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In order to diagnose the retarder faults of oil pumping machine accurately in complex environments and improve the generalization
of the algorithm, a GWO-SVM fault diagnosis algorithm based on the combination of sound texture and vibration entropy
characteristics was proposed. Firstly, the acquired sound signal was purified by band-pass filter, then generalized S-transform was
developed to extract the box dimension, directivity, and contrast ratio, which reflect the characteristics of time-frequency spectrum, to
construct three-dimensional texture eigenvectors. Secondly, the K parameter of variational mode decomposition (VMD) was
reasonably selected by the energy method, and then the vibration signal was decomposed to get modal components, and the
permutation entropy was obtained from modal components. Finally, joint eigenvectors were constructed and fed into SVM for
learning..e gray wolf optimization (GWO) algorithmwas used to optimize the parameters of the SVMmodel based onmixed kernel
function, which reduces the impact of sensor frequency response, environmental noise, and load fluctuation disturbance on the
accuracy of retarder fault diagnosis. .e results showed that the GWO-SVM fault diagnosis method, which is based on the
combination of sound texture and vibration entropy characteristics, makes full use of the complementary advantages of signal
frequency band. And the overall diagnostic accuracy for the experimental samples reaches 100%, which has good generalization ability.

1. Introduction

Oil pumping machine relies on the up and down movement
of the horsehead to complete the lifting of the crude oil from
the wellbore. .e retarder connecting the crank train is the
key component of the power transmission. Due to friction
and impact, oil pumping machine is prone to oil leakage,
gear damage, bearing damage, belt wear, and other faults
[1, 2]. Vibration signal characteristics can be used to di-
agnose mechanical failure of oil pumping machine retarder
[3, 4]. But limited to the charge accumulating effect and
coupling mode of the piezoelectric accelerometer, it is likely
to cause detection failure from the continuous impact caused
by the pitting and broken cog of the retarder. .e reason is
that the vibration sensor only detects a narrow frequency
response range and is insensitive to high-frequency signal

changes. .e sound signal accompanying the operation of
the oil pumping machine is homologous to the vibration
signal and can be obtained by the noncontact electret film
capacitive sensor, which can effectively compensate for the
detection failure phenomenon caused by the vibration
sensor band limitation.

For nonstationary signals such as sound and vibration,
there are mainly analysis methods such as dynamic time
warping (DTW), wavelet transform (WT), empirical mode
decomposition (EMD), and local mean decomposition
(LMD) [5–8]. .e DTW planning optimal path is prone to
metamorphosis distortion, WT has energy leakage, and the
two cannot adaptively decompose the signal. .e EMD
adaptive decomposition process is prone to over enveloping,
end effect, and modal aliasing. LMD optimizes under-
frequency, over envelopes, and other issues of EMD.
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However, LMD and EMD are essentially recursive de-
composition methods, which cannot eliminate the endpoint
effect, modal aliasing, and other issues fundamentally. Var-
iational mode decomposition (VMD) is a new nonrecursive
mode decomposition method, which avoids the modal ali-
asing problem caused by envelope error [9, 10]. .e gener-
alized S-transform is developed by short-time Fourier
transform (STFT) and Wigner–Ville distribution (WVD),
which makes up for the defects of STFT single resolution and
WT phase and without cross-term interference problem. It
introduces a frequency-dependent adjustment factor into the
window function to adjust the time-frequency resolution [11].

For the sound-vibration signal combination method, Zhao
et al. [12] process sound and vibration signals via improving the
ensemble empirical mode decomposition (EEMD) to calculate
the two-dimensional spectral entropy. .e diagnostic effect is
improved..e literature [13] utilizes wavelet packet and feature
entropy theory to extract the features of the collected sound and
vibration signals, which improves the diagnostic accuracy.
Zhang et al. [14] construct three-dimensional (3D) graph of
sound and vibration and extract envelope of 3D graph and
hierarchical eigenvectors based on shape, which provides a new
idea for circuit breaker diagnosis. In [15], LMD is utilized to
decompose sound and vibration signals and select appropriate
PF component to obtain feature entropy as the eigenvectors.
.e diagnostic accuracy is improved. Although studies [12–15]
have achieved some good results, the difference in sound and
vibration signals is not considered. .e feature extraction
methods of the two signals are identical, which leads to mis-
diagnosis and poor generalization.

It is a beneficial attempt to distinguish the defect of oil
pumping machine retarder by the features combination of
sound and vibration signals. .e generalized S-transform is
very sensitive to high-frequency impact signals and has high
time-frequency resolution [16], which can accurately reflect the
high-frequency impact characteristics of sound signals and rich
time-frequency information. .e load fluctuation of oil
pumpingmachine’s up and down stroke causes the spectrumof
the vibration signal of the retarder to be extremely complicated.
.e signal components include the combination of gear shaft
rotation, gear meshing frequency, and so on [17]. Performing
VMDmethod can effectively improvemisdiagnosis andmissed
diagnosis caused by band aliasing. In this paper, the combined
features of sound and vibration signals are extracted and
combined with the GWO-SVM model for fault identification.
.e diagnosis process is shown in Figure 1.

AC144 piezoelectric acceleration sensor (0.6–10000Hz)
and NVL-AF-audio embedded waterproof (explosion-proof)
high-fidelity pickup (20–20000Hz) were acquired to collect
CYJ10-3-48HB oil pumping machine retarder (CJH1100× 73)
multiple sets of sound and vibration sample signals under
retarder oil leakage, gear pitting peeling, belt damage, and
normal state to extract sound texture-vibration entropy
characteristics, respectively.

2. Sound Signal Feature Extraction

.e motor transmits power to the retarder through the
belt. .e retarder reduces the high-speed rotation of the

motor through three-axis two-stage deceleration to the
low-speed rotation of the crankshaft. .e whole operation
process is relatively complex, and it runs in the open air.
As a result, the sound signals collected include the belt
friction noise of oil pumping machine, the noise of the
motor, wind noise, thunder noise, and human voice.
.rough spectrum analysis, it is not hard to find that the
above noise is mostly low-frequency interference, and the
frequency is concentrated between 0 and 10 kHz. So the
frequency band noise of sound signals below 10 kHz and
above 20 kHz is filtered by finite impulse response (FIR)
band-pass filter. .e sound signals in normal operation
state between 10 and 20 kHz, before and after denoising,
are shown in Figure 2.

2.1. Sound Signal Generalized S-Transform. .e windowed
Fourier transform for signal x(t) is performed:

S(f) � 
+∞

− ∞
x(t)w(t)e

− j2πftdt. (1)

.e Gauss window function is scaled σ and translated τ,
that is,

w(τ − t) �
1

σ
���
2π

√ e
− (τ− t)2/2σ2( ). (2)

.e time-frequency spectrum of x(t) is obtained by
introducing formula (2) into formula (1):

S(σ, τ) � 
+∞

− ∞
x(t)

1
σ

���
2π

√ e
− (τ− t)2/2σ2( )e

− j2πftdt. (3)

Set σ(f) � 1/|f|, get the S-transform as follows:

S(f, τ) � 
+∞

− ∞

|f|
���
2π

√ e
− f2(τ− t)2/2( )x(t)e

− j2πftdt

� 
+∞

− ∞
ω(f, (τ − t))x(t)e

− j2πftdt,

ω(f, τ − t) �
|f|
���
2π

√ e
− f2(τ− t)2/2( ),

(4)

where f is the frequency, t is the time, τ is the positional
parameter controlling the Gaussian window on the time axis
t, and ω(f, τ − t) is the Gaussian window function, and the
height and width of which vary with the frequency f. At the
same frequency, the Gaussian window function of different
signals is fixed. In order to improve the energy concentration
of time-frequency, parameters α and β are introduced. .e
basic structure is as follows:

S(f, τ) � 
+∞

− ∞

fα




|β|
���
2π

√ e
− f2α(τ− t)2/2β2( )x(t)e

− j2πftdt

� 
+∞

− ∞
ω(f, (τ − t))x(t)e

− j2πftdt,

(5)

where α and β are adjustment factors and are generally
positive. When β increases or α decreases, the Gaussian
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window width is stretched in the time domain and com-
pressed in the frequency domain, and vice versa. .e values
of α and β are selected as 1 and 2, respectively.
.e time-frequency diagram of the generalized S-transform

of the vibration signal in the four states is shown in
Figure 3.

.e time-frequency texture images, after generalized S-
transform, embody different texture features under different
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Figure 1: Diagnostic flowchart.
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Figure 2: Comparison of results before and after denoising.
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faults. .e box dimension, directivity, and contrast ratio
which reflect the time-frequency texture features are
extracted as eigenvectors to classify faults.

2.2. Box Dimension. .e box dimension is particularly
sensitive to the texture roughness of the image spatial dis-
tribution and can quantitatively characterize the distribution
law of the time-frequency diagram. .e calculation process
is as follows: subblocks of size M×M are divided into L× L
(1< L≤M/2, L is an integer), make r� L/M, then each grid is
a column L× L× L1 box, L1� L×G/M, and G is gray level.
Suppose the minimum and maximum values of the image
grayscale in the (i, j) grid fall in the k-th and l-th boxes,
respectively, then the number of boxes required for the (i, j)
grid image is given by

nr(i, j) � k − l + 1. (6)

.e number of boxes required to cover the entire image
is Nr:

Nr �  nr(i, j). (7)

.e box dimension can be calculated by the following
formula:

D � lim
r⟶0

log Nr( 

log(1/r)
 . (8)

.e log (Nr) and log (1/r) slopes are fitted by least-
squares method, and the absolute value is the box
dimension.

2.3. Directivity. Directivity describes the global character-
istics of texture images and characterizes the trend of basic
texture units and their arrangement tendency in all di-
rections. Calculate the gradient vector ΔV of each pixel,
whose modulus and direction are defined as follows:

|ΔV| �
(|ΔP| + |ΔQ|)

2
,

θ � tan− 1 ΔQ
ΔP

  +
π
2

,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(9)
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Figure 3: Time-frequency diagram of generalized S-transform in four states: (a) normal state, (b) belt damage, (c) retarder oil leakage, and
(d) gear pitting peeling.
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where |ΔV| is the gradient vector modulus; ΔP and ΔQ are
the changes of ΔV in the horizontal and vertical di-
rections, respectively; and θ is the angle of the gradient
vector.

Make a histogram and calculate the directivity by cal-
culating the peak value of the gradient statistical histogram.
.e formula is as follows:

Fdir � 1 − r · np × 

np

p�1

φ∈wp

ϕ − ϕp 
2

× HD(ϕ), (10)

where wp is the amplitude of the p-th peak, np is the number
of histogram peaks, the subscriptD ofHD is theD-th peak of
the histogram, and r is the normalization factor.

2.4. Contrast Ratio. .e contrast ratio reflects the difference
of the image in gray level. .e larger the difference in gray
value, the stronger the contrast ratio. When there is a sig-
nificant peak in the gray value of 0 or 255, the deviation
degree is measured by the kurtosis k4, and the calculation is
as follows:

Fc �
σh

k4
, (11)

where k4 � μ4/σ4h, μ4 is the 4th moment of the gray mean of
the whole image and σh is the standard deviation of the
image.

Calculate the box dimension, directivity, and contrast
ratio of the generalized S-transformed time-frequency
diagram of the sound signal in the four states (belt
breakage, retarder oil leakage, gear pitting peeling, and
normal state), and record them as D, Fdir, and Fc, re-
spectively. .e sound texture features are shown in
Table 1.

.e texture features of the abovementioned sound
signal have antinoise and rotation invariance and can
describe the local pattern and arrangement rule of the
image. Longitudinal and horizontal comparison of the
characteristics of the sound texture can identify the op-
erating state of the retarder.

3. Vibration Signal Feature Extraction

.e energy spectrum of the vibration signal is concentrated
within 10 kHz, and the vibration signals of the normal state
and belt damage state of oil pumping machine are collected.
.e time domain waveform comparison is shown in
Figure 4.

3.1. VMD Decomposition

3.1.1. VMD Decomposition Principle. .e VMD de-
composition is mainly divided into two parts: the es-
tablishment and solution of the variational constraint
problem. .e following problems are solved for the vi-
bration signal with the data length N in the oil production
process:

min
uk{ }, ωk{ }


k

zt δ(t) +
j

πt
 ∗ μk(t) e− jωk t

�����

�����
2⎧⎨

⎩

⎫⎬

⎭

s.t. 
k

μk � f,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(12)

where μp  ≔ μ1, . . . , μp  is the decomposed p modes and
ωp  ≔ ω1, . . . ,ωp  is the center frequency of the pmodes.

In order to solve the optimal solution, the quadratic
penalty factor α and the Lagrangian operator λ(t) are in-
troduced to change the constrained variational problem into
a nonbinding variational problem..e extended Lagrangian
expression is as follows:

L μk , ωk , λ(  � α
k

zt δ(t) +
j

πt
 ∗ μk(t) e

− jωkt

�������

�������

2

2

+ f(t) − 
k

μk(t)

���������

���������

2

2

+ λ(t), f(t)

− 
k

μk(t).

(13)

.e saddle point of equation (13) is solved by the ADMM
method, so that μn+1

k , ωn+1
k , and λn+1 are continuously

updated, and the modal component μk and center frequency
ωk are solved as follows:

μn+1
k (ω) �

f(ω) − i≠kμn
k(ω) + λ(ω)/2

1 + 2α ω − ωk( 
2 , (14)

ωn+1
k �


∞

0
ω μn

k(ω)


dω


∞

0
μn

k(ω)


dω
. (15)

.e VMD steps are as follows:

(1) Initialize μ1k,ω
1
k, λ

1̂, and n, let its initial value be 0, and
set the decomposition modal number K to 2 (pre-
decomposition optimization).

(2) Update μk and wk according to equations (14) and
(15), respectively.

Table 1: Sound texture features.

Operating state Group
Sound texture

D Fdir Fc

Belt damage 1 2.5674 4.5897 1.2483
2 2.5661 4.5812 1.2429

Retarder oil leakage 1 3.8370 8.3845 2.2430
2 3.8367 8.3861 2.2423

Gear pitting peeling 1 5.4279 6.3344 3.3394
2 5.4286 6.3367 3.3323

Normal state 1 4.6391 5.4335 4.3428
2 4.6387 5.4345 4.3425
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(3) Update λ:
λ

n
(ω) + τ f(ω) −  μn+1

k ⟶ λ
n+1

(ω). (16)

(4) If the following formula is satisfied, the iteration is
stopped and the result is output; otherwise, it returns
to step 2:

 μn+1
k − μn

k

����
����
2
2

μn
k

����
����
2
2 < ε

. (17)

3.1.2. VMD Parameter K Optimization. In order to prevent
the VMD from being decomposed, the K parameter is se-
lected according to the energy conservation theory before
and after decomposition. For the original retarder vibration
signal sequence x(i), the energy calculation formula is as
follows:

E �

��������


n
i�1x

2(i)

n



, (18)

where E represents the signal energy value and n is the
sampling point. In order to characterize the energy differ-
ence before and after the VMD decomposition, the energy
difference parameter ψ is defined and calculated as follows:

ψ �


K
x�1Ex − E




E
× 100%, (19)

where Ex corresponds to the energy of the x component, K is
the number of components, and E is the original signal
energy. .e total energy of K components after VMD de-
composition is equal to the energy of the original signal (i.e.,
the ideal value of ψ is 0), after many experiments and
calculations, the trend of K is shown in Figure 5.

It can be seen from Figure 5 that when K is greater than
6, the energy difference parameter λ is increased, and it can
be judged that overdecomposition occurs. At this time, the K
value at the turning point is the optimal decomposition
mode number of the VMD. .e time-frequency diagram
obtained by decomposing the vibration signal in the belt
damage state is shown in Figures 6 and 7.

It can be seen from the frequency domain spectrum of
Figure 7 that the VMD decomposition of the vibration signal
effectively improves the modal aliasing phenomenon and
provides a strong support for accurate fault diagnosis.

3.2. Calculated Permutation Entropy. Permutation entropy
can detect the sudden change of the signal, has strong an-
tinoise ability and high time resolution, and is highly tar-
geted to the nonstationary chaotic vibration signal under
complex environment of oil production field.

For the signal sequence X(i), i � 1, 2, . . . , n{ }, phase
space reconstruction is performed to obtain the following
matrix:

x(1) x(1 + τ) · · · x(1 +(m − 1)τ)

x(2) x(2 + τ) · · · x(2 +(m − 1)τ)

x(j) x(j + τ) · · · x(j +(m − 1)τ)

· · · · · ·

x(k) x(k + τ) · · · x(k +(m − 1)τ)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (20)

where j � 1, 2, . . . , k, k � n − (m − 1)τ, and m and τ are the
embedded dimension and delay time. .e elements of each
component (total of k) are arranged in ascending order
according to the numerical value, and different symbol
sequences are obtained according to the reconstructed
component index. .em-dimensional phase space mapping
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Figure 4: Comparison of normal and abnormal waveforms in time domain.
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symbol sequence has m! species, and the probability of
occurrence of s different symbol sequences is P1, P2, . . . , Ps,
respectively, calculated as follows:

Pe(m) � − 
s

j�1
Pj lnPj. (21)

Normalize Pe(m):

0≤Pe �
Pe(m)

ln(m!)≤ 1
. (22)

After many experiments and comparative analysis, the
embedding dimensionm is selected as 8 and the delay time τ
is selected as 5, and the entropy of the six modes of the
vibration signal is obtained as shown in Table 2.

.e entropy value is related to the degree of the sample
sequence rule. From Table 2, it can be seen that there are
obvious differences in the permutation entropy of each state,
the distinguishability is good, and the state information of
the retarder can be effectively characterized.

4. Experiment and Result Analysis

4.1.GWO-SVMDiagnosticModel. SVM is especially suitable
for small sample fault diagnosis, but the selection of penalty
factor C and kernel function directly affect the classification
performance of SVM. Considering that the sample in this
paper is a multisensor data feature set, the sensor frequency
response, environmental noise, and load output fluctuation
interference have a great influence on the diagnostic ac-
curacy, and GA, PSO, and other algorithms are easy to fall
into the local optimal solution, so a mixed kernel function is
constructed and the gray wolf optimization (GWO) algo-
rithm is introduced to find the best penalty factor and
mixing coefficient.

It is necessary to combine the different kernel functions
to obtain a kernel function with strong promotion ability
and learning ability and good extrapolation ability. .e
Taylor-Kernel with moderate decreasing (T-KMOD) func-
tion satisfies the zero-point near-descent criterion, with
good flexibility, fast convergence, and good locality.

Polynomial functions have high classification accuracy and
strong generalization ability. .erefore, the two are com-
bined in the following form:

SM � λSpoly +(1 − λ)ST− KMOF, (23)

where ST− KMOD � T − KMOD(x, x′) � L
n
i�1(c/(‖x − x′‖2+

σ2))k∗i, Spoly � [(x · x′) + C]q, λ ∈ (0, 1) C≥ 0; x · x′ ∈ Rn,
L>0, L is used to control the value of the kernel function at 0.
σ and c are used to control the width and convergence rate of
the kernel function, respectively, and both i and n are
positive integers.

GWO has a fast convergence speed and a simple
structure, and it is easier to achieve optimal classification.
.e mathematical model is as follows:

B � C · Xp(t) − X(t)


,

X(t + 1) � Xp(t) − A · B,

⎧⎨

⎩ (24)

where t represents the current number of iterations; Xp(t) is
the prey position vector, and A and C are coefficient vectors.
A and C are as follows:

A � 2a · r1 − a,

C � 2r2,
 (25)

where a is the convergence factor, satisfying a ∈ [0, 2], and
r1 and r2 are random vectors in [0, 1].

60 sets of samples were collected for each state, 40 sets
were used for training, and 20 sets were used for testing.
Initialize the population, calculate the fitness value of each
wolf, select the first three optimal fitness values, determine
the gray wolf rank, and update the gray wolf position, head
wolf, coefficient vector, and other parameters until the SVM
parameters are optimal. .e algorithm flowchart is shown in
Figure 8:

4.2. Experimental Result. In the experiment, the MVP-6000
acquisition card of ADLINK Company is used, whose
sampling rate was set to 40 kHz. .e sound sensor is placed
about 50 cm away from the sound source, and the vibration
sensor is adsorbed on the surface of the vibration body of the
retarder. .e acquisition card is equipped with IEPE con-
stant current source, ±10V voltage range, 24 bit resolution,
and 110 dB dynamic range.

.e sound texture feature extracted by the generalized S-
transform and the vibration entropy feature calculated by
the VMD decomposition are combined to construct a joint
eigenvector matrix and sent to the SVM for training. GWO
is used to optimize the penalty factor C and the mixing
coefficient λ in order to improve the SVM classification
performance. .e number of iterations is set to 100, and the
optimal parameter values are 2.5693 and 0.17, respectively.
.e convergence of the algorithm is shown in Figure 9:

.e sound-vibration joint eigenvectors are constructed
with a combination of Tables 1 and 2. Set the normal state
sample characteristic value label to 1 (1–20 groups), the belt
damage is 2 (21–40 groups), the retarder oil leakage is 3
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(41–60 groups), and the gear pitting peeling is 4 (61–80
groups). Some test data are shown in Table 3.

.e diagnosis results are as follows, in which Figures 10
and 11 show the fault identification results before and after
the model optimization.

According to the results of Figure 10, two groups of
normal state samples were misjudged as belt damage state,
two groups of retarder oil leakage state samples were mis-
judged as belt damage state, and one group of gear pitting
peeling state samples was misjudged as retarder oil leakage

state..e identification accuracy is 93.75%..e results of the
GWO-SVM model are shown in Figure 11. All 80 groups of
test samples are classified correctly, and the identification
accuracy is 100%. Although the input characteristics are the
same, the diagnostic accuracy differs significantly. Com-
pared with SVM, the accuracy of GWO-SVM is improved by
6.25%. .e reason is that GWO-SVM diagnostic model can
find the appropriate parameters of SVM classifier through
GWO, which makes full use of the classification advantages
of SVM in constructing optimal hyperplane, and thus, the
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Figure 6: Time domain diagram of vibration signal VMD decomposition.
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Figure 7: Frequency domain diagram of vibration signal VMD decomposition.

Table 2: Permutation entropy of modal components of vibration signals.

Operating state Group
Vibration entropy

V1 V2 V3 V4 V5 V6

Belt damage 1 0.6139 0.6753 0.6214 0.6457 0.6390 0.6523
2 0.6138 0.6751 0.6211 0.6457 0.6391 0.6522

Retarder oil leakage 1 0.3269 0.3658 0.3569 0.3546 0.3426 0.3261
2 0.3265 0.3659 0.3565 0.3546 0.3425 0.3260

Gear pitting peeling 1 0.5689 0.5469 0.5218 0.5634 0.5849 0.5459
2 0.5687 0.5468 0.5217 0.5634 0.5847 0.5458

Normal state 1 0.1232 0.1526 0.1726 0.1521 0.1358 0.1189
2 0.1231 0.1523 0.1725 0.1523 0.1356 0.1189
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accuracy of fault diagnosis is improved. At the same time,
the important influence of the accurate selection of penalty
factor C and kernel function on the accuracy of state
identification is verified. Compared with the SVM model,
GWO-SVM can more accurately reflect the type of retarder
defects.

4.3. Diagnostic Effect Comparison and Verification

4.3.1. Sound-Vibration Joint Characteristic Method
Verification. Contrast the diagnosis effect of sound signal,
vibration signal, sound-vibration combined, as shown in
Figure 12. For the experimental sample data, the diagnostic
accuracy of sound characteristics and vibration character-
istics were 91% and 94%, respectively, and the sound-vi-
bration combined diagnosis accuracy rate reached 100%.
.erefore, based on the combined characteristics of sound
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Figure 9: Convergence of GWO algorithm.
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Figure 11: Fault identification results of the GWO-SVM model.

Table 3: Partial test samples and diagnostic results.

Joint eigenvector
Diagnosis label Diagnosis result

D Fdir Fc V1 V2 V3 V4 V5 V6

4.6393 5.4331 4.3423 0.1233 0.1525 0.1728 0.1523 0.1360 0.1190 1 Normal state4.6385 5.4348 4.3422 0.1229 0.1523 0.1723 0.1523 0.1358 0.1193 1
2.5673 4.5897 1.2485 0.6137 0.6752 0.6213 0.6459 0.6391 0.6527 2 Belt damage2.5665 4.5813 1.2430 0.6139 0.6753 0.6209 0.6458 0.6392 0.6523 2
3.8371 8.3847 2.2431 0.3271 0.3661 0.3570 0.3541 0.3428 0.3265 3 Retarder oil leakage3.8365 8.3859 2.2425 0.3267 0.3660 0.3566 0.3542 0.3427 0.3261 3
5.4276 6.3346 3.3395 0.5692 0.5468 0.5219 0.5633 0.5851 0.5463 4 Gear pitting peeling5.4282 6.3361 3.3325 0.5685 0.5471 0.5219 0.5639 0.5849 0.5465 4
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and vibration, the state information of the retarder can be
fully reflected, the extracted eigenvectors are complemen-
tary, and the diagnostic effect is improved.

4.3.2. Verification of Generalization Performance.
Because the source and structure of the data are different in
the actual oilfield operation, it is necessary to classify the
fault data of the same type and different characteristics. In
the generalization experiment, the sampling rate was
changed from 40 kHz to 30 kHz, and the PCB357B21 type
vibration sensor and the WM-025N type pickup were
replaced, and the sensor placement position was changed.
.e diagnosis result is shown in Figure 13.

It can be seen from Figure 13 that the overall diagnostic
accuracy of the optimized SVM model still reaches 97.8% in

the case of changes in acquisition parameter settings, sensor
types, and positions, which is much higher than the
unoptimizedmodel, indicating that the optimized model has
stronger adaptability to fresh samples and better general-
ization ability.

5. Conclusion

Defect identification of related retarder of beam oil pumping
machine has always been a technical problem in the state
monitoring of distributed oil production wells. .e com-
bination of sound texture and vibration entropy charac-
teristics and the GWO-SVM classification algorithm,
proposed in this paper, can effectively and accurately di-
agnose the field faults under the complementary frequency
band. .e main contributions and novels of the proposed
method are summarized as follows:

(1) A fault diagnosis method based on the complemen-
tarity combination of sound-vibration signals is pro-
posed for retarder equipment of oil pumping machine,
which improves the accuracy of fault identification on
the basis of nonmissing detection of retarder defects.

(2) For sound signals, the box dimension, directivity,
and contrast ratio of time-frequency diagram are
calculated after generalized S-transform to construct
the sound texture features. For vibration signals,
parameter K of the VMD method is selected by the
energy method, and the permutation entropy of
modal components is obtained to construct the vi-
bration entropy characteristics. .e combination of
the two effectively characterizes comprehensive in-
formation on various types of fault samples.

(3) .e diagnosis model of GWO-SVM proposed in this
paper, which optimizes the penalty factor andmixing
coefficient, greatly improves the accuracy and gen-
eralization of SVM identification. It has broad
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application value in fault diagnosis of oil well ma-
chinery and equipment.
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