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In this paper, an alternative sparsity constrained deconvolution beamforming utilizing the smoothing fast iterative shrinkage-
thresholding algorithm (SFISTA) is proposed for sound source identification.)eoretical background and solving procedures are
introduced. )e influence of SFISTA regularization and smoothing parameters on the sound source identification performance is
analyzed, and the recommended values of the parameters are obtained for the presented cases. Compared with the sparsity
constrained deconvolution approach for the mapping of acoustic sources (SC-DAMAS) and the fast iterative shrinkage-
thresholding algorithm (FISTA), the proposed SFISTA with appropriate regularization and smoothing parameters has faster
convergence speed, higher quantification accuracy and computational efficiency, and more insensitivity to measurement noise.

1. Introduction

Beamforming [1–3] based on a microphone array has be-
come a popular sound source identification technology for
aircraft [4], express train [5], wind turbine [6], automobile
[7], etc. Conventional beamforming (CB) suffers from a
poor spatial resolution at low frequency and plenty of
spurious sources at high frequency [8–10]. To overcome
these issues, various deconvolution beamforming tech-
niques with different solving algorithms were developed,
such as deconvolution approach for the mapping of acoustic
sources (DAMAS) [11], nonnegative least square (NNLS)
[12], and Richardson–Lucy (RL) [12] and their corre-
sponding fast Fourier transform- (FFT-) based variants:
DAMAS2 [13], FFT-NNLS [12], and FFT-RL [12]. In 2015,
on the basis of the iterative shrinkage-thresholding algo-
rithm (ISTA) [14] and the fast iterative shrinkage-thresh-
olding algorithm (FISTA) [15], which are used to solve the
inverse problem in the image processing, Lylloff et al. [16]
proposed FFT-FISTA deconvolution beamforming for
sound source identification. Compared to FFT-NNLS, FFT-

FISTA has higher computational efficiency and a better
convergence rate. In addition, in the discussion of Ref. [16],
it was suggested to extend the capabilities of FFT-FISTA to
include a sparsity constraint on the solution to see whether
the efficiency could be further improved. However, the
proximal operator in FISTA does not have a closed-form
solution when solving the sparse recovery problem. )is
makes it difficult for FISTA to introduce sparse constraints
directly and explicitly. To overcome this difficulty, Zhao et al.
[17] recently proposed the smoothing fast iterative
shrinkage-threshold algorithm (SFISTA), which enjoys the
advantage of quickly processing the large-scale problems in
the compressive sensing framework. To the authors’
knowledge, SFISTA has not yet been successfully adapted to
deconvolution beamforming to enhance sound source
identification performance so far. In addition, several similar
deconvolution beamforming techniques successfully include
the sparse distribution constraint of sound source, such as
sparsity constrained DAMAS (SC-DAMAS) [18], robust
super-resolution approach with sparsity constraint (SC-
RDAMAS) [19], and orthogonal matching pursuit DAMAS
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(OMP-DAMAS) [20]. SC-DAMAS and SC-RDAMAS are
solved by the CVX toolbox [21], and the calculation speed is
slow. OMP-DAMAS usually requires a priori information
about the number of sound sources to obtain good sound
source identification performance.

Inspired by Refs. [16, 17], this paper proposes a SFISTA
deconvolution beamforming, which includes the sparsity
constraint that the main sound sources are usually sparsely
distributed. )e proposed approach bypasses the priori
information about the number of sound sources. Compared
to the SC-DAMAS and FISTA, the proposed approach
enjoys faster convergence speed, higher quantification ac-
curacy and computational efficiency, and more insensitivity
to measurement noise.

)e remainder of this paper is organized as follows.
Section 2 establishes the theory of SFISTA deconvolution
beamforming for sound source identification. Sections 3 and
4 compare the performance of deconvolution beamforming
utilizing SC-DAMAS, FISTA, and SFISTA by simulation
and experiment, respectively. Section 5 concludes this paper.

2. Theory

)e beamforming based on cross-spectral imaging function
is a very common method for sound source identification,
and it is as follows [22]:

b(r) �
1

M

vT(r)Cv∗(r)
�����������
wT(r)1w∗(r)

 , (1)

where r indicates the position of the focus point where the
assuming acoustic source is positioned,C∈M×M is the cross-
spectral matrix of the sound pressure signals perceived by
array microphones, M is the number of microphones,
1 ∈RM×M is a matrix with all elements equal to 1, v(r) �

[v1(r), v2(r), . . . , vm(r), . . . , vM(r)]T is the steering vector,
w(r) ≡ [|v1(r)|

2, |v2(r)|
2, . . . , |vm(r)|2, . . . , |vM(r)|2]T, and

the superscript “T” and “∗” represent the transpose and the
conjugate operator, respectively. vm(r) is defined as

vm(r) �
e− ik r− rm| |

r − rm




, (2)

where k � 2πf/c is the wave number, f is the frequency, c is
the sound speed, i �

���
−1

√
, and rm indicates the position of

the mth microphone, m � 1, 2, . . . , M is the index number
of microphones.

In the case that the acoustic source is incoherent, the
output of beamforming can be expressed in the following
linear equation in matrix form:

b � Ax + n, (3)

where x � [x(r′)] ∈ CN×1 is the unknown column vector of
the sound pressure at 1m distance from the corresponding
assuming point sound source, which is used to measure the
sound source strength; A � [psf(r | r′)] ∈ CN×N is the
known PSF matrix, in which psf(r | r′) expresses the
beamforming contribution of the unit-amplitude point
source at r′ to the focus point at r and N is the total number

of the focus points; b � [b(r)] ∈ CN×1 is the known column
vector of CB outputs; n ∈ CN×1 represents the noise.

Considering that acoustic sources are usually sparsely
distributed, the majority of the elements in the vector x are
zero or approximately zero. )at is, the number of the
nonzero elements is far less than that of zero elements.
Assuming that the ℓ2-norm of the noise n is bounded by ε,
equation (3) can be formulated as

min‖x‖0

subject to ‖b − Ax‖2 ≤ ε.
(4)

Alternatively, in the field of acoustics, under the re-
stricted isometry, the above nonconvex ℓ0-norm can be
approximated by the convex ℓ1-norm, leading to the fol-
lowing relaxed problem:

min‖x‖1

subject to ‖b − Ax‖2 ≤ ε.
(5)

Equation (5) is equivalent to the following uncon-
strained optimization [17]:

min
1
2
‖b − Ax‖

2
2 + λ‖x‖1, (6)

where λ is the regularization parameter. Let
f(x) � 1/2‖Ax − b‖22 and g(x) � λ‖x‖1.

SFISTA solves equation (6) by smoothing the sparse
constraint g(x). )e nonsmoothed g(x) is replaced ap-
proximately by the corresponding smoothed Moreau en-
velope gμ(x). Here, gμ(x) is a continuous differentiable and
the gradient of gμ(x) is

∇gμ(x) �
1
μ

x − Γλμ(x) , (7)

where ∇(.) represents the gradient, μ> 0 is the smoothing
parameter, and Γλμ is the soft shrinkage operator, and it is
defined as

Γλμ(x) � [|x| − λμ]+sgn(x), (8)

where [|x| − λμ]+ denotes the vector whose components are
the maximum number between |x| − λμ and 0 and sgn(.) is
the sign function which returns the sign of the variable in
parentheses.

Initializing x(0) � b, auxiliary vector y(0) � x(0), and step
size t(0) � 1. )e specific steps of the lth iteration are as
follows:

(1) Calculating ∇f(y(l− 1)) and ∇gμ(x(l− 1)):

∇f y(l− 1)
  � A∗ Ay(l− 1)

− b ,

∇gμ x(l− 1)
  �

1
μ

x(l− 1)
− Γλμ x(l− 1)

  ,

(9)

(2) Calculating x(l):

x(l)
� P+ y(l− 1)

−
1
L
∇f y(l− 1)

  + ∇gμ x(l− 1)
   , (10)

2 Shock and Vibration



where P+ is the Euclidean projection onto the nonnegative
quadrant and L is the Lipschitz constant equal to the largest
eigenvalue of ATA.

(3) Calculating the step size t(l):

t
(l)

�
1 +

�����������

1 + 4 t(l− 1)( 
2



2
. (11)

(4) Calculating y(l):

y(l)
� x(l)

+
t(l− 1) − 1( 

t(l)
x(l)

− x(l− 1)
 . (12)

3. Simulation

To determine the influence of the parameters λ and μ on the
sound source identification performance of SFISTA
deconvolution beamforming, a 0.65m diameter Brüel &
Kjær 36-channel sector microphone array, as shown in
Figure 1, is used to conduct the simulation. )e calculation
plane of interest is set as 1m× 1m with 51× 51 focus point.
)e grid space of focus points is 0.02m. )e distance be-
tween the calculation plane and the array plane is 1m.

)e point source at each focus point is considered, and
its frequency varies from 2000 to 6000Hz with a step size of
100Hz (i.e., 2000Hz, 2100Hz, . . ., 6000Hz). )e 1m sound
pressure level (SPL) of the point source is 100 dB, signal-
noise ratio (SNR) is 20 dB, and the iteration number is 1000.
)e average deviation between the output of SFISTA and the
theoretical value is acquired by all the source positions and
frequencies, as shown in equation (13). )erein, Nf rep-
resents the number of frequency, x(r, r′, f) represents the
reconstructed SPL (in dB) of focus point r for a certain
frequency f and a certain point source at r′, xe(r, r′, f)

represents the exact one. )e deviation result is shown in
Figure 2. Obviously, the smallest deviation occurs in the
region where λ is less than 1 and μ is close to 1. )erefore,
μ� 1 and μ� 1000 λ (corresponding to the red marker “+” in
Figure 2) are used in this paper:

σ �
1

Nf

1
N


f



r′

��������������������������
1
N


r

x r, r′, f(  − xe r, r′, f(  
2



.

(13)

Simulations with two known uncorrelated point sources
located at (−0.2, 0.2, 1)m and (0.2, 0.2, 1)m are demon-
strated. Figures 3–5 are the acoustic source identification
results in the SNR of 10 dB, 20 dB, and 40 dB, respectively. In
each figure, submaps (a)–(d) and (e)–(h) show the mapping
at 2000Hz and 6000Hz based on CB, SC-DAMAS, FISTA,
and SFISTA, respectively. )e iteration number for FISTA
and SFISTA is 1000. )e outputs are normalized to dB by
referring to the respective maximum value, and the display
range is 15 dB, i.e., [−15, 0] dB. Both submaps (a) and (e) in
Figures 3–5 indicate that the sound sources are accurately
located as the hot spots at (−0.2, 0.2, 1)m and (0.2, 0.2, 1)m.
For CB, sound sources are fused with each other at 2000Hz
due to poor spatial resolution at relatively low frequency.

)e mainlobe widths of the sources reduce at 6000Hz, and
the two sources are separated. However, many spurious
sources appear which leads to a blurred result. Comparing to
CB, other three deconvolution algorithms can effectively
narrow the mainlobe width, enhance the spatial resolution,
and eliminate the spurious sources. Comparing the 2000Hz
results of three deconvolution algorithms in Figures 3–5, it
can be generally seen that the lower the SNR, the more
irregular the mainlobe. Comparing the submaps (b) to (d) in
Figures 3–5, respectively, the mainlobe width of SFISTA is
the narrowest, followed by SC-DAMAS and FISTA. Com-
paring the 6000Hz results of three deconvolution algorithms
in Figures 3–5, there is almost no difference among them due
to the high spatial resolution of CB itself.

To verify the quantification performance of SFISTA,
taking the result of 20 dB SNR as an example, the quanti-
fication accuracy of each approach is described. Table 1 lists
mainlobe integral values and mainlobe peak values for each
approach. At 2000Hz, the mainlobe integral values of each
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Figure 1: Array microphone distribution.
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Figure 2: )e map of average SPL deviation between the recon-
structed and theoretical value vs. λ and μ.
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deconvolution beamforming are close to the preset 1m SPL
of the source. It indicates that the sound source can be
accurately quantified by the integral value of the mainlobe.
)en, the difference between the mainlobe integral value and
the corresponding peak value of each deconvolution
beamforming approach is compared, and the difference of
SFISTA is smaller (about 0.1 dB) than SC-DAMAS (about
1.3 dB) and FISTA (about 4.2 dB). Namely, both the
mainlobe integral value and mainlobe peak value of SFISTA
are close to the peak value of CB. )is indicates that the
mainlobe width of SFISTA is the narrowest and the con-
vergence is the best at relatively low frequency. At 6000Hz,

due to the high spatial resolution of CB itself, the mainlobe
converges to a grid point after deconvolution, and the
difference between the mainlobe peak value and the cor-
responding mainlobe integral value of each deconvolution
beamforming is zero. Further, the mainlobe integral values
of each deconvolution beamforming and corresponding
peak values of CB are compared with the preset 1m SPL of
the source. SFISTA and CB are almost the same and closer to
the true value than the other two, and the deviation between
the true value and the other two deconvolution beam-
forming is also less than 1 dB. It indicates that all algorithms
can accurately quantify the sound source strength, and
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Figure 3: Contour maps of SPLs at 1m distance from the source using different algorithms at a 10 dB SNR. (a) CB at 2000Hz; (b) SC-
DAMAS at 2000Hz; (c) FISTA at 2000Hz; (d) SFISTA at 2000Hz; (e) CB at 6000Hz; (f ) SC-DAMAS at 6000Hz; (g) FISTA at 6000Hz; (h)
SFISTA at 6000Hz.
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Figure 4: Contour maps of SPLs at 1m distance from the source using different algorithms at a 20 dB SNR. (a) CB at 2000Hz; (b) SC-
DAMAS at 2000Hz; (c) FISTA at 2000Hz; (d) SFISTA at 2000Hz; (e) CB at 6000Hz; (f ) SC-DAMAS at 6000Hz; (g) FISTA at 6000Hz; (h)
SFISTA at 6000Hz.

4 Shock and Vibration



SFISTA slightly outperforms SC-DAMAS and FISTA at
relatively high frequency.

Assuming a known point source with 100 dB is located at
(0, 0, 1)m. In Figure 6, the quantification accuracy, con-
vergence performance, and computational efficiency are
further compared for the three deconvolution beamforming
algorithms. )e black dotted line, the red solid line, and the
blue dashed line represent SC-DAMAS, SFISTA, and FISTA,
respectively. )e iteration number of FISTA and SFISTA is
1000. Since SC-DAMAS is solved by the convex optimiza-
tion MATLAB toolbox, the iteration number cannot be set
and the default terminal condition is applied.

Figure 6(a) shows the 1m SPL deviation between the
mainlobe integral and the true value at each frequency.
When the frequency is lower than 3000Hz, the deviations of
the three algorithms are similar. When the frequency is
higher than 3000Hz, the deviation of SFISTA is smaller than
that of SC-DAMAS and FISTA. In summary, the quanti-
fication accuracy of SFISTA is superior to the others.

)e standard deviation, which is used to measure the
convergence, is defined as [12]

σ(l)
�

1
��
N

√ x(l)
− xe2







, (14)

where x(l) is the reconstructed SPL at the lth iteration and xe

is the true one. Since the stopping criteria of SC-DAMAS
does not depend on the iteration number and its compu-
tational efficiency is low, only the standard deviation curves
of FISTA and SFISTA at 2000Hz are given in Figures 6(b)
and 6(c). Figure 6(b) shows the curves of the standard
deviation vs. the iteration number and, Figure 6(c) shows the
curves of the standard deviation vs. computational time.

As shown in Figure 6(b), standard deviation of SFISTA
decreases rapidly and tends to be stable after about 1000
iterations. Standard deviation of FISTA decreases slower and
tends to be stable after about 2500 iterations. In addition, the
stable standard deviation of SFISTA is less than that of
FISTA, which indicates that SFISTA enjoys better quanti-
fication accuracy. Furthermore, Figure 6(c) shows that
SFISTA takes less computational time than FISTA to achieve
the same standard deviation. )is more intuitively shows
that SFISTA converges faster than FISTA.
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Figure 5: Contour maps of SPLs at 1m distance from the source using different algorithms at 40 dB SNR. (a) CB at 2000Hz; (b) SC-DAMAS
at 2000Hz; (c) FISTA at 2000Hz; (d) SFISTA at 2000Hz; (e) CB at 6000Hz; (f ) SC-DAMAS at 6000Hz; (g) FISTA at 6000Hz; (h) SFISTA at
6000Hz.

Table 1: Simulation quantification results using different approach.

CB SC-DAMAS FISTA SFISTA

2000Hz
Integral value Left source — 99.66 99.74 99.74

Right source — 99.88 99.86 99.86

Peak value Left source 99.76 98.14 95.72 99.74
Right source 99.93 98.74 95.50 99.65

6000Hz
Integral value Left source — 98.95 98.93 99.88

Right source — 98.80 98.80 99.66

Peak value Left source 99.82 98.95 98.93 99.88
Right source 99.72 98.80 98.80 99.66
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To sum up, SFISTA has faster convergence speed and
higher quantification accuracy and computational efficiency
compared to SC-DAMAS and FISTA. Further, the uncer-
tainty analysis of the sound source identification perfor-
mance of SFISTA is performed. In practice, the sound source
positions are unknown prior to measurement. So, a statis-
tical simulation based on the Monte Carlo approach is to be
used to archive uncertainty [23–25]. A 200-time Monte
Carlo simulation is performed. )e monopole sound source
with 100 dB is randomly placed on a 50 cm× 50 cm plane
with a 1m distance from the microphone array. )e SPL at
1m distance from the sound source is retrieved by inte-
gration over 4 segments of 0.02 cm× 0.02 cm that are defined
in the map around the maximum value [26, 27]. )e sound
frequencies are 2000Hz and 6000Hz, and the SNR is 20 dB
and 40 dB. Figure 7 illustrates the cumulative distribution
functions (CDFs) of the proposed SFISTA at different SNRs

and different frequencies. )e location error is measured by
the ratio of the distance between the identified position of
the maximum SPL and the preset sound source position to
the grid spacing. )e quantification error of strength is
measured by the deviation between the mainlobe integral of
the identified sound source and the preset 100 dB. )e black
dot dash line and blue dotted line are the results of 2000Hz
and 6000Hz at 20 dB SNR, and the red solid line and green
solid line are the results of 2000Hz and 6000Hz at 40 dB
SNR. Figure 7(a) is the CDF of the location error, and in
general, the location accuracy of 6000Hz is higher than that
of 2000Hz, and the accuracy is higher in the case of 40 dB
SNR than that of 20 dB SNR. Except that there are a few
points whose location error is greater than one grid interval
in the case of 2000Hz and 20 dB SNR, the location errors of
other points are less than one grid interval, which indicates
that almost all the identified sound source positions fall on
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6 Shock and Vibration



one of the four closest grid points and most of them fall on
the nearest point. )e maximum location errors of 6000Hz
at 40 dB SNR, 6000Hz at 20 dB SNR, 2000Hz at 40 dB SNR,
and 2000Hz at 20 dB SNR are about 0.71, 0.85, 0.92, and
1.17, respectively. )e mean location errors of 6000Hz at
40 dB SNR, 6000Hz at 20 dB SNR, 2000Hz at 40 dB SNR,
and 2000Hz at 20 dB SNR are about 0.39, 0.39, 0.40, and
0.45, respectively. In other words, SFISTA enjoys high lo-
cation accuracy. Figure 7(b) is the CDF of the quantification
error. Results show that the quantification accuracy of
2000Hz is higher than that of 6000Hz, and the accuracy is
higher in the case of 40 dB SNR than that of 20 dB SNR.)is
is because the conventional beamforming result of 2000Hz
has less ghosts than that of 6000Hz, and the energy is
concentrated on the mainlobe. Due to the interference of
noise, the CDF of the quantification error of 20 dB SNR is
larger than that of 40 dB SNR. )e maximum quantification
errors of 2000Hz at 40 dB SNR, 2000Hz at 20 dB SNR,

6000Hz at 40 dB SNR, and 6000Hz at 20 dB SNR are about
0.20, 0.55, 0.51, and 0.71, respectively. )e mean quantifi-
cation errors of 2000Hz at 40 dB SNR, 2000Hz at 20 dB
SNR, 6000Hz at 40 dB SNR, and 6000Hz at 20 dB SNR are
about 0.11, 0.15, 0.17, and 0.21, respectively. In other words,
SFISTA also enjoys high quantification accuracy.

4. Experiment

As shown in Figure 8, the same microphone array as that in
Section 3 is used for the experiment. )e uncorrelated
speaker sources driven by the white noise are approximately
located at (−0.2, 0.2, 1)m and (0.2, 0.2, 1)m.

Same as the simulation, the iteration number of FISTA
and SFISTA is set as 1000. CB results at 2000Hz and 6000Hz
are shown in Figures 9(a) and 9(e), respectively. Sources fuse
together, and the spatial resolution is poor at 2000Hz, and
many spurious sources appear at 6000Hz. Figures 9(b)–9(d)
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Figure 7: Cumulative distribution function for error of SFISTA under 200 trials of Monte Carlo simulations. (a) Location error;
(b) quantification error.

(a) (b)

Figure 8: Experimental configuration.
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and 9(f)–9(h) are the results of SC-DAMAS, FISTA, and
SFISTA at 2000Hz and 6000Hz, respectively. As shown, all
deconvolution beamforming can locate the sound sources
accurately. Table 2 gives the experimental results of am-
plitude quantification. Because we do not obtain the actual
strengths of the loudspeaker sources, we use the mainlobe
peak value of CB instead of strength to measure the
quantification accuracy here. Both the results of 2000Hz and
6000Hz indicate that the results of the mainlobe integral
value of each deconvolution algorithm are close, and the
difference between the mainlobe peak value and the cor-
responding mainlobe integral value of SFISTA is the
smallest. Besides, similar with the above simulation con-
clusion, compared with SC-DAMAS and FISTA, the
mainlobe peak values of SFISTA are closer to those of CB. It
also shows that SFISTA enjoys the better spatial convergence
performance than SC-DAMAS and FISTA. In summary,
SFISTA performs better than SC-DAMAS and FISTA, which
is consistent with the simulation conclusion.

5. Conclusions

In this paper, SFISTA deconvolution beamforming for the
sparse sound source identification is proposed. Simulations
and experiments indicate that the proposed SFISTA has
good acoustic source identification performance. Compared
with SC-DAMAS and FISTA, SFISTA enjoys better spatial
resolution, convergence performance, quantification accu-
racy, and computational efficiency.

Data Availability

Datasets generated and analyzed in the current study are
available from the corresponding author on reasonable
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Figure 9: Experimental contour maps of SPLs at 1m distance from the source using different algorithms. (a) CB at 2000Hz; (b) SC-DAMAS
at 2000Hz; (c) FISTA at 2000Hz; (d) SFISTA at 2000Hz; (e) CB at 6000Hz; (f ) SC-DAMAS at 6000Hz; (g) FISTA at 6000Hz; (h) SFISTA at
6000Hz.

Table 2: Experimental quantification results of different algorithms.

CB SC-DAMAS FISTA SFISTA

2000Hz
Integral value Left source — 49.85 49.39 50.05

Right source — 49.39 48.94 49.61

Peak value Left source 49.92 43.73 42.21 45.46
Right source 49.41 45.38 42.61 46.03

6000Hz
Integral value Left source — 46.23 46.14 46.92

Right source — 44.60 44.52 45.30

Peak value Left source 46.84 43.56 43.60 45.91
Right source 45.56 42.88 42.76 45.09
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