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In this study, we attempt to analyze the influence of different excitation factors on the dynamic behavior of a gear transmission
system in a braiding machine. In order to observe nonlinear characteristics, a mathematical model is established with a six-
degrees-of-freedom gear system for consideration of multiple excitation factors. Iterative results are used to study the nonlinear
characteristics of the gear system with respect to contact temperature, varying levels of friction, and disturbance of yarn tension
using bifurcation diagrams, maximum Lyapunov exponents, phase diagrams, Poincare maps, and the power spectrum. -e
numerical results show that excitation factors such as temperature and surface friction, among others, have considerable influence
on the nonlinear characteristics of the gear system in a braiding machine, and the model is evaluated to show the key regions of
sensitivity. -e analysis of associated parameters can be helpful in the design and control of braiding machines.

1. Introduction

Braiding is a traditional technique used in textile production.
In recent years, the emergence of newmaterials and different
types of braiding machines has led to an upsurge in research
on braiding.

Most of the studies of 3-D braided composites focus on
the braiding process, structure, parameters, and perfor-
mance analysis of composite materials. Ma et al. [1] pro-
posed a mathematical model of tension versus yarn
displacement, and Guyader et al. [2] analyzed the rela-
tionships between the process parameters and the geometry
of the braid. Hajrasouliha et al. [3] presented a theoretical
model for the prediction of braid angle at any point of a
mandrel with constant arbitrary cross section by considering
the kinematic parameters of a circular braiding machine.
Shen and Branscomb [4] proposed a purely mathematical
model to generate the 3D geometry of braided structures,
and Wehrkamp-Richter et al. [5] studied the damage and
failure characteristics of triaxial braided composites. Swery
et al. [6] provided a complete simulation process for pre-
dictions on the manufacturing of braided composite parts.
However, further research holds the promise of improving

the performance of 3-D circular braiding machines. Zhang
et al. [7] proposed that the performance of a braiding
machine depends on the motion system, and the key
component of the motion system is the gear system. -e
dynamic excitation created by the gear transmission system
in a braiding machine is the main source of vibrations, and
these nonlinear vibrations reduce braid quality and have
become an issue of urgent concern.

Gear transmissions are widely used in engineering ma-
chinery, ocean engineering, traffic and transportation, met-
allurgy, and building materials, and they exhibit a long life
span, smooth operation, high load capacity, and high reli-
ability. -ere has been considerable research on gear systems
since 1990, and one of the main goals is the development of
dynamic models. Dynamic modeling methods include the
lumped parameter method, the finite element method, the
lumped mass method, the transfer matrix method, and the
power bond graph method. In 1990, Kahraman and Singh [8]
established a nonlinear dynamic model for a single-stage gear
system by considering error and backlash. Later, these same
authors [9] established a nonlinear dynamic model of a 3DOF
gear system that considers comprehensive transmission error,
backlash, time-varying meshing stiffness, and bearing
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clearance. Vaishya and Singh [10] established a gear dynamic
model with time-varying friction, and Luo [11] established a
gear dynamic model considering friction, collision, and lu-
brication condition. He et al. [12] developed a single-stage
gear dynamic model considering friction and time-varying
meshing stiffness, and Liu and Parker [13] proposed a
multiple-stage gear dynamic model considering contact
looseness, load fluctuation, and tooth profile modification.
Chang-Jian [14] developed a model considering nonlinear oil
film force, nonlinear support, and nonlinear meshing force, Li
and Kahraman [15] considered transient elastohydrodynamic
lubrication, and Huang et al. [16] considered variable lu-
bricating oil damping. Eritenel and Parker [17] established the
equivalent stiffness model in 2012, and Cui et al. [18]
established a gear-rotor dynamic model considering non-
linear meshing force and nonlinear oil film force, while Chen
et al. [19] established a gear dynamic model considering
backlash and asymmetric meshing stiffness. Baguet and
Jacquenot [20] established a gear-rotor-bearing coupling
dynamic model considering nonlinear support and nonlinear
meshing stiffness, Li and Kahraman [21] established a friction
dynamic model considering lateral torsion and hybrid elas-
tohydrodynamic lubrication, and Wei [22] developed a
multiple-degree-of-freedom gear dynamic model for high-
speed locomotives by considering bearing clearance, backlash,
and time-varying meshing stiffness. Gao et al. [23] considered
transmission error, time-varying meshing stiffness, backlash,
nonlinear oil film force, and gear meshing force, and Zhang
[24] established a gear-rotor dynamic model considering
backlash and radial clearance. Xiang-Feng [25] established a
single-degree-of-freedom torsion-vibration model consider-
ing the temperature of the tooth surface, and Zhang [26]
investigated the influence of multiple excitation factors op-
erating on the dynamic characteristics of a gear system, in-
cluding time-varying friction, transmission error, and
backlash. -is literature review shows that various excitation
factors have been considered in modeling equations for gear
systems, and these can realize close correspondence to actual
working conditions.

It is clear that contact temperature, time-varying
friction, and transmission error cannot be ignored when
modeling the gear transmission system. To the authors’
knowledge, studies on nonlinear dynamic features of gear
transmission systems for 3-D circular braiding machines
are scarce. Zhang et al. [7] researched nonlinear dynamic
characteristics of gear transmission systems in braiding
machines and considered disturbance of yarn tension and
transmission error, but not contact temperature or time-
varying friction. However, contact temperature and time-
varying friction have an important influence on the dy-
namic behavior of a gear transmission system in a braiding
machine. In this paper, we analyze nonlinear dynamic
characteristics of a gear transmission system in a braiding
machine and consider disturbance of yarn tension,
transmission error, time-varying friction, and contact
temperature; all of these factors are of potential importance
in the development of models to improve braiding quality,

and the associated parameters will be helpful in the design
and control of braiding machines.

2. Dynamic Modeling

2.1. Braiding Process. To gain a better understanding of the
braiding process, a schematic of a radial braiding machine
with an industrial robot is shown in Figure 1. -e radial
braiding machine has 88 horn gears, each of which has four
slots. -e carriers are installed with the 1F1E arrangement (a
gap is set between two adjacent carriers in the same group)
and 176 carriers are driven during the braiding process. -e
radial braiding machine has 1 layer and 176 spindles, as is
established with the coordinate system shown in Figure 1;
the rotational center of the end of the robot effector is the
origin, and the X, Y, and Z axes are as shown. Fij refers to the
force that yarn of the ith (i� 1, 2, . . ., n) spindle on the jth
(j� 1, 2, . . ., m) track exerts on the mandrel, and this can be
obtained from the actual situation; α refers to the angle
between one yarn and the Z-axis; ω refers to the angular
velocity of the spindle; ϕij refers to the angle between one
yarn and the horizontal plane as projected in the X-Y plane.
Half of the carriers move in a clockwise direction, while the
other half move in a counterclockwise direction during the
braiding process. As shown in Figure 2, the carriers in the
CA group move counterclockwise, and the carriers in the CB
groupmove clockwise. Meanwhile, the traction system drags
the robot with the mandrel, which causes the mandrel to
move along the braiding center.

2.2. Dynamic Modeling of the Gear System. Figures 3(a) and
3(b) show that the transmission chain of a radial braiding
machine consists of many transmission structures, including
the transmission shaft, bearing, horn gear, gear, woodruff
key, carrier, and shaft sleeve. Obviously, one crucial struc-
ture of the motion system in a radial braiding machine is the
gear. Optimizing gear meshing to minimize vibration is an
effective way of improving the performance of the braiding
machine.

To aid the consideration of the nonlinear characteristics
of the motion system in a radial braiding machine, a
schematic illustration is shown in Figure 4 and the dynamic
equations of the gear system areas are established in
equation (1). Here,mp andmg are themasses of the gears;me

is the effective mass; cpx, cpy, cgx, and cgy are the equivalent
dampings of bearing; δpx is the random disturbance of cpx;
δpy is the random disturbance of cpy; δgx is the random
disturbance of cgx; δgy is the random disturbance of cgy; kpx,
kpy, kgx, and kgy are the equivalent stiffnesses of bearings;
fpx, fpy, fgx, fgy, and fhare the displacement functions of
the bearing;Λ is the sign function; F(t) represents friction at
the tooth surface; Fpx, Fpy, Fgx, and Fgy are the forces
transmitted from the bearing; Fe1 and Fe2 are the eccentric
forces; φp and φgare the angular displacements of the gear;
ϕp(τ) and ϕg(τ) are the phase angles of eccentric force; ch is
the damping coefficient of gear meshing; δch is the random
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disturbance of ch; Rp and Rg are the base circle radii of the
gear; xp, xg, yp, and yg are the center displacements of gears;
e(τ) is the static transmission error; kh(τ) is the time-
varying meshing stiffness coefficient; Jp is the rotational
inertia of the initiative gear; Tp is the driving torque of the
initiative gear; Jg is the rotational inertia of the passive gear;
ρp and ρg are the masses of eccentric arms; ωp and ωg are
the angular velocities of gears; Tg is the load torque of the
passive gear; δ is the relative torsional displacement of gear
pairs; kw is the amplitude of the time-varying stiffness
fluctuation caused by temperature variation; δF is the

random disturbance of load. In order to describe the
meshing position and state accurately, a schematic diagram
of the spread angle of active gears is shown in Figure 5.

-e dynamic equations of a gear transmission system in
a radial braiding machine are established according to
Newton’s laws as follows:

(a) (b)

Figure 3: (a) Diagram of a closed-loop gear transmission system in
a 3-D circular braiding machine gear transmission system. (b)
Partial diagram of the gear transmission system.
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Figure 1: Diagram of the mandrel dragged by the robot in a three-dimensional braiding machine.
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Figure 2: Diagram of the braiding process.
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Figure 4: Dynamic model of gear transmission system.
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mp · xp + cpx + δpx  · €xp + kpx · fpx xp  − 
n

i�1
ΛiFi(t) + Fpx + Fe1 · cos ϕp(τ)  � 0,

mp · yp + cpy + δpy  · €yp + kpy · fpy yp  + ch + δch(  · Rp · €θp − Rg · €θg + €yp − €yg − €e(τ)  + . . .

kh(τ) · fh Rp · θp − Rg · θg + yp − yg − e(τ)  + Fpy + Fe1 · sin ϕp(τ)  � 0,

Jp · θp + Rp · ch + δch(  · Rp · €θp − Rg · €θg + €yp − €yg − _e(τ)  + . . .

Rp · kh(τ) · Rp · θp − Rg · θg + yp − yg − e(τ)  � Tp + 
n

i�1
ΛiRpi(t)Fi(t) + δF,

mg · xg + cgx + δgx  · €xg + kgx · fgx xg  + 
n

i�1
ΛiFi(t) − Fgx − Fe2 · cos ϕg(τ)  � 0,

mg · yg + cgy + δgy  · €yg + kgy · fgy yg  − ch + δch(  · Rp · €θp − Rg · €θg + €yp − €yg − €e(τ)  − . . .

kh(τ) · fh Rp · θp − Rg · θg + yp − yg − e(τ)  − Fgy − Fe2 · sin ϕg(τ)  � 0,

Jg · θg − Rg · ch + δch(  · Rp · €θp − Rg · €θg + €yp − €yg − €e(τ)  − . . .

Rg · kh(τ) · Rp · θp − Rg · θg + yp − yg − e(τ)  � − Tg − 
n

i�1
ΛiRgi(t)Fi(t) + δF,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

δ � Rp · θp − Rg · θg + yp − yg − e(τ),

me �
Jp · Jg

Jp · R2
g + Jg · R2

g

,

fpx(u), fpy(u), fgx(u), fgy(u), fh(u) �

u − b, u> b,

0, − b≤ u≤ b, u � yp, yg, xp, xg, δ,

u + b, u< − b,

⎧⎪⎪⎨

⎪⎪⎩

Fe1 � mp · ρp · ω2
p,

Fe2 � mg · ρg · ω2
g.

(2)
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Figure 5: Schematic diagram of spread angle of initiative gear.
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After Fourier series expansion, we take the first-order
components of kh(τ) and e(τ), which are simplified as
follows:

kh(τ) � k0 + kv cos ωh + δωh
 τ , (3)

e(τ) � ev sin ωhτ( . (4)

Here, k0 is the average meshing stiffness; kv is the
magnitude of variation of meshing stiffness; ωh is the driving
frequency of gear pairs; δωh

is the random disturbance of ωh;
and ev is the amplitude of transmission error.

-e frequency of gear pairs is

ωn �

���
k0

me



. (5a)

-e frequency of gear p is

ωp �

���
kpy

mp



. (5b)

-e frequency of gear q is

ωg �

���
kgy

mg



. (5c)

-e backlash ratio is

b
∗

�
b

bc

. (5d)

-e stiffness ratio is

ε �
khv

kh0
, (5e)

where b is the actual backlash, bc is the standard backlash,
b � bc, khv is the amplitude of time-varying meshing stiff-
ness, and kh0 is the average stiffness.

2.3. Time-Varying Friction Coefficient and Calculation
Model. -e friction coefficient for a tooth surface is affected
by many factors such as the micromorphology of the tooth
surface, lubrication state, and meshing position. -e pre-
dictive models of friction coefficient such as the Coulomb
model and the smoothed Coulombmodel are used to predict
the friction coefficient of gears.

2.3.1. Coulomb Model. -e Coulomb model is the simpler
model. -e friction coefficient does not change with the
position of meshing contact point, and it can only change
when the direction of friction is at a node:

fci(t) � Savgλ(t) � Savg · sign αC − αA(  − mod Ωpt, αD − αA  .

(6)

Here, Savg is the prescribed friction coefficient, Ωp sat-
isfies t � (αD − αA/Ωp), t is the time when themeshing point
of the gear passes through a base pitch after meshing,
αA � 0.324, αB � 0.453, αC � 0.413, αD � 0.717, and
αE � 0.845, as shown below.

2.3.2. Smoothed Coulomb Model. Duan’s [27] research
shows that the time-varying friction coefficient has a
functional relationship with the slip-rolling ratio. -e rel-
ative slip rate near the node is infinitely close to zero. -e
Coulomb model needs to be smoothed as follows:

fsi(t) �
2Savg

π
arctan κ · xi(t)(  + xi(t)

2Savgσ
π 1 + κ2xi

2(t) 
,

i � 1, 2,

(7)

where xi(t) � Rp((αC − αA) − mod(Ωpt, αD − αA)), the
smoothness, κ, is between 20 and 100, and σ is the overlap
ratio.

For convenience in solving, a dimensionless transfor-
mation is made:

t � ωnτ y∗p �
yg

b
y∗g �

yg

b
α∗ �

α
b

k∗b1x,y �
kb1x,y

b
k∗b2x,y �

kb2x,y

b
k∗0 �

k0

b
k∗v �

kv

b

ω∗h �
ωh

ωn

ω∗p �
ωp

ωn

ω∗g �
ωg

ωn

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (8)

For ease in programming, a variable substitution is
made:

x1 � y∗p x2 � _y∗p x3 � x∗p x4 � _x∗p x5 � y∗g

x6 � _y∗g x7 � x∗g x8 � _x∗g x9 � δ∗ x10 � _δ
∗

⎫⎪⎬

⎪⎭
.

(9)

Substituting equations (2)–(9) into (1) gives

_x1 � x2, (10)

_x2 � − 2 · cpy + δpy  · x2 − ηpy · fpy x1(  − 2

· ch1 + δch1(  · x10 − . . . η11 · fh x9(  − F
∗
py

− ρ∗p ·
ω∗h + δω∗

h
 

2

z1
· sin

ω∗h + δω∗
h

 t

z1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

(11)

_x3 � x4 (12)

_x4 � − 2 · cpx + δpx  · x4 − ηpx · fpx x3(  + F
∗
1(t)

− F
∗
px − ρ∗p ·

ω∗h + δω∗
h

 
2

z2
1

· cos
ω∗h + δω∗

h
 t

z1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

(13)

_x5 � x6, (14)
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_x6 � − 2 · cgy + δgy  · x6 − ηgy · fgy x5(  + 2

· ch2 + δch2(  · x10 + . . . η22 · fh x9(  + F
∗
gy

+ ρ∗g ·
ω∗h + δω∗

h
 

2

z2
2

· sin
ω∗h + δω∗

h
 t

z2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

(15)

_x7 � x8, (16)

_x8 � − 2 · cgx + δgx  · x8 − ηgx · fgx x7(  − F
∗
2(t)

+ F
∗
gx + ρ∗g ·

ω∗h + δω∗
h

 
2

z2
2

· cos
ω∗h + δω∗

h
 t

z2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

(17)

_x9 � x10, (18)

_x10 � _x2 − _x6 − 2 · ch3 + δch3(  · x10 − η33 · fh x9( 

+ F
∗
0 + e
∗
v ω∗h + δω∗

h
 

2
sin ω∗h + δω∗

h
 t 

+ δ ∗F + F
∗
3(t),

(19)

after dimensionless processing, and with z1 and z2 as the
tooth numbers of the gear.

Here, cpy � (cpy/2 · mp · ωn), ηpy � (kpy/mp · ωn),
ch1 � (ch/2 · mp · ωn), η11 � 1 − (ε + δε) · cos[(ω∗h + δω∗

h
)t +

kw], F∗py � (Fpy/mp · bc · ω2
n), cpx � (cpx/2 · mp · ωn),

ηpx � (kpx/mp · ωn), F∗1(t) � (
n
i�1 Λi · Fi(t)/mp · bc · ω2

n),
F∗2(t) � (

n
i�1 Λi · Fi(t)/mg · bc · ω2

n), F∗px � (Fpx/mp · bc·

ω2
n), cgy � (cgy/2 · mg · ωn), ηgy � (kgy/mg · ωn),

ch2 � (ch/2 · mg·ωn), ch3 � (ch/2 · me · ωn), η22 � 1 − (ε+

δε) · cos[(ω∗h + δω∗
h
)t + kw], F∗gy � (Fgy/mg · bc · ω2

n), cgx �

(cgx/2 · mg · ωn), ηgx � (kgx/mg · ωn), F∗gx � (Fgx/mg · bc·

ω2
n), F∗0 � (Jg · Rp · Tp · + Jp · Rg · Tg/Jp · Jg · bc · ω2

n), η33 �

1 − (ε + δε) · cos[(ω∗h + δε∗
h
)t + kw], and F∗3(t) � (

n
i�1 Λi·

Fi(t)/me · bc · ω2
n).

3. Results and Discussion

Equations (10)–(19) are solved by iterative methods with step
size t � 0.05, z1 � z2 � 30, mp � mq � me � 0.456 kg, Jp �

Jq � 6 × 10− 6 kg · m2, bc � 0.068mm, ev � 0.034mm, k0 �

2.23 × 108N/m, kv � 1.12 × 107N/m, e∗v � 0.05, F∗px � 0.02,
F∗py � 0.2, F∗gy � 0.2, F∗gy � − 0.2, η11 � 1.1, η22 � 1.1,
η33 � 1.1, cpx � 0.01, cpy � 0.01, cgx � 0.01, cgy � 0.01,
ch1 � 0.012, ch2 � 0.012, ch3 � 0.05, ε � 0.18, ρ∗p � 0.1,
ρ∗g � 0.1, F∗0 � 0.15, αA � 0.324 rad, αB � 0.453 rad, αc �

0.413 rad, αD � 0.717 rad, αE � 0.845 rad, Rp � Rg � 0.06m,
Savg � 0.991 μm, and initial conditions are as follows:

x1(0) � 0, x2(0) � − 0.1, x3(0) � 0, x4(0) �

− 0.1, x5(0) � 0, x6(0) � − 0.1, x7
(0) � 0, x8(0) � − 0.1, x9(0) � 0, and x10(0) � − 0.1.

3.1. Analysis of a System without Random Perturbation.
-e nonlinear characteristics of a radial braiding machine’s
gear transmission system without random perturbation are

shown in Figures 6(a)–12. -e vibrational bifurcation dia-
gram of the system is presented in Figure 6(a), the maximum
Lyapunov exponent diagram of the system is shown as
Figure 6(b), and Poincare maps and corresponding phase
trajectories of the system are shown in Figures 7–12.

-e nonlinear vibration characteristics of the system and
the relationship between ω and x10 are shown in Figure 6(a).
Observations include the following:

(1) From Figure 6(a), the system has one periodic point
when ω< 163.3. -e Poincare maps and corre-
sponding phase trajectories of the system at ω � 110
are shown in Figure 7, where it can be observed that
the system converged rapidly to one periodic point at
ω � 110; this suggests that the system was stable.

(2) -e system has four periodic points when
163.3<ω< 186.5 and Poincare maps and corre-
sponding phase trajectories of the system at ω � 170
are shown in Figure 8.

(3) With the increase ofω, the number of periodic points
changes when 186.5<ω< 190.

(4) -e system has nine periodic points when
190<ω< 213, and Poincare maps and correspond-
ing phase trajectories of the system at ω � 200 are
shown in Figure 9.

(5) From Figure 6(a), chaos occurs in the system when
213<ω< 240. Poincare maps and corresponding
phase trajectories of the system at ω � 232 are shown
in Figure 10.

(6) When 240<ω< 264.7, the corresponding phase
trajectories of the system comprise a limit cycle, and
Poincare maps and corresponding phase trajectories
of the system at ω � 243 are shown in Figure 11.

(7) When ω< 264.7, the system becomes divergent and
uncontrollable, and Poincare maps and correspond-
ing phase trajectories of the system at ω � 265 are
shown in Figure 12. Meanwhile, the maximum
Lyapunov diagram of the system can also reflect the
nonlinearity of the system to a certain extent, as is
shown in Figure 6(b). -e Lyapunov exponent is
defined as λk � limx⟶∞(1/i)ln|λ(i)

k |, k � 1, 2, . . . , n,
where |λi

1|≥ |λi
2|≥ · · · ≥ |λi

n|. In Figure 6(b), the
maximum Lyapunov exponent is negative or fluctu-
ates near zero when ω< 213, which indicates that the
system is stable according to the Lyapunov theorem.
-e maximum Lyapunov exponent is positive when
ω< 213, which indicates that the system exhibits
chaos and becomes divergent and uncontrollable.

-e nonlinearity shown in Figure 6(b) is consistent with
the analysis from Poincare maps and the corresponding
phase trajectories of the system.

3.2. Systematic Analysis of kw. -e nonlinear characteristics
of a gear transmission system as a function of kw are ana-
lyzed in Figures 13(a)–20(b). -e vibrational bifurcation
diagram of the system with kw � 0.248 is shown in
Figure 13(a), the maximum Lyapunov diagram of the system
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with kw � 0.248 is shown in Figure 13(b), and Poincare maps
and corresponding phase trajectories of the system with
kw � 0.248 are shown in Figures 14–19. In addition, the
vibrational bifurcation diagram of a system with kw � 0.32 is
shown in Figure 20(a), and the maximum Lyapunov dia-
gram of the system with kw � 0.32 is shown in Figure 20(b).

From Figures 13(a) and 20(a), it appears that kw exerts a
significant influence on the nonlinear characteristics of the
gear transmission system. If kw is relatively small, such as
kw � 0.248, there is a smaller influence on the nonlinear
characteristics of the gear transmission system. -e vibra-
tional bifurcation diagram of the system, the maximum
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Figure 6: (a) Vibrational bifurcation diagram without perturbation. (b) Maximum Lyapunov exponent curve without perturbation.
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Figure 7: ω � 110 without random perturbation. (a) Phase trajectories. (b) Poincare maps.
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Figure 8: ω � 170 without random perturbation. (a) Phase trajectories. (b) Poincare maps.
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Lyapunov diagram of the system, and Poincare maps and
corresponding phase trajectories of the system with kw �

0.248 are shown in Figures 13(a)–19. Comparing
Figures 6(a) and 13(a), it is observed that the vibration
amplitude x10 when kw � 0.248 is larger than the x10
resulting when kw � 0, and the system exhibits chaos earlier
when kw � 0.248 as opposed to when kw � 0.When ω � 200,
the system exhibits chaos with kw � 0.248, but when
ω � 213, the system exhibits chaos with kw � 0. When

ω< 200, the form of the solution with kw � 0.248 is similar to
that of kw � 0. When 200<ω< 215, the system exhibits
chaos and Poincare maps and corresponding phase trajec-
tories of the system atω � 214 are shown in Figure 17.When
215<ω< 240, the corresponding phase trajectories of the
system form a limit cycle. Poincare maps and corresponding
phase trajectories of the system at ω � 234 are shown in
Figure 18. When ω � 240, the system becomes divergent and
uncontrollable. Poincare maps and corresponding phase
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Figure 9: ω � 200 without random perturbation. (a) Phase trajectories. (b) Poincare maps.
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Figure 10: ω � 232 without random perturbation. (a) Phase trajectories. (b) Poincare maps.
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Figure 11: ω � 243 without random perturbation. (a) Phase trajectories. (b) Poincare maps.
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trajectories of the system at ω � 240 are shown in Figure 19.
From Figure 13(b), the maximum Lyapunov exponent is
negative or fluctuates near zero when ω> 200, indicating
that the system is stable according to the Lyapunov theorem.
-e maximum Lyapunov exponent is positive when ω> 200,
indicating that the system exhibits chaos and becomes di-
vergent and uncontrollable. -e nonlinearity shown in
Figure 13(b) is consistent with the analysis from Poincare
maps and corresponding phase trajectories for the system. If

kw is relatively large, such as kw � 0.32, there is a substantial
influence on the nonlinear characteristics of the gear
transmission system. -e vibrational bifurcation diagram of
the system, the maximum Lyapunov diagram of the system,
Poincare maps, and corresponding phase trajectories of the
system with kw � 0.32 are shown in Figures 20(a) and 20(b).
From Figure 20(b), it is clear that the maximum Lyapunov
exponent is positive if kw is relatively large, such as
kw � 0.32, indicating that the system exhibits chaos and
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Figure 12: ω � 265 without random perturbation. (a) Phase trajectories. (b) Poincare maps.
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Figure 13: (a) Vibrational bifurcation diagram with kw � 0.248. (b) Maximum Lyapunov exponent curve with kw � 0.248.

0.64

0.66

0.68

0.7

0.72

0.74

×1
0

0.4 0.6 0.80 0.2–0.2
×9

(a)

–0.5

0

0.5

1

1.5

2

×1
0

10.5 1.5 20–0.5
×9

(b)

Figure 14: ω � 110 and kw � 0.248 without random perturbation. (a) Phase trajectories. (b) Poincare maps.
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becomes divergent and uncontrollable. Here, the Poincare
maps and corresponding phase trajectories of the system are
omitted.

3.3. Systematic Analysis of Friction on the Tooth Surface.
-e dynamic friction resulting from the Coulomb model is
shown in Figure 21. Friction on the tooth surface exhibits an
obvious periodic variation when 0.05< t< 0.0581 and

ω< 210. Bifurcation diagrams, maximum Lyapunov expo-
nents, phase diagrams, Poincare maps corresponding to
Figure 21, and specific analyses are shown in Figures 22(a)–
29. When 0.05< t< 0.0581, the vibrational bifurcation dia-
gram for the system using the Coulomb model to predict the
time-varying friction coefficient is shown in Figure 22(a);
Figure 22(a) indicates that the nonlinear characteristics of
friction on the tooth surfaces of the gear transmission system
are complex. Observations include the following:

(1) When 0.05< t< 0.0581 and ω< 163.3, the system has
one periodic point. Poincare maps and corre-
sponding phase trajectories of system at ω � 110 are
shown in Figure 23; this shows that the system
rapidly converges to one periodic point, indicating
that the system is stable.

(2) When 0.05< t< 0.0581 and 163.3<ω< 186.5, the
system has four periodic points, and Poincare maps
and corresponding phase trajectories of system at
ω � 174 are shown in Figure 24.

(3) With increasing ω � 110, the number of periodic
points changes when 0.05< t< 0.0581 and
186.5<ω< 190.

0.82
0.84
0.86
0.88

0.9
0.92
0.94
0.96

×1
0

0.85 0.950.8 10.9
×9

(a)

0.82
0.84
0.86
0.88

0.9
0.92
0.94
0.96

×1
0

0.85 0.9 0.95 10.8
×9

(b)

Figure 15: ω � 170 and kw � 0.248without random perturbation.
(a) Phase trajectories. (b) Poincare maps.
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Figure 16: ω � 192 and kw � 0.248 without random perturbation.
(a) Phase trajectories. (b) Poincare maps.
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Figure 17: ω � 214 and kw � 0.248without random perturbation.
(a) Phase trajectories, (b) Poincare maps.
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Figure 18: ω � 234 and kw � 0.248 without random perturbation.
(a) Phase trajectories. (b) Poincare maps.
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Figure 20: (a) Vibrational bifurcation diagram curve with kw � 0.32. (b) Maximum Lyapunov exponent with kw � 0.32.

fc1-0.325
fc2-0.53
fc3-0.991

–3

–2.5

–2

–1.5

–1

–0.5

0

0.5

1

1.5

2

D
yn

am
ic

 fr
ic

tio
n 

(K
N

)

0.090.0850.080.075 0.095 0.10.0650.060.055 0.070.05
t

Figure 21: Dynamic friction with the Coulomb model.
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Figure 22: (a) Vibrational bifurcation diagram with the Coulombmodel when t ∈ 0.05 0.0581 . (b) Maximum Lyapunov exponent curve
with the Coulomb model when t ∈ [0.05 0.0581].
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(4) When 0.05< t< 0.0581 and 190<ω< 203, the system
has nine periodic points, and Poincare maps and
corresponding phase trajectories of the system at ω �

192 are shown in Figure 25.
(5) From Figure 22(a), the system has a finite number of

periodic points when 0.05< t< 0.0581 and
203<ω< 210. Poincare maps and corresponding
phase trajectories of the system at ω � 206 are shown
in Figure 26.

(6) From Figure 22(a), the phase trajectories of the
system when 0.05< t< 0.0581 and 210<ω< 230
constitute a limit cycle. Poincare maps and corre-
sponding phase trajectories of the system at ω � 220
are shown in Figure 27.

(7) When 230<ω< 272, the system has 13 periodic
points. Poincare maps and corresponding phase
trajectories of the system at ω � 237 are shown in
Figure 28.

(8) When ω � 272, the system becomes divergent and
uncontrollable. Poincare maps and corresponding
phase trajectories of the system at ω � 273 are shown
in Figure 29.

From Figure 22(b), the maximum Lyapunov exponent is
negative or fluctuates near zero when ω< 210, indicating
that the system is stable according to the Lyapunov theorem.
-e maximum Lyapunov exponent is positive when ω> 210,
which indicates that the system exhibits chaos and becomes
divergent and uncontrollable. In general, friction in the
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Figure 23: ω � 110 and kw � 0 with the Coulomb model when
t ∈ 0.05 0.0581 . (a) Phase trajectories. (b) Poincare maps.
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Figure 24: ω � 174 and kw � 0with the Coulomb model when
t ∈ 0.05 0.0581 . (a) Phase trajectories. (b) Poincare maps.
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Figure 25: ω � 192 and kw � 0with the Coulomb model when
t ∈ 0.05 0.0581 . (a) Phase trajectories. (b) Poincare maps.
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Figure 26: ω � 206 and kw � 0with the Coulomb model when
t ∈ 0.05 0.0581 . (a) Phase trajectories. (b) Poincare maps.
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Figure 27: ω � 220 and kw � 0 with the Coulomb model when
t ∈ 0.05 0.0581 . (a) Phase trajectories. (b) Poincare maps.
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Coulomb model increases with an increase in tooth surface
roughness because of the change in the nonlinear friction
coefficient. Meanwhile, friction in the Coulomb model has
nonperiodic and sharp fluctuations when t> 0.0581. Bi-
furcation diagrams, maximum Lyapunov exponents, phase
diagrams, Poincare maps corresponding to Figure 21, and
specific analyses are shown in Figures 30(a) and 30(b).
Whent> 0.0581, use of the Coulomb model to predict the
time-varying friction coefficient exhibits chaos and becomes
divergent and uncontrollable. Figure 30(a) shows the vi-
brational bifurcation diagram of the system using the
Coulomb model to predict the time-varying friction coef-
ficient when 0.0581< t< 0.1009, and the maximum Lya-
punov diagram of the system is shown in Figure 30(b). From
Figure 30(b), the maximum Lyapunov exponent is positive
when 0.0581< t< 0.1009, which indicates that the system
exhibits chaos and becomes divergent and uncontrollable.
Here, the Poincare maps and corresponding phase trajec-
tories of the system are omitted.

-e dynamic friction obtained with the smoothed
Coulomb model is shown in Figure 31. Friction on the tooth
surface exhibits obvious periodic changes when
0.05< t< 0.0597 and ω< 201. Bifurcation diagrams, maxi-
mum Lyapunov exponents, phase diagrams, Poincare maps

corresponding to Figure 31, and specific analyses are shown
in Figures 32(a)–38. -e vibrational bifurcation diagram of
the system using the smoothed Coulomb model to predict
the time-varying friction coefficient when 0.05< t< 0.0597 is
given in Figure 32(a), which shows that the nonlinear
characteristics of tooth surface friction in the gear trans-
mission system is complex. Observations include the
following:

(1) When 0.05< t< 0.0597 and ω< 163.3, the system has
one periodic point. Poincare maps and corre-
sponding phase trajectories of the system at ω � 110
are shown in Figure 33. In Figure 33, the system
rapidly converges to one periodic point, indicating
that the system is stable.

(2) When 0.05< t< 0.0597 and 163.3<ω< 182, the
system has four periodic points. Poincare maps and
corresponding phase trajectories of the system at ω �

174 are shown in Figure 34.
(3) With the increase ofω, the number of periodic points

changes when 0.05< t< 0.0597 and 182<ω< 190.
(4) When 190<ω< 201, the system has nine periodic

points. Poincare maps and corresponding phase
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Figure 28: ω � 237 and kw � 0with the Coulomb model when t ∈ 0.05 0.0581 . (a) Phase trajectories. (b) Poincare maps.
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Figure 29: ω � 273 and kw � 0with the Coulomb model when t ∈ 0.05 0.0581 . (a) Phase trajectories. (b) Poincare maps.
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Figure 30: (a) Vibrational bifurcation diagram with the Coulomb model when t ∈ 0.0581 0.1009 . (b) Maximum Lyapunov exponent
curve with the Coulomb model when t ∈ 0.0581 0.1009 .
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Figure 32: (a) Vibrational bifurcation diagram with the smoothed Coulomb model when t ∈ 0.05 0.0597 . (b) Maximum Lyapunov
exponent curve with the smoothed Coulomb model when t ∈ 0.05 0.0597 .
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trajectories of the system at ω � 192 are shown in
Figure 35.

(5) When 0.05< t< 0.0597and 201<ω< 229, corre-
sponding phase trajectories of the system constitute a
limit cycle. Poincare maps and corresponding phase
trajectories of the system at ω � 210 are shown in
Figure 36.

(7) When 229<ω< 272, the system has 13 periodic
points. Poincare maps and corresponding phase
trajectories of the system at ω � 230 are shown in
Figure 37.

(8) When ω> 272, the system becomes divergent and
uncontrollable. Poincare maps and corresponding
phase trajectories of the system at ω � 273 are shown
in Figure 38.

From Figure 32(b), the maximum Lyapunov exponent is
negative or fluctuates near zero when ω< 201, indicating
that the system is stable according to the Lyapunov theorem.

-e maximum Lyapunov exponent is positive when ω> 201,
which indicates that the system exhibits chaos and becomes
divergent and uncontrollable. In general, friction with the
smoothed Coulomb model increases with an increase in
tooth surface roughness because of the change of the
nonlinear friction coefficient. Meanwhile, friction in the
smoothed Coulomb model has nonperiodic and sharp
fluctuations when t> 0.0597. Bifurcation diagrams, maxi-
mum Lyapunov exponents, phase diagrams, Poincare maps
corresponding to Figure 31, and specific analyses are shown
in Figures 39(a) and 39(b). Figure 39(a) shows the vibra-
tional bifurcation diagram of the system using the smoothed
Coulomb model to predict the time-varying friction coef-
ficient when 0.0597< t< 0.0921, and the maximum Lya-
punov diagram of the system is shown in Figure 39(b). From
Figure 39(b), the maximum Lyapunov exponent is positive
when 0.0597< t< 0.0921, which indicates that the system
exhibits chaos and becomes divergent and uncontrollable.
Here, the Poincare maps and corresponding phase trajec-
tories of the system are omitted.
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Figure 34: ω � 174 and kw � 0 with the smoothed Coulombmodel
when t ∈ 0.05 0.0597 .
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Figure 35: ω � 192 and kw � 0 with the smoothed Coulombmodel
when t ∈ 0.05 0.0597 .
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Figure 33: ω � 110 and kw � 0 with the smoothed Coulombmodel
when t ∈ 0.05 0.0597 .
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Figure 36: ω � 210 and kw � 0 with the smoothed Coulombmodel
when t ∈ 0.05 0.0597 .
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Figure 38: ω � 273 and kw � 0 with the smoothed Coulomb model when t ∈ 0.05 0.0597 .
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Figure 39: (a) Vibrational bifurcation diagram with the smoothed Coulomb model when t ∈ 0.0597 0.0921 . (b) Maximum Lyapunov
exponent curve with the smoothed Coulomb model when t ∈ 0.0597 0.0921 .
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Figure 37: ω � 230 and kw � 0 with the smoothed Coulomb model when t ∈ 0.05 0.0597 .

16 Shock and Vibration



3.4. Analysis of System with Random Perturbation. -e
nonlinear characteristics of a gear transmission system with
random perturbation are analyzed as shown in

Figures 40–48. -e basic parameters are the same as those
presented above, but some random perturbations are added
here; these include δpx, δpy, δgx, δgy, δch1, δch2, δch3, δε,
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Figure 40: ω � 110 with random perturbation.
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Figure 41: ω � 200 with random perturbation.
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Figure 42: ω � 232 with random perturbation.
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Figure 43: ω � 238 with random perturbation.
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Figure 44: ω � 285 with random Perturbation.
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Figure 45: Power spectrum of x10with random perturbation,
ω � 175.
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δ ∗F ∼ N(0, 0.0012), and δ ∗ωh ∼ N(0, 0.000052). -e Poincare
maps and corresponding phase trajectories of the system
with random perturbation are shown in Figures 40–44, in
which the nonlinear characteristics of the gear transmission
system with small random perturbation are basically con-
sistent with the nonlinear characteristics of the system
without random perturbation (as shown in Figures 7–12).
-e system with small random perturbations converges to
some degree, but the system without random perturbations

converges to a finite point. -e power spectra in Figures 45
and 46 were generated with a sampling frequency of 1000.

-e trend of the power spectrum of x10 with and without
random perturbation is almost identical, but the fluctuation
of the power spectrum of x10 with random perturbation is
greater than that without random perturbation.

-e vibrational bifurcation diagrams of the system with
δ ∗F ∼ N(0, 0.012), δ ∗F ∼ N(0, 0.122) are shown in Figures 47
and 48. With the increase of δ ∗F , the dynamic characteristics
of the system change from Figure 47 to 48. When δ ∗F in-
creases to the extent that δ ∗F ∼ N(0, 0.122), the bifurcation of
the system disappears completely and the system becomes
uncontrollable.

4. Conclusions

-is study investigates the nonlinear characteristics of a gear
transmission system in a braiding machine experiencing
multiple excitation factors. -e well-known radial braiding
machine with one layer was used to investigate the nonlinear
characteristics of the gear transmission system. -e results
show that the nonlinear characteristics of the gear trans-
mission system under the influence of multiple excitation
factors were in accordance with the principles of practical
engineering.

In conclusion, this research on the nonlinear charac-
teristics of the gear transmission system in a braiding ma-
chine is helpful for engineers engaged in future design of this
well-known machine. Our findings include the following:

(1) According to the bifurcation diagram of the system
without random perturbation, the system exhibits
chaos when ω> 213. -erefore, ωmust be controlled
so ω< 213, that is, the speed is 25561.25 r/s. If factors
such as yarn tension and safety are taken into ac-
count, the safe speed in this braiding machine might
be under about 302.5r/s, or 1.815 × 103 r/min.

(2) kw has a great influence on the nonlinear charac-
teristics of the gear transmission system. With an
increase in kw, e.g., with kw ≥ 0.32, the system of the
radial braiding machine with one layer always ex-
hibits chaos.-erefore, kw must be controlled so that
kw < 0.32.

(3) Friction on the tooth surface has a large influence on
the nonlinear characteristics of the gear transmission
system. -e Coulomb model and the smoothed
Coulomb model are used to predict the time-varying
friction coefficient. In general, friction on the tooth
surface increases with increasing tooth surface
roughness because of the change in the nonlinear
friction coefficient. -e system always exhibits chaos
when t> 0.0581 with the Coulomb model used to
predict the time-varying friction coefficient. Mean-
while, the system always exhibits chaos when
t> 0.0597, and the smoothed Coulombmodel is used
to predict the time-varying friction coefficient.

(4) -e system with small random perturbations con-
verges to some degree, and the system without
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Figure 46: Power spectrum of x10 without perturbation, ω � 175.
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Figure 47: Vibrational bifurcation random diagram with
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Figure 48: Vibrational bifurcation diagram with δ ∗F ∼ N(0, 0.122).
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random perturbation converges to a finite point.
However, the dynamic characteristics of the system
have not changed. -e increase of some certain
perturbations does lead to changes in the dynamic
characteristics of the system. When δ ∗F increases to
the extent that δ ∗F ∼ N(0, 0.122), the bifurcation of
the system disappears completely and the system
becomes uncontrollable.

In this paper, we analyze nonlinear dynamic charac-
teristics of a gear transmission system in a braiding machine
and only consider disturbance of yarn tension, transmission
error, time-varying friction, and contact temperature be-
cause of the time limit. However, many other factors have an
important influence on nonlinear dynamic characteristics of
a gear transmission system. Future research on the influence
of other excitation factors operating on the gear transmis-
sion system in a braiding machine would be of value.
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