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Membrane materials are widely used in construction engineering with small mass and high flexibility, which presents strong
geometric nonlinearity in vibration. In this paper, an improved multiscale perturbation method is used to solve the aerostatics
stability of membrane roofs on closed and open structures by quantifying the effect of geometric nonlinearity on the single-mode
aeroelastic instability wind velocity. Results show that the critical wind velocities of two models are smaller when the geometrical
nonlinearity of the membrane material is neglected. In addition, under normal wind load, the influence of geometrical non-
linearity of the membrane on the aerodynamic stability of the roof can be neglected. However, under strong wind load, when the
roof deformation reaches 3% of the span, the influence of geometric nonlinearity should be considered and the influence increases
with the decrease of transverse and downwind span of the membrane roof. ,e results obtained in this paper have an important
theoretical reference value for the design membrane structures.

1. Introduction

Fabric membrane is a widely used membrane material in
construction engineering. It has the characteristics of high
tensile strength and good flexibility. Fabric membranes are
mainly composed of substrates and coatings. ,e substrates
are usually braided by orthogonal fibers, which results in the
orthotropic properties of the membranes. ,at is to say, the
elastic modulus and Poisson’s ratio in the two orthogonal
directions are different. ,e building, which is made up of
membrane material covered on the structural skeleton or
tensioned as a whole, has beautiful appearance, good
transparency, environmental protection, and energy saving
[1, 2]. ,erefore, it is widely used in large-scale stadiums,
exhibition venues, and other public buildings. Because of the
small mass and flexibility, it is easy for vibration under
external disturbance, and the stiffness of the membrane
material is small, which results in the large vibration de-
formation of the membrane structure under wind load,
showing strong geometric nonlinearity [3, 4]. Many research

results show that the single-mode aeroelastic instability can
easily occur in membrane structures when the pretension of
membrane materials is small [5, 6].

In the mathematical analysis of aeroelastic instability of
flexible membrane structures, Yang and Liu [7, 8] estab-
lished the wind-induced dynamic coupling equation of
hyperbolic parabolic membrane roof with small sag by using
elastic shallow shell theory and ideal fluid potential flow
theory in 2006 and determined the critical wind velocity of
aeroelastic instability according to Routh–Hurwitz stability
criterion. ,e influence of geometric nonlinearity of
membranes was not considered when establishing the
mathematical model. In 2011, Xu et al. [9, 10] studied the
nonlinear aerodynamic stability of orthotropic-tensioned
membrane structures in a rectangular plane and hyperbolic
paraboloid, respectively. ,e critical wind velocities of
single-mode instability of the twomembrane structures were
determined by assuming the solution of the vibration
equation. In 2017, Liu et al. [11] studied the aerodynamic
stability of closed-tensioned membrane structures by the
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Galerkin method. ,e geometric nonlinearity of membrane
vibration is weakened, and the critical wind velocity of the
instability is obtained by using the weak nonlinearity so-
lution method.

In order to investigate the influence of the geometric
nonlinearity on the aeroelastic stability of membrane
materials, the nonlinear wind-induced dynamic equations
of membrane roofs are established based on Von Kamen’s
large deflection theory and Darumbel’s principle, taking
the flat rectangular orthotropic tensioned membrane
roofs with fixed supports on the four sides of open and
closed structures as analytical models and considering the
effects of geometric nonlinearity and air damping of
membrane materials. An improved multiscale method
which is suitable for strong geometric nonlinearity is used
to solve the vibration equation. ,e critical wind velocity
of instability obtained is compared with the results
without considering geometric nonlinearity. ,e effect of
geometric nonlinearity on the wind velocity of single-
mode aeroelastic instability of membrane material is
obtained quantitatively.

2. Analytical Deduction of Single-Mode
Instability of Orthotropic Membrane Roofs

2.1. Establishment of Basic Equations. Let the length and
width of the orthotropic rectangular flexible membrane with
four sides fixed be a and b, respectively; the pretension along
the length direction isN0x and the width direction isN0y.,e
wind blows parallel to the roof and toward the membrane
surface, which makes the membrane surface vibrate. For
flexible membranes, the research results show that the shear
stress has little influence on the vibration process of the
membranes and can be considered as zero [9–13]. Assuming
that the planar membrane is in the XOY plane when in
equilibrium and the pretension in X direction is Nx and in
the Y direction is Ny, when the membrane is disturbed by
external forces to the XOY plane, it will deform and then
produce transverse vibration perpendicular to the mem-
brane surface under the action of tension. Select a microunit
on the vibrating membrane surface, as shown in Figure 1.

Select a unit part dxdy on the membrane surface. When
the microunits are deformed, the edges of the microunits are
subjected to the tension of the adjacent facets. In X direction,
we can regard the surface element as composed of countless
chord elements with length dx and width of one unit. ,e
tension acting on the chord element is consistent with its
tangent direction. ,e tension Nx is at an angle α with X
coordinate axis. ,erefore, the vertical component of the
tension acting on the chord element at one end of X is
Nxsinα. Because α is small, sinα≈tanα. Let w be the vertical
displacement of a point on the membrane away from the
equilibrium position. ,erefore,

Nx sin α � Nx tan α � Nx

zw

zx
 

x

. (1)

,e vertical force acting on the dy edge is Nx(zw/zx)x

dy, and the vertical force at the x edge should be

Nx(zw/zx)x+dxdy. ,us, the resultant force in Z direction
on the x and x + dx sides of the panel is as follows:

Nx

zw

zx
 

x+dx

dy − Nx

zw

zx
 

x

dy � Nx

z2w

zx2 dx dy. (2)

Similarly, the resultant force of Z direction component of
the tension acting on Y direction can be obtained as follows:

Ny

zw

zy
 

y+dy

dx − Ny

zw

zy
 

y

dx � Ny

z2w

zy2 dx dy. (3)

So the total force in Z direction acting on the whole panel is

Fz � Nx

z2w

zx2 dx dy + Ny

z2w

zy2 dx dy + q(x, y)dx dy, (4)

where Nx is the tension in X direction (longitude), Ny is the
tension in Y direction (latitude), w is the deflection of the
membrane, and q(x, y) is the external load acting on the unit
area of the projection surface of themembrane. According to
the force balance, we can obtain that

Nx

z2w

zx2 dx dy + Ny

z2w

zy2 dx dy + q(x, y)dx dy � 0, (5)

q(x, y) + Nx

z2w

zx2 + Ny

z2w

zy2 � 0. (6)

,e generalized external loads of the flexible membrane
roof under wind load include the wind load acting on the
membrane surface, structural damping force, and inertial
force [11]. If the aerodynamic term is defined as p, then the
generalized external load per unit area q(x, y) is

q(x, y) � p(x, y, t) − 2ρc
zw(x, y, t)

zt
− ρ

z2w(x, y, t)

zt2
.

(7)

For membrane material, the stiffness of the membrane
surface comes from the initial pretension of membrane
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Figure 1: Vibration microunits of membrane.
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material, so the initial pretension should be added in
equation (6). Finally, the differential equations of motion of
flexible membranes are obtained as follows:

p(x, y, t) − 2ρc
zw(x, y, t)

zt
− ρ

z2w(x, y, t)

zt2

+ N0x + Nxt( 
z2w

zx2 + N0y + Nyt 
z2w

zy2 � 0.

(8)

Introducing the stress function φ(x, y), Nx � h(z2φ/
zy2) and Ny � h(z2φ/zx2). ,en, equation (6) can be
transformed as

N0x + h
z2φ
zy2 

z2w

zx2 + N0y + h
z2φ
zx2 

z2w

zy2 + p − 2ρc
zw

zt
− ρ

z2w

zt2
� 0.

(9)

After deformation, the membrane surface strain is
composed of linear and nonlinear parts. ,e linear strain is
caused by in-plane displacement u and v, and the nonlinear
strain is caused by deflection w. After ignoring shear stress,
the total strain is as follows:

εx �
zu

zx
+
1
2

zw

zx
 

2

εy �
zv

zy
+
1
2

zw

zy
 

2

⎫⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

, (10)

where εx is the strain in X direction and εy is the strain in Y
direction.

By eliminating u and v in equation (10), the continuous
deformation conditions satisfying the strain and deflection
of the membrane surface can be obtained:

z2εx

zy2 +
z2εy

zx2 �
z2w

zx zy
 

2

−
z2w

zx2
z2w

zy2 . (11)

,e membrane is orthotropic, and the direction of the
fiber is the main direction of elasticity so that it is consistent
with the direction of coordinate system X and Y. Assuming
that the direction of fiber is the same as the direction of
coordinate system X and Y, Young’s modulus of elasticity in
X and Y directions is E1 and E2, respectively. ,e longi-
tudinal Poisson’s ratio and the latitudinal Poisson’s ratio is
μ1 and μ2, respectively. ,e relationship between elastic
modulus and Poisson’s ratio is as follows:

μ1
E1

�
μ2
E2

. (12)

,e stress-strain relationship is as follows:

σx

σy

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
�

E1

1 − μ1μ2

μ1E2

1 − μ1μ2

μ2E1

1 − μ1μ2

E2

1 − μ1μ2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

εx

εy

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
, (13)

where σx and σy is the normal stresses in X and Y directions,
respectively. h is the thickness of membrane.

Letting Nx � h · σx and Ny � h · σy and substituting
equation (13) into equation (11), the compatibility equation
is obtained as

1
E1h

z2Nx

zy2 −
μ2

E2h

z2Ny

zy2 −
μ1

E1h

z2Nx

zx2

+
1

E2h

z2Ny

zx2 �
z2w

zx zy
 

2

−
z2w

zx2
z2w

zy2 .

(14)

By substituting the stress function into equation (14),
then (14) can be transformed as

1
E1

z4φ
zy4 −

μ2
E2

z4φ
zx2zy2 −

μ1
E1

z4φ
zx2zy2

+
1

E2

z4φ
zx4 �

z2w

zx zy
 

2

−
z2w

zx2
z2w

zy2 .

(15)

2.2. Improved Multiscale Solutions of Governing Equations.
,e initial surface function of the rectangular planar
membrane z0 (x, y)� 0.,erefore, the surface equation of the
flexible membrane under wind load is as follows:

z(x, y, t) � w(x, y, t). (16)

According to the Bubnov–Galerkin method, assume the
solution of the governing equation is [9–12]

w(x, y, t) � 
n

i�1
Ti(t)Wi(x, y),

φ(x, y, t) � 

n

i�1
Ui(t)ϕi(x, y),

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(17)

where Wi(x, y) is the mode function, ϕi(x, y) is the un-
known stress function, and Ti(t) and Ui(t) are time-de-
pendent functions.

Because the membrane is fixed on four sides, the vertical
deflection at the boundary of the membrane is zero, and the
vibration mode function satisfying the conditions is as-
sumed to be [11, 12]

W(x, y) � sin
mπx

a
sin

nπy

b
, (18)

where m and n are positive integer.
Substituting equation (18) into equation (17), the fol-

lowing equation can be obtained:

w(x, y, t) � T(t)sin
mπx

a
sin

nπy

b
. (19)

Substituting equation (19) into equation (15) yields

1
E1

z4φ
zy4 +

1
E2

z4φ
zx4 �

m2n2π4

2a2b2
T
2
(t) cos

2mπx

a
+ cos

2nπy

b
 .

(20)

Assume that the solution of the stress function in
equation (20) is [12]
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φ(x, y, t) � T2(t)ϕ(x, y),

ϕ(x, y) � α cos
2mπx

a
+ β cos

2nπy

b
.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(21)

Substituting equation (21) into equation (20) yields

α �
E2a

2n2

32b2m2,

β �
E1b

2m2

32a2n2 .

(22)

2.2.1. Solution of Flexible Membrane Roof on Closed
Structure. Flexible membrane covers the top of the closed
structure as the roof and the rigid wall around the structure
as the vertical bearing member. Because its stiffness is far
greater than the membrane’s stiffness, it is assumed that the
stiffness of the vertical component is infinite in the process of
theoretical derivation in this paper. ,e membrane roof on
closed structure is shown in Figure 2.

For the membrane roof on closed structure, the aero-
dynamic force acting on the unit area of the membrane
projection surface is expressed as [10]

p � −
ρ0
2π

−VB
Ra

(V(zw/zx) +(zw/zt)) x � ξ
y � η

(x − ξ)

����������������

(x − ξ)2 +(y − η)2


 
3 dξ dη + B

Ra

V z2w/zx zt  + z2w/zt2   x � ξ
y � η

����������������

(x − ξ)2 +(y − η)2
 dξ dη

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (23)

Substituting equation (23) into equation (9) yields

h
z2φ
zy2 + N0x 

z2w

zx2 + h
z2φ
zx2 + N0y 

z2w

zy2 − 2ρc
zw

zt

− ρ
z2w

zt2
−
ρ0
π
B

Ra

1
r

z2w

zt2
  x � ξ

y � η

dξ dη −
ρ0V
2π

B
Ra

1
r

z2w

zx zt
  x � ξ

y � η

dξ dη

+
ρ0V2

2π
B

Ra

1
r3

zw

zx
  x � ξ

y � η

(x − ξ)dξ dη +
ρ0V
2π

B
Ra

1
r3

zw

zt
  x � ξ

y � η

(x − ξ)dξ dη � 0,

(24)

where r �

����������������

(x − ξ)2 + (y − η)2


and the integral region
Ra ∈ 0≤ ξ ≤ a, 0≤ η≤ b .

Substituting equations (19), (21), and (22) into equation
(24) yields

c1 � B
Ra

1
r
(W) x � ξ

y � η

dξ dη � B
Ra

1
r
sin

mπξ
a

sin
nπη

b
dξ dη,

c2 � B
Ra

1
r

zW

zx
  x � ξ

y � η

dξ dη �
mπ
a

B
Ra

1
r
cos

mπξ
a

sin
nπη

b
dξ dη,

c3 � B
Ra

1
r3

zW

zx
  x � ξ

y � η

(x − ξ)dξ dη �
mπ
a

B
Ra

1
r3

(x − ξ)cos
mπξ

a
sin

nπη
b

dξ dη,

c4 � B
Ra

1
r3

(W) x � ξ
y � η

(x − ξ)dξ dη � B
Ra

1
r3

(x − ξ)sin
mπξ

a
sin

nπη
b

dξ dη.

(25)
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By using the Bubnov–Galerkin method, (25) can be
integrated as

B
S

ρW +
ρ0
π

c1
d2Tt

dt2
+

ρ0V
2π

c2 − c4 + 2ρcW 
dTt

dt
− N0x

z2W

zx2 + N0y

z2W

zy2 +
ρ0V2

2π
c3Tt

−h
z2Φ
zy2

z2W

zx2 +
z2Φ
zx2

z2W

zy2 T
3
tWx, ydxdy � 0,

(26)

where S ∈ 0≤x≤ a, 0≤y≤ b .
Simplifying equation (26) yields

A
d2T(t)

dt2
+ B

dT(t)

dt
− CT(t) − DT

3
(t) � 0, (27)

where

A � B
S
ρW +

ρ0
π

c1 Wdxdy

� ρB
S
sin

mπx

a
sin

nπy

b
 

2
dxdy +

ρ0
π
B

Ra
B

Ra

1
r
sin

mπξ
a

sin
nπη

b
dξdη sin

mπx

a
sin

nπy

b
dxdy

�
ρab

4
+
ρ0
π
α1,

α1 � B
S

B
Ra

1
r
sin

mπξ
a

sin
nπη

b
dξdη sin

mπx

a
sin

nπy

b
dxdy,

B �
ρ0V
2π

B
S

c2 − c4( Wdxdy + 2ρcB
S
W

2dxdy

�
ρ0mV

2a
B

S
B

Ra

1
r
cos

mπξ
a

sin
nπη

b
dξdη sin

mπx

a
sin

nπy

b
dxdy

−
ρ0V
2π

B
S
B

Ra

1
r3

(x − ξ)sin
mπξ

a
sin

nπη
b

dξdη sin
mπx

a
sin

nπy

b
dxdy

+ 2ρcB
S
sin

mπx

a
sin

nπy

b
 

2
dxdy

�
ρ0mV

2a
α2 −

ρ0V
2π

α4 +
ρcab

2
,

α2 � B
S

B
Ra

1
r
cos

mπξ
a

sin
nπη

b
dξ dη sin

mπx

a
sin

nπy

b
dxdy,

α4 � B
S
B

Ra

1
r3

(x − ξ)sin
mπξ

a
sin

nπη
b

dξdη sin
mπx

a
sin

nπy

b
dxdy,

C � B
S

N0x

z2W

zx2 + N0y

z2W

zy2 +
ρ0V2

2π
c3 Wdxdy

� B
S
N0x

z2W

zx2 Wdxdy + B
Ra

N0y

z2W

zy2 Wdxdy +
ρ0V2

2π
B

Ra
c3Wdxdy

� −
m2π2bN0x

4a
−

n2π2aN0y

4b
+
ρ0mV2

2a
α3,

α3 � B
S

B
Ra

1
r3

(x − ξ)cos
mπξ

a
sin

nπη
b

dξdη sin
mπx

a
sin

nπy

b
dxdy,

D � B
S
h

z2Φ
zy2

z2W

zx2 +
z2Φ
zx2

z2W

zy2 Wdxdy

� −
hm2n2π4(α + β)

2ab
.

(28)

Shock and Vibration 5



It can be obtained from numerical calculation that A≤ 0
occurs only when b/a≪ 1, and this will not happen in
practical engineering. Equation (27) is a strongly nonlinear
vibration equation. For different equations of strongly
nonlinear vibration, many scholars have studied the cor-
responding solutions [13–17]. In this paper, we propose the
improved multiscale method based on the principle of
modified Lindestedt–Poincaré method to solve equation
(27). Letting u � B/(εA), ω2

0 � −C/A, ε � −D/A, then
equation (27) can be transformed as

€T + ω2
0T + ε μ _T + T

3
  � 0. (29)

Letting ω be the vibration frequencies of the membrane
material and expanding ω2 to the power series of ε near ω2

0
we obtain the following:

ω2
� ω2

0 + εω1 + ε2ω2 + · · · . (30)

,e transformation parameters are introduced as
follows:

α �
εω1

ω2
0 + εω1

, (31)

ε �
ω2
0α

ω1(1 − α)
,

ω2
0 + εω1 �

ω2
0

1 − α
.

(32)

Expand ω2 to the power series of ε as follows:

ω2
� ω2

0 + εω1 1 +
1

ω2
0 + εω1

ε2ω2 + ε3ω3 + · · ·  

�
ω2
0

1 − α
1 + δ2α

2
+ δ3α

3
+ · · · ,

(33)

ω � ω0 1 +
1
2
α +

3
8

+
δ2

2
 α2 + · · · . (34)

,e form of the perturbation solution of equation (29)
can be

T(t, α) � T0 t0, t1(  + αT1 t0, t1(  + α2T2 t0, t1(  + · · · ,

(35)

where t0 � t and t1 � αt.
,e differential operators are obtained as follows:

d
dt

� D0 + αD1 + α2D2 + · · · ,

d2

dt2
� D

0
2 + 2αD0D1 + α2 D

2
1 + 2D0D2  + · · · .

(36)

Substituting equations (31)–(33) and (35) into equation
(29) yields

(1 − α) D
0
2 + 2αD0D1 + α2 D

2
1 + 2D0D2  

T0 + αT1 + α2T2 + · · ·  +(1 − α)ω2
0 T0 + αT1 + α2T2 + · · · 

+
αω2

0
ω2
1

T0 + αT1 + α2T2 + · · · 
3

+ D0 + αD1 + α2D2 

· T0 + αT1 + α2T2 + · · ·  � 0,

(37)

α0, D2
0T0 + ω2

0T0 � 0,

α1, D2
0T1 + ω2

0T1 + 2D0D1T0 +
ω2
0

ω1
D0T0 + T

3
0  � 0,

α2, D2
0T2 + T2 + 2D0D1T1 + D2

1 + 2D0D2( T0 +
ω2
0

ω1
3T

2
0T1 � 0.

(38)

,e solution of the first equation in the system of
equation (38) can be obtained as

T0 � A t1( e
iω0t0 + A t1( e

− iω0t0 . (39)

Substituting equation (39) into the second equation of
(38) yields

D
2
0T1 + ω2

0T1 + 2iω0D1A + 3
ω2
0

ω1
A2A + iμ

ω3
0

ω1
A e

it0

+
1
ω1

A
3
e
3it0 + cc � 0,

(40)

where cc is the complex conjugate term. Eliminating the
term of immortality in equation (40) yields

2D1A + 3
ω0

ω1
A
2
A + iμ

ω3
0

ω1
A � 0. (41)

Solving equation (41), we can obtain

T1 �
1

8ω1
A
3
e
3it0 + A

3
e

− 3it0 . (42)

Letting A � 1/2feiϕ, bring it into equation (42) and
separat the imaginary part from the real part:

df

dt1
� −

1
2
μ
ω2
0

ω1
f,

f
dϕ
dt1

� −
3ω0

8ω1
f
3
.

(43)

Membrane

y x
a b

N0x N0y

Membrane

V (wind speed)

Atmosphere

Wind

ClosedClosed

Figure 2: ,e membrane roof on closed structure.
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Substituting A � 1/2feiϕ into equation (39) yields

T0 � f cos ω0t0 + ϕ(  � f cos ωt + ϕ0( . (44)

Comparing the angular frequency in equation (34) with
equation (44), we can get the equation under the first-order
approximation condition as

dϕ
dt1

�
ω0

2
. (45)

According to equations (43) and (44) yields

ω1 �
3
4
f
2
. (46)

Substituting equation (46) into equation (43) and
omitting higher order terms yields

ω �

���������

ω2
0 +

3
4
εf2



. (47)

,e results show that when the critical wind velocity of
single-mode instability is reached, the frequency of the
characteristic equation of the system approaches zero, which
is equivalent to static equilibrium instability [11]. ,at is,

ω2
0 +

3
4
εf2

� 0, (48)

where f is the vibration amplitude of the membrane,

ω2
0 �

2π
ρabπ + 4ρ0α1

·
m2π2b2N0x + n2π2a2N0y

2ab
−
ρ0mα3

a
V

2
 ,

α1 � B
S

B
Ra

1
r
sin

mπξ
a

sin
nπη

b
dξdη sin

mπx

a
sin

nπy

b
dxdy,

α3 � B
S

B
Ra

1
r3

(x − ξ)cos
mπξ

a
sin

nπη
b

dξdη sin
mπx

a
sin

nπy

b
dxdy,

ε �
2hm2n2π5(α + β)

ab ρabπ + 4ρ0α1( 
.

(49)

Solving the equation, the critical wind velocity for single-
mode instability of the closed membrane roof is obtained as
follows:

Vcr �

����������������������������������������������

4π m2π2b2N0x + n2π2a2N0y  + 3εf2 ρ πa2b
2 + 4ρ0abα1( 

8πbρ0mα3




, (50)

where f is the vibration amplitude corresponding to the
instability critical wind velocity. It shows that the critical
wind velocity is related to the vibration amplitude. With the
consideration of the effect of geometric nonlinearity, the
stiffness of the membrane varies with the amplitude in the
process of vibration, which will affect the aerodynamic
stability of the membrane roof to a certain extent. ,is
conclusion is consistent with that of previous research
studies [9, 10, 18]. When f⟶ 0, the critical wind velocity
of instability can be obtained according to the theory of small
deflection [9, 10].

2.2.2. Solution of Flexible Membrane Roof on Open Structure.
For membrane roofs on open structures, air flows on both
sides of themembrane surface due to the smaller thickness of
the membrane, which can be substantially determined by the
thin-airfoil theory. ,e membrane roof on open structure is
shown in Figure 3.

For the membrane roof on open structure, the aero-
dynamic force acting on the unit area of the membrane
projection surface is expressed as [11]

p � ρ0
z

zt


x

0
cc(ξ, y, t)dξ + ρ0Vcc, (51)

where cc is the density of vortices:

cc � aVcj � aV a1jT(t) + a2j

T′(t)

V
 , j � 1, 2, . . . , M × N.

(52)

Substituting equation (52) into equation (9) yields

h
z2φ
zy2 + N0x 

z2w

zx2 + h
z2φ
zx2 + N0y 

z2w

zy2 − 2ρξ0
zw

zt

+ ρ0Vcc + ρ0 
y

0

zcc

zt
dη � ρ

z2w

zt2
.

(53)
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Solutions of stress functions in compatible equations
such as equation (21). Substituting equations (19) and (21)
into equation (53) yields

ρW
d2T(t)

dt2
+ 2ρξ0W

dT(t)

dt
− N0x

z2W

zx2 + N0y

z2W

zy2 T(t)

− h
z2ϕ
zy2

z2W

zx2 +
z2ϕ
zx2

z2W

zy2 T
3
(t) − ρ0Vcc − ρ0 

y

0

zcc

zt
dη � 0.

(54)

By using the Bubnov–Galerkin method, (54) can be
integrated as

B
S
ρW

d2T(t)

dt2
+ 2ρξ0W

dT(t)

dt
− N0x

z2W

zx2 + N0y

z2W

zy2 T(t)

− h
z2ϕ
zy2

z2W

zx2 +
z2ϕ
zx2

z2W

zy2 T
3
(t) − ρ0Vcc − ρ0 

y

0

zcc

zt
dη

W(x, y)dxdy � 0,

(55)

where S ∈ 0≤x≤ a, 0≤y≤ b .
Integrating and simplifying equation (55) yields

A
d2T(t)

dt2
+ B

dT(t)

dt
− CT(t) − DT

3
(t) − E � 0, (56)

where

A � B
S
ρW

2dxdy �
ρab

4
,

B � 2ρξ0B
S
W

2dxdy � 2ρξ0B
S
sin

mπx

a
sin

nπy

b
 

2
dxdy �

ρξ0ab

2
,

C � B
S

N0y

z2W(x, y)

zy2 + N0x

z2W(x, y)

zx2 W(x, y)dxdy � B
S
N0x

z2W

zx2 Wdxdy + B
S
N0y

z2W

zy2 Wdxdy

� −
m2π2bN0x

4a
−

n2π2aN0y

4b
,

D � B
S
h

z2Φ
zy2

z2W

zx2 +
z2Φ
zx2

z2W

zy2 Wdxdy � −
hm2n2π4(α + β)

2ab
,

E � B
S

ρ0Vc + ρ0 
y

0

zc

zt
dη W(x, y)dxdy.

(57)

Substituting equation (52) into equation (56) yields

A1
d2T(t)

dt2
+ B1

dT(t)

dt
− C1T(t) − DT

3
(t) � 0, (58)

where

A1 � A − ρ0aB
S


y

0
a2jdη W(x, y)dxdy,

B1 � B − ρ0aVB
S


y

0
a1jdη W(x, y)dxdy

− ρ0aVB
S
a2jW(x, y)dxdy,

C1 � C + ρ0aV
2B

S
a1jW(x, y)dxdy.

(59)

y x
a b

N0x N0y

Membrane

V (wind speed)
Atmosphere

Wind

Membrane

OpenOpen

Figure 3: ,e membrane roof on open structure.
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,e composition of equation (58) is consistent with the
vibration control equation of closed membrane roof, and the
solving process is consistent with the above, which is not

discussed here. ,us, the expression of critical wind velocity
for single-mode instability of open flexible membrane roof
can be obtained as

Vcr � π

�����������������������������������������������

m2bN0x/4a(  + n2aN0y/4b  + 3hm2n2π2(α + β)f2/8ab( 

ρ0a(ab/MN)
M×N
j�1 a1j sin mπxj/a sin nπyj/b 




. (60)

3. Validation of Theoretical Model

3.1. Verification Statement. Due to the limitation of the
existing research funds, we have not carried out the aero-
elastic experiment of the membrane roof at present.
,erefore, we use the wind tunnel experiment results of the
aeroelastic models of membrane structure in reference [19]
to verify the theoretical calculation results in this paper.
Later, we will do relevant experiments, and the experimental
results will be discussed in our next paper.

3.2. Verification Results. ,e experimental model in refer-
ence [19] is a hyperbolic membrane structure with a small
sag, with length of 416mm and width of 325mm, as shown
in Figure 4. ,e wind direction is along the length. Ex-
perimental model parameters are shown in Table 1.

Uematsu et al. found in experiments that when the wind
velocity exceeds a certain threshold, the test model will have
a single-frequency vibration. At the same time, the ampli-
tude of the pulsation displacement jumps and then decays.
,en, the wind velocity corresponding to this amplitude is
the critical wind velocity of a certain order of instability of
the membrane structure. Based on this, the critical wind
velocities of the first two orders of each model are finally
obtained. Finally, the theoretical calculation value of the
single-mode method of the open membrane roof is calcu-
lated by (60). Because the amplitude of the test jump point is
incomplete and f in (60) cannot be obtained, the theoretical
result can only obtain the minimum critical wind velocity, as
shown in Table 2.

It can be obtained from Table 2. ,e theoretical results
are close to the experimental results, and the general
variation of theoretical calculation results is in line with the
experimental results, but the theoretical calculation results
of different models are higher than the experimental re-
sults. ,e reason is that there is a curvature difference
between the theoretically calculated flat model and the

experimental model, which cause the aerodynamic forces
on the surface of the membrane roof to be underestimated.
Furthermore, the relative difference of the first-order
critical wind velocity is greater than the second-order wind
velocity, which indicates that the aerodynamic effect has a
greater impact on the first-order mode shape of the
membrane, which is consistent with existing research
conclusions [20–22]. In summary, it shows that the the-
oretical calculation method in this paper has the good
applicability for membrane structures.

4. Analysis of the Effect of Geometric
Nonlinearity on Critical Wind Velocity

Assuming that the wind velocity is in the X direction,
m � n � 1, b � 20m, N0x � 2 kN/m, and N0y � 2 kN/m.
,en, the difference between the critical wind velocity with
and without considering the geometric nonlinearity of
membranes are discussed. Finally, the necessity of the
consideration of the geometrical nonlinearity in the design
of such structures is given. In this paper, the expression of
critical wind speed is obtained by mathematical derivation,
and it is related to the vibration amplitude of the membrane.
Because the geometric nonlinearity of the membrane is
considered, the stiffness of the membrane varies with the
amplitude in the process of vibration, which will affect the
aerodynamic stability of the membrane roof to a certain
extent.

Define λ is the ratio of cross-wind (Y) span to along-
wind (X) span. ,e variation of critical wind velocity with
vibration amplitude for two types of membrane roofs with
different span ratios is shown in Figure 5.

Taking the membrane roof on the closed structure as an
example and considering the geometric nonlinearity of the
membrane, the critical wind velocity for single-mode in-
stability of the closed membrane roof is obtained by solving
the equation:

Vcr �

����������������������������������������������

4π m2π2b2N0x + n2π2a2N0y  + 3εf2 ρπa2b2 + 4ρ0abα1( 

8πbρ0mα3




. (61)
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By substituting f� 0 into equation (61), the results of
critical wind velocity calculation without considering geo-
metric nonlinearity can be obtained as

Vcr,L � π

�������������������������

a m2bN0x/a(  + n2aN0y/b  

2ρ0mα3
.




(62)

Comparing the critical wind velocity of the membrane
roof on closed structure with and without considering the
geometric nonlinearity, the following results are obtained:

Vcr

Vcr,L

(closed) �

����������������������������

1 +
3εf2 ρπa2b2 + 4ρ0abα1( 

4π m2π2b2N0x + n2π2a2N0y 
.




(63)

Similarly, we can also get the comparison results of
membrane roofs on open structure as

Vcr

Vcr,L

(open) �

���������������������������

1 +
3εf2 ρπa2b2 + 4ρ0abα1( 

4π m2π2b2N0x + n2π2a2N0y 




. (64)

Obviously, whether for the membrane roof on the closed
structure or open structure, the ratio of critical wind velocity

is the same with and without considering the geometric
nonlinearity. Although compared with the open structure,
the wall of the closed structure will affect the aerodynamic
force of the membrane roof, but for the ratio of critical wind
velocity equations (63) and (64), they are based on the same
structure. ,erefore, it is reasonable that the ratio of critical
wind velocity of the closed structure and the open structure
is the same.

5. Discussion

According to (63) and (64), whether for the membrane roof
on the open structure or closed structure, Vcr/Vcr,L > 1. So,
the critical wind velocity of single-mode instability obtained
with considering the geometrical nonlinearity of the
membrane is larger than the linear one.,e reason for this is
that the stress increment, which is acquired from the geo-
metric nonlinearity, can improve the lateral stiffness and
enhance the aerodynamic stability of structures. It is con-
servative for structural design. By substituting the specific
values, the ratio of critical wind velocity Vcr/Vcr,L of the
membrane roof on the closed structure can be obtained, as
shown in Table 3.

+

+
+

+

+
+ +

+
+

Rigid frame

Y

X

Measurement
point

325mm

Membrane

1

4

5

8

9

7

2

3

6

(a)

416mm

Bottom of model
Membrane

Wind

(b)

Figure 4: Experimental system.

Table 1: Physical parameters of the experimental model.

Model directory h (mm) ρ (kg/m3) E (MPa) ω (Hz) Damping ratio (%) N0x (N/mm) N0y (N/mm)
B1 0.164 0.155 1.55 13.0 1.9 1.31 0.75
B2 0.163 0.152 1.54 15.4 1.1 1.83 2.91
B3 0.161 0.152 1.56 14.3 1.7 2.40 0.98
B4 0.162 0.155 1.54 15.2 1.2 3.1 1.02

Table 2: Comparison of theoretical calculation results with experimental results.

Model directory
Experimental results ,eoretical calculation

results
Vcr,t1 (m/s) Vcr,t2 (m/s) Vcr,s1 (m/s) Vcr,s2 (m/s)

B1 3.0 4.7 >3.43 >4.90
B2 4.1 5.9 >4.72 >6.03
B3 3.5 5.5 >3.91 >5.87
B4 3.7 5.6 >4.02 >5.98
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From Table 3, it can be seen that when the cross-wind
span ratio is small. ,e geometric nonlinearity has a greater
influence on the critical wind velocity of single-mode in-
stability of the membrane roof, and the influence increases
with the increase of the vibration amplitude. When the span
ratio is greater than 1, the influence is relatively small. Article
5.3.4 of China’s Technical Regulations for Membrane
Structures (CECS 158:2015) [23] stipulates that for integral
tensioned and cable-supported membrane structures, and
the deformation of the membrane structure should not be
larger than 1/200 of the span when considering the com-
bination of wind load effects. In the calculation example in
this paper, the normal displacement is limited to 0.1m, and
the ratio of critical wind velocity is 1.00 when geometric

nonlinearity is considered or not. ,erefore, the influence of
membrane geometric nonlinearity on the aerodynamic
stability of roofs can be neglected under normal wind loads.
However, under strong wind loads, the deformation of roofs
will exceed the norm limit. At this time, the influence of
geometric nonlinearity should be considered.

6. Conclusions

In this paper, the aerodynamic stability of orthotropic
rectangular planar membranes on closed and open struc-
tures is investigated by the mathematical analytic method.
,e governing equations of wind-induced nonlinear vi-
bration of the tensioned membrane roofs are established by
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Figure 5: Curves of critical wind velocity with amplitude for two types roof models. (a) λ� 0.5. (b) λ� 1. (c) λ� 2.

Table 3: Ratio of critical wind velocity of the membrane roof on the closed structure with and without considering geometric nonlinearity.

f� 0.1m f� 0.2m f� 0.4m f� 0.6m f� 0.8m f� 1m f� 1.2m f� 1.4m
λ� 0.5 1.00 1.04 1.14 1.29 1.47 1.68 1.90 2.14
Λ� 1 1.00 1.01 1.05 1.11 1.19 1.29 1.40 1.52
Λ� 2 1.00 1.01 1.05 1.11 1.20 1.29 1.40 1.52
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using the theory of large deflection of membrane and
Darumbell’s principle. ,e Bubov–Galerkin method is ap-
plied to transform the aerodynamically coupled governing
equations into second-order constant coefficient nonlinear
differential equations. ,en, the periodic solution of the
equation is calculated by using an improved multiscale
method. Finally, critical wind velocity for single-mode in-
stability of the membrane roof considering geometric
nonlinearity is obtained by judging the stability of the pe-
riodic solutions of the equations. Furthermore, the influence
of geometrical nonlinearity on the critical wind velocity of
single-mode aeroelastic instability of membrane material is
quantitatively obtained by comparing the results with those
without consideration. ,e main conclusions can be sum-
marized as follows:

(i) Considering the geometric nonlinearity of mem-
branes vibration, the critical wind velocity of single-
mode instability of membrane roof nonlinearly
increases with the increase of transverse vibration
displacement of membranes.

(ii) ,e critical wind velocity of single-mode instability
with the geometrical nonlinearity of the membrane
considered is larger than those of linear results. For
structural design, it is conservative. When the span
along the wind direction is small, the geometrical
nonlinearity has a great influence on the critical
wind velocity of single-mode instability of the
membrane roof and with the amplitude of vibration.
When the span ratio is greater than 1, there is no
difference, as shown in Table 3. Only the vibration
amplitude of 0.8 shows an insignificant.

(iii) Under normal wind loads, the influence of mem-
brane geometric nonlinearity on the aerodynamic
stability of roofs can be neglected. However, under
strong wind loads, the deformation of roofs may
exceed the norm limit and reach about 3% of the
span, the influence of geometric nonlinearity should
be considered.

Abbreviations

a: Length of the membrane roof
b: Width of the membrane roof
c: Viscous damping
E1: Young’s modulus in X direction
E2: Young’s modulus in Y direction
f: Amplitude of membrane
h: Membrane’s thickness
Nx: ,e stress increment of membrane in X

direction
Ny: ,e stress increment of membrane in Y

direction
N0x: ,e initial stress of membrane in X direction
N0y: ,e initial stress of membrane in Y direction
p: Aerodynamic forces acting on the unit area of

the membrane projection surface
V: Wind velocity
Vcr: Critical wind velocity of divergence instability

Vcr,L: Critical wind velocity calculation without
considering geometric nonlinearity

Wmn(x, y): Given mode shape function
w(x, y, t): Deflection of membrane
z(x, y, t): Membrane surface function under wind

loadings
z0(x, y): Membrane surface function under initial stress
φ(x, y, t): Stress function
cc: Density of vortices
λ: Ratio of cross-wind (Y) span to along-wind (X)

span
ρ: Areal density of membrane
ρ0: Air density
ω: Vibration frequency of membrane.
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