the
number of convolution kernels. *e IRB-m consists of two
branches, where one branch includes two convolution
layers, two ReLU functions, and two BNs, and the other is an
identity shortcut connection. In each convolution layer, m
convolution kernels of size 3× 3 with a stride of 1 are
employed. It should be noted that the input and output
feature maps of the IRB-m must have the same dimensions;
otherwise, the addition operation of the two feature maps
cannot be implemented. As shown in Figure 3(b), the
subsampling residual block-m (SRB-m) consists of three

convolution layers, one of which is located on the shortcut
connection branch and has the convolution kernels of size
1× 1. Unlike the IRB-m, the first convolutional layer of the
SRB-m adopts the convolution kernel of size 3× 3 with a
stride of 2, which can reduce the size of the feature map,
thereby reducing the amount of calculation during the
model training. Consequently, to match the dimensions, a
stride of 2 is employed in the kernels of the convolutional
layer located on the shortcut connection branch.

*e main difference between the residual blocks at
different depths of the network is the number of convolution
kernels. As shown in Figure 2, with the increase in depth, the
number of convolution kernels of residual blocks increases
gradually, from the initial 64 to 128 and then to 256.

(5) Global average pooling (GAP)

In the DRN model, rather than the fully connected layer
commonly used in a traditional CNN, a GAP layer is used
before the last fully connected output layer.*eGAP can greatly
reduce the number of parameters, so as to effectively avoid the
overfitting problem occurred in the full connection layer and
improve the generalization ability of the whole network. In the
GAP, the average value of each channel of the input featuremap
is calculated out, which can be expressed as follows:

OG(c) � average
i,j

IG(i, j, c), (5)

where IG and OG are the input and output feature maps of
the GAP, respectively. *en, the output feature map OG is
sent to the fully connected output layer to obtain the
classification results. Compared with the fully connected
layer, the GAP is more suitable for the convolution structure
by enhancing the correspondence between feature maps and
classes. In addition, there are no parameters that need to be
optimized in the GAP, so the overfitting problem can be
avoided in this layer.

(6) Fully connected output layer

Obviously, the machine fault diagnosis is a multi-
classification task. So a SoftMax function is used as the
activation function of the fully connected output layer [49].
*e SoftMax function is generally used as a classifier to
estimate the probability distribution of a sample belonging
to different classes, since it can map the output of multiple
neurons to the range of (0, 1) and sum up to 1. Assuming
that K is the total number of classes, the SoftMax function
can be expressed as follows:

qj(x) �
exi

􏽐
K
i�1 exi

, (6)

where xi is the output feature of the ith neuron in the output
layer and qj(x) is the predicted probability of the input
sample x belonging to the jth class.

Correspondingly, the cross-entropy loss function is used
to measure the error between the true values and the outputs
of the SoftMax function, which is defined as follows:

L � E(p(x), q(x)) � − 􏽘
K

j�1
pj(x)log qj(x)􏼐 􏼑, (7)
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Figure 2: Architecture of the deep residual network.
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where p(x) and q(x) are the real and predicted probability
distribution of the input sample (x), respectively, and pj(x)

is the predicted probability of the input sample (x) be-
longing to the jth class.

Finally, an optimization algorithm is used to reduce the
cross-entropy value during training so that the predicted
distribution gets closer to the true distribution. *ereby, the
prediction accuracy of the model can be gradually improved.

2.2.2. TDRN Based on Transfer Learning. *e fault diagnosis
methods based on DRN have achieved great success in
various machine fault diagnosis tasks. However, when the
training and testing data are collected from different
working conditions, respectively, their feature distributions
become different, which leads to a decrease in classification
accuracy. Moreover, training deep learning models usually
requires a lot of labeled data, but we cannot get enough
samples from all working conditions in reality. *e two
problems lead to a significant decrease in the ability of fault
diagnosis. *e two problems limit the application of the
DRN-based fault diagnosis methods.

Transfer learning can make a bridge between the source
domain and the target domain by transferring knowledge,
which is very suitable for situations when the source data
and the target data are in different feature spaces or dis-
tributions.*erefore, transfer learning is introduced into the
area of deep learning. Various transfer learning-based
methods have been developed and widely studied in NLP,
text classification, image classification, and biometrics.

In this study, transfer learning technology is employed to
address the two problems mentioned above. By combining
DRN with transfer learning, a novel network model, named
as transfer DRN (TDRN), is proposed to make full use of the

knowledge in different working conditions and thus im-
prove the performance of fault diagnosis. Figure 4 shows the
transfer learning strategy of building the TDRN.*e detailed
steps are as follows:

(1) A DRN model is pretrained from scratch by using
massive source domain data collecting from a certain
working condition.

(2) *e structure and the parameters of the pretrained
DRN model are transferred to construct a TDRN
model. In terms of transfer learning method, the
structure should be altered according to the target
domain data collecting from another working con-
dition. In this study, the target domain and the
source domain have the same feature space, so there
is no need to modify the structure.

(3) All the layers are set to be trainable by setting their
trainable attribute to truth for fine-tuning the
network.

In short, the TDRN has the same structure as the DRN,
while the parameters are not initialized randomly, but
pretrained by the source domain data. It should be noted
that an optimizer with a very low learning rate should be
used when the TDRN is fine-tuned with target domain data.
*e reason is that too large weight updates can result in the
unrestricted magnitude of the modifications for the repre-
sentations which may harm these representations.

3. Data Description and Parameter Setup

*e experimental data used in this paper were obtained from
the Bearing Data Center of the Electrical Engineering
Laboratory at the CaseWestern Reserve University (CWRU)
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Figure 3: Architectures of two kinds of residual blocks: (a) identity residual block-m (IRB-m) and (b) subsampling residual block-m (SRB-
m), where m refers to the number of the convolution kernel.
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[50–52]. Figure 5 shows the bearing test stand and its
structural diagram. *e test stand contained a 2 horsepower
(HP) motor, a torque transducer/encoder, a dynamometer,
and control electronics. Single-point faults with different
severity degrees ranging from 0.007 to 0.040 inches in di-
ameter were seeded separately at the inner race, outer race,
and ball of motor bearings using electrodischarge machining
(EDM). Two accelerometers were used to collect vibration
signals. *ey were installed on the housing using magnetic
bases and placed at a 12 o’clock position on the drive end and
fan end of the motor housing, respectively. *e sampling
frequency was set to 12 kHz.

*e 6205-2RS JEM SKF deep groove ball bearings lo-
cated in the drive end were chosen as study objects. *e
vibration signals used in this paper were collected under four
working conditions of load motor loads of 0 to 3 horsepower
(motor speeds of 1797 to 1720 RPM). Table 1 lists the de-
scription of the four working conditions, denoted A, B, C,
and D. *ere are four classes of health type in each working
condition, including normal, inner race fault, outer race
fault, and ball fault, which are labeled 1, 2, 3, and 4,
respectively.

In the following section, some experiments are con-
ducted to evaluate the performance of the proposed ap-
proach. For comparison, through the same transfer strategy,
we constructed a TDCNN which is based on a traditional
DCNN. *is traditional DCNN did not have shortcut
connections, while it was the same as the DRN for other

architecture and parameters. In addition to the above two
models, the DRN and DCNN were also tested. It should be
noted that the parameters of DRN and DCNN were ran-
domly initialized.

For the proposed approach, we adopted the Adam op-
timization algorithm with a learning rate of 0.0001 in the
pretraining stage and 0.00001 in the finetuning stage. In each
of these two stages, the mini-batch size was set to 32 and 50
epochs were conducted for training. For the comparative
method based on TDCNN, we used the same parameters.
For the comparative methods without transfer, which are
based on DRN and DCNN, respectively, we adopted the
Adam optimization algorithm with a learning rate of 0.0001,
and the mini-batch size and epoch number for training were
same as those for the proposed approach.

Ten trials in each experiment were conducted. All the
experiments were carried out on a *inkPad T470p laptop
with Windows 10 operation system, Intel Core i5-7300HQ
CPU, 16GB RAM, and NVIDIA GeForce 940MX GPU.*e
time-frequency images were constructed using Matlab
2017a.*e networkmodels were implemented by Python 3.6
in the popular Keras framework using TensorFlow as a
backend.

We adopt classification accuracy for performance
evaluation and comparison.*e classification accuracy is the
ratio of the number of correctly classified testing samples to
the total number of testing samples. It can be expressed as
follows:
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Figure 4: *e transfer learning strategy of building the TDRN.
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accuracy �
NCT

NAT

× 100%, (8)

where NCT and NAT are the number of correctly classified
testing samples and the total number of testing samples,
respectively.

4. Results and Discussion

4.1. Diagnosis Results on a Transfer Task. To validate the
effectiveness and superiority of the proposed approach, a
transfer task was employed in this section. Table 2 lists the
setting details of the transfer task A⟶C.*e data of source
domain and target domain were randomly selected from
working condition A and working condition C, respectively.
*ere were sufficient training samples (120 per class) in the
source domain, while only a few training samples (12 per
class) in the target domain. Another 120 samples of each
class in the target domain were selected for testing. Each
sample contained 1024 data points. It should be noted that
samples of each fault type consisted of the same number of
samples with different fault severity degrees (0.007, 0.014,
and 0.021 inches).

Experiments were conducted on the transfer task
A⟶C. Besides the developed TDRN, other methods based
on TDCNN, DRN, and DCNN were also used to conduct
comparative experiments. It is worth noting that, for
comparison, the DRN was trained, respectively, using
samples from the source domain (working condition A) and
the target domain (working condition C), denoted by DRN-
S and DRN-T, and so was the DCNN. *e testing results of
different models are shown in Table 3.

Obviously, we can see that the TDRN obtained the best
performance in terms of the average accuracy since it in-
tegrates transfer learning and residual learning. And the

second-best performance was obtained by the TDCNN
method; that is, the methods with transfer learning obtained
higher accuracy than those without transfer learning. *e
results indicated that the transfer learning method can
significantly improve the diagnosis performance under
variable working conditions. *e results were reasonable
because the prior knowledge learned from sufficient source
domain data was transferred to the target domain, and the
domain discrepancy problem was addressed by fine-tuning
the TDRN or TDCNN using a few target domain data.
Moreover, the fact that the performance of TDRNwas better
than that of TDCNNdemonstrated that the residual learning
structure was benefit for fault classification.

On the contrary, the classification accuracies obtained by
them decreased the DRN-S and DCNN-S obviously. *e
reason is that when the training and test data were collected
from different working conditions, respectively, their feature
distributions became different, which led to a decrease in
classification accuracy. Likewise, the classification accuracies
obtained by DRN-TandDCNN-Tshowed varying degrees of
decline, indicating that a few training data were not enough
to efficiently train a deep network with a large number of
parameters because the overfitting problemmay easily occur
in such a case. *ese results showed the urgency and im-
portance to adopt transfer learning in these situations.

In addition, it is worth mentioning that the residual
structure can more effectively learn the feature represen-
tation related to fault diagnosis in the case of small samples.
As we can see in Table 3, the average accuracy of DRN-T
was 95.67% substantially higher than 69.54% average ac-
curacy of DCNN-T.

To further present the effectiveness and superiority of the
TDRN on diagnosis performance, we used the t-SNE
technology to visualize the high-dimensional feature dis-
tribution of the test samples extracted from the GAPs of

(a)

Fan end
bearing

Drive end
bearing

Torque transducer/
encoderAccelerometers

Electric motor Dynamometer

(b)

Figure 5: (a) Bearing test stand; (b) its structural diagram.

Table 1: Description of the four working conditions.

Working condition Load (hp) Speed (r/min) Class no. Health type (no. of labels)
A 0 1797 4

Normal (1), inner race fault (2), outer race fault (3), ball fault (4)B 1 1772 4
C 2 1750 4
D 3 1730 4
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these models in a low-dimensional space. *e 2D repre-
sentations are shown in Figure 6, where the different health
types of rolling bearings are denoted by different colors. *e
corresponding confusion matrixes are shown in Figure 7.

It can be seen that the feature distributions obtained by
different methods were different from each other in terms of
intraclass compactness and interclass separability [53].

As displayed in Figure 6(a), the feature distribution
obtained by the TDRN had the best intraclass compactness
and interclass separability; that is, the features in the same
health type were clustered together well and the features of
different health types were completely separable. *e result
indicated that the TDRN can learn more distinguishable
fault features from complex TFIs. As we can see from the
corresponding confusion matrix of the TDRN shown in
Figure 7(a), there were only two samples being misclassified.
From Figure 6(b), it can be found that, although the in-
terclass separability slightly decreased, the distributions
obtained by the TDCNN had better intraclass compactness.
Correspondingly, only a small number of samples were
misclassified, as shown in Figure 7(b).

However, as displayed in Figures 6(c) and 6(d), the
distributions obtained by DRN-S and DCNN-S suffered
from different degrees of decline in intraclass compactness
and interclass separability. *is indicated that the fault
features learned from sufficient data in a working condition
cannot be directly used to classify the samples in another
working condition. Likewise, we can see from Figures 6(e)
and 6(f) that the distributions obtained by DRN-T and
DCNN-T had worse intraclass compactness and interclass
separability, which meant that a deep network with a large
number of parameters cannot be trained efficiently by a few
target domain data. *e corresponding confusion matrixes
shown in Figures 7(c)–7(f) quantitatively confirmed the
results mentioned above.

All these results clearly demonstrated that, by combining
transfer learning and residual learning together, the TDRN
can obtain the best ability of feature learning and
classification.

In addition, the t-SNE was employed to visualize the
high-dimensional feature distribution of the test samples

extracted from different layers of TDRN. Figure 8 shows the
2D visualization results corresponding to 6 layers.

First, it is obvious from Figure 8(a) that the features of
different health types in the input layer are very chaotic.
Although the features of health type 1 (normal) can be well
separable, which showed that STFT had a strong ability to
distinguish normal signals and fault signals, the features of
the other three health types (fault types) were seriously
overlapped. Second, as the layers went deeper, the features of
different health types became more and more separable;
meanwhile, the features of the same health type were
gradually clustered together. For instance, it can be observed
that many features of type 2 and type 3 were inseparable in
Figure 8(a), most features of type 2 and type 3 were easy to be
separable in Figure 8(d), whereas the features were com-
pletely separated in Figure 8(e). *ese phenomena suggested
that the network can extract more abstract and higher-level
fault features with the increase in the network layer, dis-
tinguishing different health types easier. Finally, as shown in
Figure 8(f), most features of different health types were
completely separated and those of the same health type was
well clustered together in the GAP layer, which meant that
the TDRN can obtain high accuracy when there was only a
small amount of training data in the target domain. All the
results demonstrated the intelligence and effectiveness of the
developed TDRN.

4.2. Performance under Variable Working Condition
Differences. In practical applications, it is often necessary to
implement transfer tasks with variable working condition
differences. In this section, to test the performance of the
proposed approach under variable working condition dif-
ferences, another two transfer tasks were built using samples
from different working conditions as the target domain data.
Table 4 lists the setting details of the two transfer tasks.
Obviously, transfer task A⟶B has less working condition
differences than transfer task A⟶C, whereas transfer task
A⟶D has more working condition differences than
transfer task A⟶C. Similarly, samples of each fault type
consisted of the same number of samples with different fault
severity degrees (0.007, 0.014, and 0.021 inches). Experi-
ments were conducted on the two transfer tasks. *e per-
formance comparison of different methods in the three
transfer tasks is displayed in Figure 9.

First, from Figure 9, it can be found that, like the testing
results in task A⟶C, the developed TDRN also obtained
the highest testing accuracy in task A⟶B and A⟶D,
respectively. *is further validates the effectiveness and
superiority of TDRN under variable working condition
differences, and the advantages of transfer learning and
residual learning are also confirmed.

Table 2: Setting details of transfer task A⟶C.

Transfer task Domain Working condition Classes no.
Sample no. of each class

Training Testing

A⟶C Source A 4 120 -
Target C 4 12 120

Table 3: Testing results of different methods for transfer task
A⟶C.

Method Working conditions for training Accuracy (%)
TDRN A, C 99.54
DRN-S A 91.38
DRN-T C 95.67
TDCNN A, C 97.79
DCNN-S A 92.83
DCNN-T C 69.54
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Figure 6: Visualization of the learned features using different methods: (a) TDRN; (b) TDCNN; (c) DRN-S; (d) DCNN-S; (e) DRN-T; (f) DCNN-T.
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Figure 7: Confusion matrixes using different methods: (a) TDRN; (b) TDCNN; (c) DRN-S; (d) DCNN-S; (e) DRN-T; (f ) DCNN-T.
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Figure 8: Visualization of the learned features from different layers of TDRN: (a) input; (b) SRB1; (c) SRB2; (d) SRB3; (e) IRB6; (f ) GAP.
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Second, compared with the test results in task A⟶C,
the accuracies obtained by TDRN, TDCNN, DRN-S, and
DCNN-S in task A⟶B had different degrees of im-
provement, whereas those in task A⟶D dropped in
different degrees. To be specific, as the working condition
difference increased, the classification accuracies obtained
by those methods mentioned above decreased. *is is be-
cause the increase in working condition difference makes the
domain discrepancy enlarge, resulting in the degeneration of
diagnosis performance. Nevertheless, the TDRN was able to
maintain very high accuracies in the three tasks. Even in the
transfer task with themost working condition difference, i.e.,
task A⟶D, the TDRN could still archive desirable results
with an accuracy of 98.38%. *is result demonstrated that
the advantage of TDRN was more significant in the case of
more working condition differences than that in the case of
small condition differences.

*ird, we can observe that the testing results of DRN-T
and DCNN-T in the three tasks basically kept constant, since
the training samples and testing samples were selected from
the same working condition. And the DRN always achieved
better testing results than DCNN in such a case, which
showed the advantage of residual learning.

To show more clearly the diagnosis performance of the
developed TDRN under variable working condition dif-
ferences, t-SNE was used to visualize the high-dimensional

feature maps/distribution of the test samples extracted from
the GAP of TDRN. Figure 10 shows the 2D visualization
results and the corresponding confusion matrixes in the
three transfer tasks.

As shown in Figure 10(a), the features of testing samples
corresponding to task A⟶B had the best intraclass com-
pactness and interclass separability, and only one sample of
health type 2 was misclassified. *e intraclass compactness of
testing samples in task A⟶C was slightly worse than that
corresponding to task A⟶B, and there was one more
misclassified sample, as observed in Figure 10(b). Task
A⟶D had the worst intraclass compactness and interclass
separability. Although most features of testing samples were
very good in terms of intraclass compactness and interclass
separability in Figure 10(c), it can be seen that the features of a
few samples of three fault types were overlapped. And there
were many misclassified samples in the corresponding con-
fusion matrix. *ese results intuitively demonstrated that the
diagnosis performance of the TDRN decreased with the in-
crease in the working condition difference.

Nevertheless, we can see that the feature distributions of
testing samples in the three tasks had good intraclass
compactness and interclass separability. Moreover, from the
corresponding confusion matrixes, it can be seen that the
classification results were very well. *ere were only 8
misclassified samples even in task A⟶D with the most

Table 4: Setting details of transfer task A⟶B and A⟶D.

Transfer task Domain Working condition Classes no.
Sample no. of each class

Training Testing

A⟶B Source A 4 120 —
Target B 4 12 120

A⟶D Source A 4 120 —
Target D 4 12 120

TDRCNN DRCNN-S DRCNN-T TDCNN DCNN-S DCNN-T

A → B 99.96 98.63 96.5 98.75 98.37 76.54
A → C 99.54 91.38 95.67 97.79 92.83 69.54
A → D

A → B
A → C
A → D

98.38 85.56 96.79 97.58 87.81 73.23
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Figure 9: Performance comparison of different methods in the three transfer tasks.
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Figure 10: Continued.
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working condition difference. *ese results showed the ef-
fectiveness of the developed TDRN.

4.3. Effect of the Number of Training Samples in Target
Domain. In this section, the effect of the number of training
samples in the target domain on the classification perfor-
mance was investigated. In the following experiment on
transfer task A⟶C, the performance of different methods
was investigated using 6, 12, 24, 36, and 60 training samples
of each class in the target domain, respectively. Figure 11
shows the testing accuracies obtained by different methods
with the different number of training samples in the target
domain for task A⟶C.

First, it is obvious that the developed TDRN always
achieved the highest testing accuracy with identical training
samples in the target domain. *is further validated the
effectiveness and superiority of TDRN with the different
number of training samples in the target domain, and the
performance improvements achieved by adopting the
transfer learning and residual learning were also confirmed.

Second, we can also find that the testing accuracy in-
creased with the rise of the number of training samples in the
target domain for all the methods except DRN-S and
DCNN-S. In general, the more the training samples, the
higher the classification accuracy. If the number of training
samples of each class was more than 36, the testing accuracy
of 100% can be achieved by the TDRN. And even the
DCNN-T can reach more than 98% accuracy when 60
training samples were used.

In addition, the developed TDRNwas able to achieve very
good performances even with a small number of training
samples in the target domain. For instance, the testing ac-
curacy obtained by the TDRNwith only 6 training samples of
each class was 99.03%. However, the methods without

transfer learning were not able to diagnosis bearing health
types well with a small number of training samples. Take the
DCNN-T as an example, although it performed well with a
large number of training samples, its performance degen-
erated rapidly when the number of training samples became
smaller. *e testing accuracy obtained by the DCNN-T was
only 68.12% when the number of training samples of each
class dropped to 6. For the TDCNN, its performance decline
was lower than those of the DCNN-T and DRN-T. But the
testing accuracy obtained by it was 96.88% when the number
of training samples of each class was 6, which was still not
good enough. *erefore, the developed TDRN was more
robust on the quantity of training data in the target domain.

In short, all these results indicate that, compared with
other methods, the performance improvement achieved by
the developed TDRN with a limited number of training
samples in the target domain was more significant.

4.4. Discussion: Comparison with Other Methods. For con-
ventional intelligent fault diagnosis approaches, feature
extraction from the vibration signals is a very important step.
FFT (fast Fourier transform) spectral analysis is a one of the
commonly used methods for signal preprocessing and
feature extraction [38]. *ere are many feature extraction
methods involving FFT spectral analysis. Glowacz et al.
[1, 54–57] proposed a series of feature extraction methods
based on FFTspectra for mechanical fault diagnosis, such as
MSAF-5, MSAF-17-MULTIEXPANDED-FILTER-14, and
MSAF-RATIO-24-MULTIEXPANDED-FILTER-8, which
have been applied for the fault diagnosis of different kinds of
mechanical equipment and obtained very good classification
results. *is kind of methods need to manually design
corresponding features for specific mechanical equipment,
and the feature vectors extracted for different equipment are
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Figure 10: Visualization of the learned features and confusion matrixes in three transfer tasks: (a) A⟶B; (b) A⟶C; (c) A⟶D.
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not the same. It means that the performance heavily depends
on the extracted features. However, the proposed approach
can automatically extract features through the deep network
model. *e advantage is that not only there is no need to
extract sensitive handcrafted features for specific equipment
but also the classification accuracy is very high. And this
approach can effectively use the data in another working
conditions to improve the diagnosis performance when the
training samples in the target domain are insufficient.

5. Conclusions

In this paper, a new approach for the bearing fault diagnosis
under variable working conditions based on STFT and
TDRN was proposed. *e STFT was employed to obtain
TFIs of vibration signals. *e TDRN was developed to make
a bridge among data from different working conditions.
*us, the proposed approach can realize the machine fault
diagnosis under variable working conditions.

*e effectiveness and superiority of the proposed ap-
proach was validated by experiments conducted on the
popular CWRU bearing dataset. *e results showed that, by
introducing the transfer learning method, the developed
TDRN can overcome the domain discrepancy problem.
Moreover, it was found that the classification performance of
TDRN is better than TDCNN constructed based on the
traditional DCNN since the residual learning structure can
address the problems of training difficulty and performance
degradation in traditional DCNN. *erefore, the proposed
approach can obtain better learning ability and higher clas-
sification accuracy than those without transfer learning and/
or residual learning. Additional experiments were conducted
to investigate the effects of some influencing factors, which
further verify the effectiveness and superiority of the

proposed approach. It was found that the developed TDRN
still obtained high classification accuracy under more
working condition differences. And even with a very small
number of training samples in the target domain, the TDRN
still had high classification performance.*ese results showed
that the proposed approach was very suitable for diagnosis
under variable working conditions. To sum up, this study
clearly demonstrated that the proposed approach has sig-
nificant potential to be a powerful tool for the machine fault
diagnosis under variable working conditions.

However, there are some limitations to the proposed
approach. One is that a few labeled target domain data are still
needed by the developed TDRN. Future work will focus on
achieving fault diagnosis under variable working conditions
without labeled data from the target domain. Domain adap-
tation would be a promising tool to achieve this goal. We can
introduce it to the proposed approach. Another limitation of
the proposed approach, which is also the problem existing in
many deep learning-based methods, is that the diagnosis
performance degenerates on imbalanced datasets. In the future,
we intend to integrate a generative adversarial network (GAN)
into the proposed approach. *e GAN can be used to artifi-
cially generate fake samples, such that the class distributions
can be balanced. In addition, due to the complex working
conditions in the industrial scene, there are a lot of noise and
other interferences in practical applications. *erefore, in the
future, we will also consider collecting the industrial field
equipment data and carry out experiments to further verify,
analyze, and improve the method proposed in this paper.

Data Availability

Data used in this paper were acquired from the bearing data
center of Case Western Reserve University (CWRU) and
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